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Abstract: The endocannabinoid system (ECS) is a composite cell-signaling system that allows endoge-
nous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors.
Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers.
However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimen-
tal studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological
malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell
death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angio-
genesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may
synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover,
targeting ECS might be considered as a novel approach for the management of graft versus host
disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and
neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on
hematological tumors, thus focusing on the essential topics that might be useful before moving into
the clinical practice.

Keywords: hematological malignancies; cannabinoids; medical cannabis; anti-tumor effects; leukemia;
lymphoma; bone marrow transplantation

1. Introduction

Cannabis sativa (C. sativa) has been used for centuries for different reasons, and it is the
most used illegal plant. CS is the main source of cannabinoids (CBs). Marijuana (a greenish-
gray mix of seeds, leaves, stems, and flowers of CS), hash, and hash oil are the main types
of cannabis, but cannabis comprises more than 500 different substances [1,2]. CBs are
generally cataloged as plant CBs or phytocannabinoids, endocannabinoids, and synthetic
CBs [3], and both natural and synthetic CBs are believed to have neuroactive effects. To
date, over 100 phytocannabinoids have been extracted, and the substances found in the
greatest concentrations are acids: cannabidiolic acid, cannabinolic acid, cannabigerolic acid,
cannabichromenic acid, and cannabinodiolic acid [4,5].

Delta 9–tetrahydrocannabinol (D9-THC) and cannabidiol (CBD) are the most studied
compounds. THC is the main psychoactive compound contained in marijuana, and it is
quickly absorbed at the pulmonary level, binds with its specific receptors in the central
nervous system, and exerts its mechanism of action.

Endocannabinoids are the main part of the endocannabinoid system (ES), which
includes CB receptors (CBRs) and enzymes implicated in their synthesis, delivery, and
metabolization [6]. Studies performed during the last 10 years have demonstrated the pos-
sible existence of a high degree of redundancy for both the molecular targets and metabolic
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routes as well as the corresponding enzymes of the endocannabinoids. Numerous N-acyl-
ethanolamines, monoacylglycerols, N-acyl amino acids, and N-acyldopamines/taurines/
serotonines were proposed to be part of this system. These endocannabinoid-like molecules
may stimulate other molecular targets independently from cannabinoid receptors. All
these findings together with the discovery of new endocannabinoid-like molecules have led
authors to expand the classical view of the CBs system and to look at it as the ‘endocannabi-
noidome’ [7,8]. The most studied endocannabinoids are N-arachidonoylethanolamine
(AEA, or anandamide) and 2-arachidonoylglycerol (2-AG), but other compounds such as
N-arachidonoyl dopamine, virodhamine, and 2-arachidonoylglyceryl ether (noladin ether)
are also recognized as endocannabinoids [9].

Nowadays, cannabinoids may have a synthetic origin following chemical production
and are mainly CB receptor ligands; they are generally used in the research field to study
their mechanism of action and their function, though they have also been employed for ther-
apeutic and recreational purposes [10]. About 140 substances have been synthesized and
are used as cannabinoids, such as SR144528, WIN 55,212-2, JWH-018, UR-144, HU-210, HU-
331, and JWH-133; they may be catalogued into four different families: aminoalkylindoles,
classical CBs, non-classical CBs, and fatty acid amides [11,12].

It was first believed that the CBs physiological mechanism of action was due to
non-specific relations with the cellular membrane; however, both in vitro and in vivo
experimental models showed that the CBs mechanism of action was related to the specific
binding with the CB receptors, CB1 and CB2. CB1R is widely distributed within the central
nervous system (CNS), but it has also been detected in the peripheral nerve endings and
in different tissues such as lung, spleen, stomach, adipose tissue, vascular endothelium,
liver, urinary bladder, and prostate [6]. CB2Rs are mainly expressed on the immune cells,
though they have also been found in the CNS [13] and are involved in immunomodulation
and inflammatory response [14]. However, after the detection of CB1Rs and CB2Rs, their
endogenous ligands were also recognized [15–21].

As reported above, some endocannabinoids, such as 2-AG and AEA, may bind other
transmembrane proteins, comprising orphan G protein-coupled receptor 55 (GPR55), per-
oxisome proliferator-activated receptors (PPARs), and transient receptor potential vanilloid
(TRPV) channel type 1 (TRPV1), as well as CB1Rs and CB2Rs [22,23].

Several cannabinoid receptor agonists bind more or less to CB1Rs and CB2Rs, such as
classical THC and HU-210, nonclassical (CP55940), aminoalkylindole, which has a higher
affinity to CB2R more than CB1R, and antagonist-inverse agonists (SR141716A) for CB1 and
SR144528 for CB2. In general, many antagonists show high selectivity toward the CB1R,
which allows differentiation between CB1R and CB2R, while numerous agonists show low
selectivity between cannabinoid receptors. Despite this, some agonists, such as arachidonyl-
2′-chlorethylamide (ACEA) compound, show CB1R high selectivity. In addition, allosteric
modulators that bind to different sites other than the ligand orthosteric site affect the
stimulus of cannabinoid receptor by either enhancing or reducing its activity [24].

The purpose of the present review is to provide an overview of the effects of cannabi-
noids in cancers, with a focus on hematological diseases. Both pre-clinical and clinical
studies will be reported, and we will highlight the hypothesis that cannabinoids might
be used in the field of cancer therapy (direct administration in the neoplastic mass or
application of nanotechnologies) and for the management of some symptoms observed in
cancers, even if their use in clinical practice needs to be carefully investigated.

2. Adverse Effects of Marijuana Intake: CBs and Solid Cancers

The frequency of marijuana smoking is rising and is second only to tobacco [25].
Owing to its psychoactive actions, including the abusive potential, cannabis and its deriva-
tives fall into the category of “controlled drugs”, and their possession is prohibited in
several countries. Until recent years, despite being acknowledged as a therapeutic agent,
cannabis received small consideration from researchers, probably because of its psychoac-
tive activity—which makes it a controlled drug—and its side effects [26].
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A correct evaluation of the adverse effects related to marijuana use is difficult to
execute due to its prohibited condition in several countries, different smoking practices,
and its briefer time of exposure with respect to tobacco [27]. However, several lung
complications of marijuana smoking have been reported, and short-term exposure has
been correlated to dyspnea, bronchitis, coughing, pneumothorax, apical lung bullae, and
pneumomediastinum [28–32] (Table 1).

Table 1. Adverse effects of marijuana intake reported in clinical trials.

Apparatus Effect Number of Patients Exposure Ref.

Respiratory tract

Chronic obstructive lung disease 878 More than 50 cigarettes [28]

Pneumothorax 3 Daily [29]

Emphysema 399 Dose-response [30]

Large lung bullae 4 High exposure [31]

Bullous lung bullae 10 Regular chronic exposure [32]

Cardiovascular system Hypertension, Tachyarrythmia 1 Infrequent use [33]
Atrial fibrillation 6 [34]

Liver Fibrosis 204 Daily [35]

Cognitive alteration
Cognitive defect 102 Long-term use [36]

Executive function 55 3 times/week [37]

Dependence Cognitive deficiency, psychoses,
and depressive alterations 2152 Frequent or heavy use [38]

Regarding the adverse effects on lungs in hematological patients, Khwaja et al. de-
scribed two men with acute myeloid leukemia (AML) with miliary nodular lung con-
figurations due to relevant marijuana abuse [39]. They also described two subjects with
acute lymphocytic leukemia (ALL) who had a history of smoking marijuana and then
presented lung opacities consistent with mold infection. Moreover, several findings sustain
the hypothesis that marijuana smoking may represent a risk factor for aero tract tumors.
Marijuana smoke may contain many of the same carcinogens as tobacco smoke, comprising
nitrosamines, different polycyclic aromatic hydrocarbons (PAH), vinyl chlorides, phenols,
and reactive oxygen species (ROS) [40,41]. Furthermore, Benzo[a]pyrene, is also present
in marijuana tar, even at a greater level than in tobacco tar [40]. With respect to tobacco
smoking, marijuana smoking may provoke inhalation of about three times the quantity of
tar and the retaining of one-third more of the tar in the lung [42,43]. Finally, assessment
of bronchial mucosal biopsy specimens from marijuana smokers without any clinically
evident symptomatology shows more alterations than that reported for non–marijuana
smokers in biomarkers of altered proliferation and genetic instability, such as Ki-67, DNA
ploidy, and epidermal growth factor receptor [44].

Marijuana use is quite widespread. One study evaluated about 50,000 Swedish military
personnel who used marijuana during the years 1969 and 1970. Subjects were traced until
2009 for lung tumor outcomes in nationally linked medical registries. At the baseline
evaluation, 5,156 military stated lifetime use of marijuana, and 831 stated use of more than
50 times, defined as “heavy” use. Statistical analyses found that such “heavy” cannabis use
was considerably correlated to more than a twofold risk (hazard ratio 2.12) of developing
lung tumors over the 40-year follow-up period, even after correction for baseline alcohol or
tobacco use and socioeconomic status [45]. Marijuana smoking has also been recognized
as a causal element in other traditionally tobacco-related cancers, such as head, neck, and
transitional cell carcinoma. For instance, a previous study showed a correlation between
head and neck tumors in young subjects and marijuana consumption [46], while a different
report that included 52 patients with transitional cell carcinoma demonstrated that 88.5%
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of patients had a history of regular marijuana use, while only 69.2% of the healthy controls
had the same custom, with a statistically significant difference [47].

However, the negative effects of marijuana are not only restricted to the respiratory
tract; the real incidence of arrhythmias is substantially underreported given the prohibition
of cannabis use. Reported arrhythmias include sinus tachycardia, sinus bradycardia,
and second-degree atrioventricular blockage. Marijuana smoking can contribute to acute
myocardial infarction by causing coronary artery vasospasm [33] or may be an important
risk factor for atrial fibrillation [34] and hepatitis [35].

Moreover, marijuana intake may affect skin and trigger Raynaud syndrome, thus
causing arteritis [48]. Long-lasting, intense cannabis use has also been associated with
cognitive alterations, with a significant reduction in attention and memory damage [36,37].

Among the negative effects related to CBs intake, the immune system might be
affected, with the consequence of a compromised immune response against infectious
diseases and tumors (anti-neoplastic immunosurveillance reduction). Continuous con-
sumption of marijuana may also be responsible for alveolar macrophage injury, while
cannabis may alter the delivery of cytokines, possibly causing the incapacity of the immune
system to oppose to infections [49,50]. In this regard, marijuana can also become infected
with various fungi such as Aspergillus, Mucorales, and Fusarium [51]. In an experimental
study, marijuana’s mold amount was evaluated with respect to that of tobacco. A total of
100,000 colony-forming units of mold were found on marijuana vs. 200 colony-forming
units on tobacco [52].

Finally, chronic cannabis intake increases the risk of cannabis dependence, which
is related to several negative psychosocial outcomes such as cognitive deficiency, psy-
choses and depressive and anxiety alterations, poor educational outcomes, and antisocial
behavior [38,53,54].

In the past years, several experimental studies have assessed the clinical efficacy of
cannabis and CBs in preclinical and clinical cancer models, establishing that CBs are able
to halt tumor cell growth and progression [55,56]. Remarkably, some other reports have
shown that CBs can display a carcinogenic potential in specific conditions (Table 2).

Table 2. Carcinogenic potential of Cannabis and CBs reported in clinical trials.

Apparatus Number of Patients Exposure Ref.

Cancer

Lung 49,321 More than 50 times [45]

Head and Neck 6 Habitual use [46]

Transitional cell carcinoma 52 Habitual use [47]

Glioma 133,811 Once a month [57]

Head and Neck 173 Dose-response [58]

Testicular germ cell tumors 49,343 More than 50 times [59]

Exposure of mice to Delta9-THC stimulated tumor proliferation and invasion, thus
affecting the anticancer immune response, probably as a consequence of an opposite
effect played by CB2R with respect to CB1R. In fact, Delta9-THC increased IL-4 and IL-
10, indicating that Delta9-THC exposure may particularly inhibit the cell-mediated Th1
response by augmenting Th2-associated cytokines [60]. Similar results were obtained in
two different animal lung cancer models: THC administration caused a faster proliferation
of cancer implants compared to the treatment with diluent alone. The immune inhibitory
cytokines IL-10 and TGF-β were increased, while IFN-γ was reduced both in the tumor site
and in spleens of THC-treated mice. When anti-IL-10- or anti-TGF-β-neutralizing Abs were
administered, they prevented the THC-induced increase of cancer proliferation. Antigen-
presenting cells and T cells from THC-treated animals demonstrated inadequate aptitudes
to produce alloreactivity. Moreover, lymphocytes from THC-treated mice transmitted
the effect to normal animals, causing an enhanced tumor proliferation similar to that
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reported in the THC-treated mice [61]. Finally, in an in vitro study, Hart et al. reported
that anandamide, THC, HU-210, and Win55,212-2 stimulated mitogenic kinase signaling
in tumor cells. Treatment of the glioblastoma cell line U373-MG and the lung carcinoma
cell line NCI-H292 with THC caused an augmented growth that was totally reliant on
metalloproteases and epidermal growth factor receptor activity [62].

Both CB1Rs and CB2Rs were reported to be expressed in different types of cancer cells.
Interestingly, both receptors were often unrevealed at the place of the tumors’ origin before
neoplastic transformation [63]. Furthermore, augmented amounts of endocannabinoid
have been reported in different tumors, such as prostate cancer, glioblastoma, colon cancer,
hepatocellular carcinoma, skin cancer, endometrial sarcoma, pituitary adenoma, and menin-
gioma [63,64], and the number of enzymes implicated in the endocannabinoid degradation
is frequently correlated with the tumor severity. Wang et al. reported that CB1R had a
tumor-suppressive activity in a genetically changed animal experimental model of a colon
tumor [65]. On the other hand, CB1R is increased in hepatocellular carcinoma, and the
amount of increase was associated with tumor severity in epithelial ovarian cancer [66–68].
In the same way, CB2R has also been demonstrated to be increased in both gliomas and
HER2+ breast tumors [69,70]. Finally, it was demonstrated that CB1R and CB2R increase
was associated with bad outcomes in stage IV colorectal carcinoma patients [71,72].

With regard to epidemiological studies, two diverse analyses, both retrospective
and based on the population of Kaiser Permanente subscribers in Northern California,
evaluated marijuana as a risk factor for tumor onset [57,73].

The correlation between marijuana uses and head/neck cancers was also assessed in
a study involving 173 patients and 176 healthy controls. A 2.6-fold increase of occurrence
of head and neck squamous cell carcinoma risk was found in marijuana users, with
dose-response tendencies reported for duration and frequency of marijuana use. In fact,
dose-response relationships were reported for rate of marijuana use/day and years of
marijuana use. These correlations were greater for younger subjects (OR, 3.1; 95% CI,
1.0–9.7) [74]. In contrast, no association and no dose-response trends were demonstrated in
a population of 407 carcinomas of the oral cavity and 615 healthy controls [75].

Finally, convincing evidence suggests that, in the testis, a correct CBs activity, associ-
ated to an appropriate CBRs signaling, is essential for spermatogenesis. Any modification
of this system negatively disturbs male reproduction, from germ cell differentiation to
sperm function, and might have also an effect on the onset of testicular tumors. Marijuana
use has been proposed as a risk factor for testicular cancer development by augmenting the
occurrence of testicular tumors. CBs, by binding to CBRs at a central level, could alter the
hypothalamic–testis axis, thus disturbing normal hormone regulation of spermatogenesis
and causing carcinogenesis. Moreover, CBs could bind, at the periphery in the testis, to CB
receptors present in germ cells or somatic cells, modifying germ cell development and trig-
gering the cancerous transformation. Recently, increased attention has been focused this,
following the detection of epigenetic implications of cannabis exposure in germ cells [76].
In a recent report, heavy cannabis use was associated with the incidence of testicular cancer
(AHR 2.57, 95% CI, 1.02, 6.50) [59].

Overall, the above data indicate that alterations of ECS expression may have a relevant
effect in carcinogenesis [77,78], and these findings have led the scientific community
to hypothesize that CBs may be considered as a possible therapeutic approach for the
treatment of solid tumors. However, the antineoplastic potential of CBS has been known
for at least 50 years [55]. The oral administration of these compounds slowed the tumor
progression in a mouse experimental model of Lewis lung adenocarcinoma. Similarly,
Carchman et al. confirmed that CBs administration, such as D8-THC, D9-THC, and CBD,
blocked both DNA synthesis and proliferation of lung adenocarcinoma in cells as well as
in animal tumor models [79].

An antiproliferative effect of CBs was reported in both in vitro and in vivo models
of different tumors, including pancreas, breast, and prostate cancers, but also glioma and
colorectal carcinoma [80–83]. Other CBs also have anti-tumor effects, such as JWH-015,
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which is a naphthoyl indole derivative that induced programmed cell death in breast cancer
cell lines. In addition, JWH-015 significantly decreased tumor proliferation in non-small
lung cancer cell lines [83,84], while JWH-133, a pyran derivative substance, blocked tumor
advancement in breast cancer cell lines [85].

However, despite the successes obtained from the in vitro and in vivo experiments,
the first human interventional study to evaluate the anti-tumor effect of CBs was performed
only in 2006 [64]. This was a phase I clinical trial carried out on patients with relapsed
glioma. ∆9-THC intracranial administration significantly increased the median survival of
treated patients [64]. Despite this, the fear of side effects has limited the experimentations
for the evaluation of the antineoplastic effects of these substances. Nevertheless, CBs
display a fair drug safety profile, and their possible adverse effects are within the range of
those accepted for other drugs, especially in the cancer field. This new awareness and the
possible synthesis of new CB1R/CB2R agonists and/or antagonists less hydrophobic and
with pharmacological features that could elude the pharmacokinetic and pharmacodynam-
ics limits of THC should ensure the safe profile for future pre-clinical studies as well as
clinical trials on the topic.

3. CBs, Tumors, and Treatment-Related Symptoms

Several clinical studies highlight CBs effects in patients affected by hematological
malignancies to evaluate if the treatment with CBs might reduce symptoms, thus amelio-
rating the quality of life (QOL) of patients [86]. In fact, with the progression of the diseases,
several symptoms (anorexia, cachexia, fatigue, cognitive damage, anxiety, depression,
neuropathic pain, sleep disorders) may appear because of malignancy or because of the
treatment. Both hematologists and oncologists maintain that CBs may be considered as a
therapeutic approach applicable for different tumor-related symptoms [87,88]. For instance,
several studies demonstrated that THC treatment completely blocked vomiting in patients
undergoing chemotherapy [89–92]. The antiemetic effect of CBs is due to modulation of
both CB1R and 5-hydoxytryptamine receptors. The antiemetic advantages of THC treat-
ment seem to be related to specific chemotherapy drugs; in fact, it has been observed that
patients treated with doxorubicin and cyclophosphamide did not respond [93].

Other preclinical research suggests that CBs might be considered useful in managing
the symptoms and side effects of chemotherapeutic drugs. THC decreased the cisplatin-
caused emesis in a dose-dependent manner [94], confirming the results observed in other
in vivo studies, which demonstrated the efficacy of ∆9-THC, ∆8-THC, Nabilone and HU210
in blocking emesis [95–99]. Moreover, CBs might stimulate appetite, and Dronabinol is a
drug authorized for the therapy of anorexia and weight loss in adult patients with HIV, but
not in tumor-related anorexia and weight loss [100]. CBs regulate appetite via the central
and peripheral systems acting on limbic, hypothalamic, and intestinal areas [101]. The first
study that showed endocannabinoids’ role in the control of food intake was published in
2002 and demonstrated that 2-AG levels increased in the hypothalamus and in the limbic
forebrain in fasting rats [102].

CBs may also reduce neuroplastic pain; in fact, their analgesic effects, through brain-
stem circuit modulation, have been described in experimental studies [103–106]. Moreover,
CBs treatment decreases chemotherapy-caused neuropathy, which may be considered as
a further analgesic effect of CBs. For instance, the compound WIN55,212-2 was able to
decrease the allodynia caused by vincristine after binding both CB1 and CB2 receptors
in an in vivo experimental model [107]. However, CBs may modulate pain through the
regulation of different mechanisms: THC may block prostaglandin E-2 and glutamate
production, increase lipoxygenase expression, modify dopaminergic activity, reduce 5-
hydroxytryptamine discharge, and stimulate TRPV2 [58,108–111]. Moreover, CBD may
have anti-inflammatory effects by reducing ROS generation, pro-inflammatory cytokines,
and immune cell adhesion, also alleviating pain [112–114].

On the other hand, although some scientific evidence has demonstrated that modu-
lation of chronic pain in tumor patients has moderate-quality effects, most of the results
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were not statistically significant. Finally, other reports stated no evidence that CBs reduced
pain in patients with neoplastic pain, which suggests the need for well-designed clinical
trials to confirm CBs efficacy in treating chronic neoplastic pain [86,115].

4. Anticancer Mechanisms and Carcinogenic Actions of Cannabinoids

As reported above, preclinical findings suggest that THC, CBD, and other synthetic
CBs may induce tumor cell death and block tumor growth [116], with a mechanism of
action that engages proliferation and apoptotic pathways, an effect on autophagy, an
antiangiogenic action, on the pathways that regulate the cell cycle, on the mechanisms of
immunosurveillance, and on the cells of the tumor microenvironment (Figure 1).
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Figure 1. Antitumor mechanisms of CBs.CBs have a pro-apoptotic effect via an action on apoptosis regulators (Bcl-2 and
BAX) as well as an effect on oxidative stress. CBs stimulate ceramide generation and cell death in tumor cells but not in
normal cells, reduce angiogenesis, and exert an antiproliferative effect acting on the AKT/mTOR pathway. Finally, CBs
can stimulate ER stress, thus stimulating both an AMP-activated protein kinase and the calcium/calmodulin-dependent
protein kinase, kinase 2, which in turn activates autophagy. Abbreviations: CBs: Cannabinoids; BAX: bcl-2-like protein 4;
Bcl-2: B-cell lymphoma 2; VEGF: vascular endothelial growth factor; Ang-2: Angiopoietin-2; PIGF: placental growth factor;
AKT/mTOR: Protein kinase B/mechanistic target of rapamycin; ER: Endoplasmic reticulum.

Of particular interest is the fact that CBs may exclusively affect neoplastic cells, while
normal cells are less susceptible. Several mechanisms have been proposed to explain this
effect. In some conditions, there might be a diverse stimulation of signaling pathways in
cancer cells. For instance, a pathway that has been demonstrated to be differently activated
by CBs in normal cells and in tumor cells is the RAS-MAPK/ERK pathway in cerebral
cells. Glioma cells and normal astrocytes respond differently to THC exposure. THC
stimulates ceramide generation and cell death in glioma cells but not in normal cells, which
are instead safeguarded from oxidative stress by CBs. Similarly, in MCF7 breast cancer cells,
data support evidence that CBD can modulate mitochondrial function and morphology
in a dose-dependent manner, with clear evidence of it inducing oxidative stress at higher
concentrations [117].

In other tumor cells, the different reaction to CBs may depend on the different expres-
sion of CBs receptors. CBs receptors are often greater expressed in cancer cells than in
normal cells, thus increasing sensitivity to CBs in neoplastic diseases. There are also several
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data proposing that tumor cells may react differently to CBs depending on their condition
of differentiation [118]. The different cell response may be related to CBs interaction with
CB1Rs and CB2Rs or with the TRPV family, proposing that CBs may have different cell
targets depending on tumor type [119]. In fact, CB2Rs and, to a lesser extent, CB1Rs
are present on a multiplicity of immune cells in tumor microenvironments (TMEs). The
stimulation of CBRs regulates different biological actions on cells of the adaptive and innate
immune system. The expression of CB2Rs and CB1Rs on different subsets of immune cells
in TME could be relevant in tumor progression [120] (Figure 2).
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Regarding the antineoplastic mechanism of action of other new CBs, a study pub-
lished on the cannabinoid properties of a new family of chromenopyrazoles showed
that fully selective CB1R ligand lacked psychoactive effects. The main mechanism of
action of quinones (PM-49 and HU-331) is ascribed to programmed cell death activa-
tion [121,122]. HU-331 is an oxidation derivative of CBD and exerted anti-cancer effects
through blocking topoisomerase-II. For instance, in lymphoma and leukemia cells, PM-49
showed pro-apoptotic effect by interacting with CB1R and modulating cellular oxidative
stress systems [123,124].

However, CBs may play other significant roles, thus acting on other cell processes
that may increase their antitumor potential. It has been demonstrated that CBs may
block angiogenesis by inhibiting the vascular endothelial growth factor (VEGF) signaling
pathway. Previous studies showed that CBR agonists may reduce both VEGF produc-
tion and its receptors 1 and 2 (VEGFR1, VEGFR2) in glioma, thyroid cancers, and skin
tumors [125,126]. Moreover, CBs can directly reduce endothelial cell growth, which is in-
duced by tumors [127,128]. For instance, ∆9-THC reduced both angiopoietin-2 (Ang-2) and
placental growth factor (PIGF) production in tumor cells [129], whose effect in neoplasms
and chronic myeloproliferative diseases is well known [130].

Endocannabinoids’ anti-cancer effects are regulated by the sophisticated modulation
of different pathways. Cell-cycle arrest in G1-S phase was caused by AEA administration
through the increased production of p21waf, p27 kinase inhibitor protein 1, proteolysis
of Cdc25A, and reduction of the cyclin Ecyclin dependent kinase 2 kinase [131,132]. ∆9-
THC blocks Ras homolog gene family member A (RHOA), focal adhesion kinase (FAK),
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and protein kinase Src (RHOA-FAK-Src) axis with its binding with CBRs. Moreover, the
CB2R may be considered as an essential controller of the HER2 (human epidermal growth
factor receptor 2) oncogene, which when increased, may contribute to an augmented
susceptibility to leukemia provoked by viral infection [133]. Finally, CBs interaction with
CBRs have been reported to induce autophagy in several cancer cell types [134–137].

Other mechanisms might be essential to explain the process of CB-caused cell death
in some tumoral cell lines. CBs can stimulate endoplasmic reticulum (ER) stress, thus
stimulating both an AMP-activated protein kinase and the calcium/calmodulin-dependent
protein kinase, kinase 2, which in turn activates autophagy [136].

CBs may also play an immune-mediated action, in particular on neoplasms; in fact,
CB receptor transcripts may be found in human spleen, tonsils, and peripheral blood leuko-
cytes, with a distribution profile different among the diverse blood cell subpopulations:
B cells, natural killer cells, and then polymorphonuclear neutrophils, monocytes, and T4
cells [138]. Compared with control rats, rats under morphine exposure exhibited CBR2
upregulation in the spleen and periphery blood mononuclear cells (PBMCs). IgG and
IgM values in the plasma were also altered [139]. Moreover, trans-caryophyllene (TC) is a
specific agonist of the CBR2. Administration of TC could inhibit the induction of vascular
cell adhesion molecule-1 (VCAM-1) both in vitro and in vivo [140].

However, CBs seem able to cause both an anti-inflammatory and a suppressive effect
against T lymphocytes: CBs can reduce cytokine release, and phytocannabinoids may play
an immunomodulatory role both in terms of the cellular and of the humoral response,
binding the CB2R [141,142]. In this context, CB2R inhibition with JTE907, a selective CB2R
inverse agonist, when combined with a CB1R/CB2R gene silencing approach, demon-
strated that CB2R, but not CB1R, is responsible for phytocannabinoid-mediated immune
suppression [143]. CB2R modulation may decrease T cell immune responses in T cell–
mediated diseases and at the same time positively may control T-independent immune
responses [144].

Even if CB1R is not related to immune response modulation, it has been proposed
that it has a central role in controlling cannabinoid-caused polarization of cytokine pro-
duction [145]; CB1R is able to regulate interleukin-1 beta release and cyclooxygenase-2
activation, with an anti-inflammatory effect [146]. Cannabinoids may also reduce the
production of other pro-inflammatory cytokines such as IL-6, IL-12, and IFN-gamma; some
of these cytokines stimulate T-helper (Th) cell differentiation towards the Th1 subtype,
while IL-4 and IL-5 stimulate Th2 subtype differentiation. Th1 response represents an
important mechanism involved in the immune response towards tumor cells, and it is
possible that inflammation, when controlled by cancer-specific Th1 cells, may block tumor
onset and progression. In a Th1 milieu, the proinflammatory cytokines IL-6 and IL-1 may
contribute to tumor eradication by augmenting CD4 + T cell activity [147]. Moreover, CBs
are powerful IL-10 inducers, which is one of the most known anti-inflammatory cytokines
that may inhibit Th1 response [148].

However, there are some reports proposing that CBs might have a tumor-promoting
effect. In fact, THC, AEA, and WIN may cause the transactivation of the EGF-receptor
by metalloprotease-mediated cleavage of growth factor precursors in numerous tumor
cell lines, probably with a dose-dependent effect [62]. In different hemopoietic cell lines,
whose growth depends on the presence of cytokines such as IL-3 or IL-6, low doses of
CBs stimulated the cytokine-caused cell growth. However, this action was not due to the
activation of CBs receptors but implicated a CB1/CB2 independent activation of specific
signaling, such as the p42/p44 MAPK pathway. Moreover, as reported above, CBs can
inhibit cell and humoral immune responses and influence the immune surveillance system;
hence, these effects must be studied targeting the CBs system in vivo (Figure 3). If the
tumor cells do not present CB-receptors, CBs administration, such as THC, to animals
transplanted with tumors missing CB-receptors may stimulate tumor proliferation in vivo
via inhibition of an efficacious anti-tumor immune response [60,118].
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5. CBs and Hematological Malignancies
5.1. Preclinical Studies

Although most of the studies in the literature concern the relationships between solid
neoplasms and CBs, several studies have been conducted to evaluate CBs effects on hema-
tological malignancies. As a first approach, in vitro experimental studies have described
their antitumor effects against different sorts of hematological malignancy (Table 3). For
instance, CBs have been stated to be effective in cells that showed the profile of the acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia with lymphoid differentiation
pattern [149,150].

Table 3. Effects of CBs in preclinical studies on hematological malignancies.

Diseases and Cells Study Mechanism Ref.

Acute lymphoblastic leukemia (MOLM-13, Jurkat cells) In vitro Apoptosis [149]

Acute Myeloid leukemia with lymphoid
differentiation pattern In vitroEx vivo H2O2 mediated mechanism [150]

Lymphoma (EL-4 cells) In vitro Oxidative stress [151]

Acute promyelocytic leukemia (CEM cells, HL60 cells),
Erythroblastic leukemia (HEL-92) In vitro Apoptosis [152]

B-ALL (RS;11, Reh cells), T-ALL (MOLT-3 cells, Jurkat
cells), Chronic myeloid leukemia (K562 cells) In vitro Mitochondria changes,

endoplasmic reticulum stress [153]

T cell leukemia (Jurkat cells) In vitro AKT phosphorylation [154]

Cutaneous T cell lymphoma (My-La and HuT-70 cells) In vitro Apoptosis [155]

Mantle cell lymphoma cells In vitro Apoptosis [156]

In an experimental study in which THC was used, a powerful antileukemic efficacy
in acute leukemia cell lines as well as in native leukemia blasts cultured ex vivo was
demonstrated. Remarkably, an increase of programmed cell death and a reduction of
proliferation mechanisms were described [129]. In an interesting experimental setting,
plasma was collected from a patient treated with dronabinol under palliative supportive
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care and was then used as a culture medium for Jurkat cells; Dronabinol was administered
as 2.5% solution and did not cause any side effects. In addition, this patient did not receive
any cytoreductive therapy. A significant plasma inhibitory action was demonstrated,
such that the possible antileukemic effect of Dronabinol was hypothesized [149]. In a
different experiment, CP55940, a synthetic cannabinoid that mimics the effects of naturally
occurring THC, also induced cell death in Jurkat cells via a CBR-independent mechanism,
but mediated by a H2O2 signaling pathway. Remarkably, CP55940 showed a cytotoxic
effect to ex vivo T-ALL cells obtained from chemotherapy-resistant subjects [157].

The possible CBs synergistic effect with chemotherapy may represent a promising
therapeutic approach to face the chemoresistance mechanisms observed in some patients in
clinical practice. For instance, ∆9- THC and CBD have demonstrated efficacy in overturning
multidrug resistance in human T lymphoblastoid leukemia CEM/VLB100 cell line [143].
Moreover, encouraging results have been obtained in the field of solid tumors. Griffiths et al.
evaluated the potential influence of CBD usage on therapeutic outcomes in ovarian cancer
patients. As the development of chemoresistance in ovarian cancer results in treatment
failure, the potential for CBD to augment the efficacy of conventional chemotherapeutic
and epigenetic drugs is a topic of significant importance [141].

CBD and ∆9-THC also activated programmed cell death and reduced viability in
murine lymphoma (EL-4) and human leukemia (MOLT-4) cell lines [151,152].

The combined use of CBs may also represent a fascinating therapeutic approach to
further strengthen their efficacy. In an in vitro study, CBs were administered alone or in
association with other CBs to enhance the positive effects against leukemia cells. Moreover,
CBs such as CBD and THC were also administered with the anti-leukemia drugs cytarabine
and vincristine. The results obtained from this study demonstrated that CBs could be
paired together to ensure a greater effect compared to that obtained when CBs were used
alone. The combined use of drugs may also adjust their therapeutic dose: it has been
demonstrated that IC50 values of CBD and THC were 8 and 13 µM, respectively, when
administered alone; when combined, IC50 was 4 µM. Moreover, the most effective CB pairs
further synergized when administered with cytarabine and vincristine and were also able
to sensitize leukemia cells to their cytotoxic actions. In addition to the differences of the
IC50 doses, another important factor to consider is the sequential order of administration:
CBs administration following chemotherapy caused a superior stimulation of programmed
cell death [158]. Overlapping results were obtained on T-cell leukemia cell lines [159].
Discordant results were found on the interaction between CBs and CBs receptors, and it is
not clear whether this interaction is specific and involves all or only some CBs receptors.
For instance, cannabidiol incubation caused a CB2R-mediated decrease in cell viability in
favor of programmed cell death activation in Jurkat and MOLT-4 cells and EL-4 leukemia
cells [151]. However, in a different report, CBD directly affected mitochondria in T-ALL
cells and modified their capacity to handle Ca2+, which in turn modified several cell
functions. Nevertheless, in this report, pharmacological analysis demonstrated that CB1/2
receptors were not implicated in the CBD-induced [Ca2+]i rise [153]. Both the different
experimental conditions and the different cell types used in the experiments could justify
the different results obtained by the authors [151,153]. These diverging results need to
be addressed by further investigations. However, all studies confirmed CBs efficacy
in reducing tumor cell number, either when used alone or in combination with other
treatments comprising chemotherapeutics and irradiation [160,161]. Cell lines originating
from acute lymphoblastic leukemia of T lineage (T-ALL), but not resting healthy T cells,
are greatly responsive to CBD administration. In this case, CBD targets mitochondria
and changes their ability to handle Ca2+. At toxic dosage, CBD causes mitochondrial
Ca2+ surplus, constant mitochondrial transition pore formation, and consequently cell
death [153]. CBD administration also determined alterations on cell morphology, ER, and
Golgi, thus reducing cell size and inducing vacuolation [153]. Therefore, CBs may increase
intracellular stress and modify mitochondrial membrane potential, causing cytochrome
c discharge and cleavage of caspases 8, 9, 2, and 10, up to cell death [150–153,157–163].
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Oxidative stress mechanism activation may be involved in the onset and progression of
hematological malignancies; for this reason, CBs antioxidant effects might be exploited
on neoplastic cells in hematological diseases [164–167]. CBD treatment for 24 h caused
increased ROS concentrations in Jurkat and MOLT-4 cells, and the combined treatment
with tocopherol and NAC, used as ROS scavengers, decreased CBD’s killing effects. CBD
exposure also augmented the expression of the NAD(P)H oxidases NOX4 and p22phox,
while blocking NOX4 and p22phox reduced ROS concentrations and diminished CBD-
caused cell toxicity [151]. Coherent with these findings, ROS amounts were remarkably
augmented after only two hours of CBD exposition in EL-4 cells, with a contemporaneous
reduction in cellular thiols [168].

Kalenderoglou et al. studied CBD effects on the mTOR signaling in Jurkat cells [154];
CBD reduced AKT phosphorylation and ribosomal protein S6. Moreover, CBD effects
were evaluated with nutrients and oxygen contents. The anti-growth effect of CBD was
higher with 1% serum than with 5% serum, alone or together with doxorubicin. Cells
grown in a condition with 12% of oxygen (physiological normoxia) were more resistant to
CBD. Resistance to CBD under physiological normoxia would imply that CBD use might
represent an issue for its anti-leukemic effect in the clinical practice. Low levels of CBD
did not affect cell growth of Jurkat cells, whereas when used at high concentrations, both
autophagy and the intrinsic programmed cell death pathway were triggered [153].

The effectiveness of CBs against hematological neoplastic cells was also confirmed in
different lymphoid cells. Mycosis fungoides (MF) is the most frequent sort of cutaneous
T-cell lymphoma (CTCL), distinguished by patches, plaques, and tumors. Sézary is a
leukemic phase of CTCL, displaying with erythroderma and the occurrence of Sézary
T-cells in peripheral blood [169]. A study demonstrated the cytotoxic effects of substances
obtained from whole cannabis extracts on CTCL cells. The analysis was performed on
My-La and HuT-78 cell lines, and active compounds were recognized in the crude extract
fractions S4 and S5. Their synergistic mixture caused cell cycle arrest and programmed
cell death activation [155]. Finally, non-Hodgkin lymphoma cells showed greater mRNA
expression of CB1 and/or CB2 receptors compared to that observed in reactive lymphoid
tissue [170], and an increased expression of CB1 and CB2 receptors was observed in
mantle cell lymphoma cells with respect to normal B lymphocytes and reactive lymphoid
cells [171]. AEA also decreased cell viability and induced programmed cell death in these
cell lines [156].

Therefore, in vitro studies seem to confirm CBs efficacy in inducing cell death mech-
anisms in cancer cells and preferentially over normal cells. The studies described so far
confirm that CBs use might overcome multidrug resistance and might have a synergistic
effect with other chemotherapeutic agents. The intimate mechanisms and the specific
signaling pathways involved still need to be better defined, since these mechanisms and
pathways might be different, depending on the investigated cell types.

5.2. Clinical Studies

Although the therapeutic effects of cannabis have been demonstrated in several
preclinical studies, few clinical studies are available.

As for the mere epidemiological aspect, two reports on non-Hodgkin’s lymphoma,
which included 378 subjects [172] and 1,281 cases and 2,095 controls [173] demonstrated
null to inverse correlations with marijuana use. However, parental marijuana intake
in pregnant women has been correlated with childhood tumor development, including
leukemia [174]. An analysis was performed to assess if lifetime cannabis intake might
worsen the prognosis of 106 patients affected by chronic myelogenous leukemia or primary
myelodysplastic syndrome [175]. None showed criteria for current substance dependence,
but the lifetime percentage of substance use was 28% for alcohol, 12% for cannabis, and
9% for cocaine. Although lifetime cocaine use was related to a six-fold increased risk of
death, neither lifetime alcohol nor cannabis intake were correlated with survival. However,
some studies have attempted to evaluate the efficacy of the administration of CBs in pa-
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tients affected by hematological diseases. The aforementioned idea of combining CBs with
traditional chemotherapy to induce a synergistic effect seems plausible. CBD and THC
can enhance the cytotoxic activity of several chemotherapeutics used for the treatment of
hematological malignancies, such as cytarabine, doxorubicin, and vincristine. In particular,
these drugs may act by reducing p42/44 MAPK activity, decreasing P-glycoprotein (vin-
blastine), blocking ABCG2 (mitoxantrone), and increasing TRPV2 channels (bortezomib,
carmustine, doxorubicin) [132].

Preliminary experiments have aimed to use the combination of CBs and radiation;
this approach also provided encouraging results [176]. Programmed cell death stimulation
by CBD via ROS production may be responsible for DNA damage caused in tumor cells by
conventional radiotherapy. Such a strategy would make it possible to decrease the number
of radiation applications, thus reducing side effects in favor of therapeutic efficacy. Finally,
the repercussions of cannabis in pediatric hematology are restrained to the publication of
few case reports. For instance, a case study was performed on a 14-year-old male patient
with a severe ALL, who was treated with a CB extract per os; this therapeutic approach did
not modify the prognosis of the disease [177].

Although in vivo studies also show encouraging results in the treatment of hematolog-
ical neoplastic diseases, the absence of large, controlled studies and the lack of an adequate
follow-up make CBs clinical use more difficult. In particular, studies on younger patients
and the evaluation of side effects, even late ones, seem urgent and indispensable.

6. CBs and Bone Marrow Transplantation

Despite novel prophylactic immunosuppressive therapy, graft-versus-host disease
(GVHD) remains the principal reason for mortality after allogeneic hematopoietic cell
transplantation (alloHCT), affecting 50% to 70% of patients receiving transplants from an
HLA-matched unrelated donor [178].

In vitro results demonstrated that CBs reduce activated lymphocyte proliferation
and alter cytokine production. Khuja et al. also discovered that CBD and THC utilize
different receptors to mediate these effects. In vivo, in a syngeneic transplantation model,
they demonstrated that all treatments inhibit lymphocyte reconstitution and showed
the inhibitory role of the CB2R on lymphocyte recovery. Although pure cannabinoids
exhibited a superior effect in vitro, in an allogeneic (C57BL/6 to BALB/c) BMT mouse
model, THC-high and CBD-high cannabis extract treatment reduced the severity of GVHD
and improved survival significantly better than pure cannabinoids [179].

In an animal experimental model, GVHD was produced by the transplantation of bone
marrow cells and splenocytes from C57BL-6j to Balb-c mice. The animals were treated daily
with CBD, and the administration decreased mouse mortality by reducing inflammation
and damage. Evaluation of the jejunum and ileum demonstrated that CBD administration
decreased the levels of C-C motif chemokine ligand (CCL) 2, CCL3, CCL5, TNF α, and IFNγ.
CBD also augmented the number of type 2 cannabinoid receptors on CD4+ and forkhead
box P3+ cells in the intestine, which may clarify the decrease in proinflammatory cytokines
and chemokines. Antagonists of the CB2R decreased the survival rates of CBD-treated mice.
Moreover, treatment with CBD did not inhibit the graft-versus-leukemia response [180].

Moreover, it was reported that both arachidonoylethanolamide (AEA) and palmi-
toylethanolamide (PEA) could weakly inhibit TNF-α a levels in bronchoalveolar lavage
fluid of LPS-treated mice and that AEA could also inhibit neutrophil recruitment [181].
These data suggest that cannabimimetic fatty acid derivatives (CFADs) have moderate
anti-inflammatory activity in the airways, though they seem to lack the ability to directly
relax the airway smooth muscle.

Cannabis intake has been correlated with a reduction of both lymphocyte growth after
mitogenic stimulation and cytokine levels such as IL-2, IL-10, and transforming growth
factor in healthy subjects [182], and THC was reported to be effective in the prevention and
therapy of GVHD in an experimental animal model [183]. TCH administration, in fact, sig-
nificantly reduced liver and intestinal damage, thus increasing animal survival. Moreover,
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THC decreased the proliferation of donor originated effector T cells and augmented Foxp3
regulatory T cell proliferation. Like THC, CBD has powerful immunosuppressive and
anti-inflammatory effects [184,185], particularly due to the modulation of T cell activity,
resulting in a reduced discharge of pro-inflammatory cytokine (IL-1, IL-6, INF, TNF, and
IL-17) and an increased release of anti-inflammatory cytokines, such as IL-4, IL-5, IL-10,
and IL-13 [186,187]. Moreover, CBs have been reported to decrease the ability of dendritic
cells to transfer to secondary lymphoid tissues and stimulate naive T cells [188].

A phase II clinical trial carried out on 48 patients (79% with acute leukemia or
myelodysplastic syndrome) evaluated if CBD might reduce GVHD severity and occur-
rence following alloHCT [189]. GVHD prophylaxis was performed by cyclosporine and
methotrexate administration. Patients receiving transplants from an unrelated donor re-
ceived small dosages of anti-T-cell globulin. CBD was administered per os at the dose of
300 mg/day starting seven days before transplantation, up to day 30. None of the subjects
presented acute GVHD while consuming CBD and no severe toxic effect was observed
following CBD treatment. Compared with historical controls, the hazard ratio of present-
ing developing grades II to IV acute GVHD among patients receiving CBD plus standard
GVHD prophylaxis was 0.3 (P 1/4, 0.0002). Among patients living more than 100 days, the
occurrence of moderate-to-severe chronic GVHD at 12 and 18 months were 20% and 33%,
respectively (clinicaltrials.gov: NCT01385124) [189]. Remarkably, the small occurrence of
acute and chronic GVHD observed in patients that received CBD was analogous to the
occurrence of GVHD reported in phase I/II studies on subjects treated with new drugs
such as maraviroc (CCR5 antagonist), bortezomib, and vorinostat [190–192].

The absence of important side effects in patients undergoing allogeneic transplantation
and the good prevention exercised by the administration of CBs against graft versus host
disease seem to be able to favorably influence the course of these subjects. Further studies
will be necessary to establish whether their administration can allow a reduction of the
immunosuppressive regimen to which these patients are subjected, with the possibility of
reducing important negative effects.

7. Future Challenges

Cannabis use in clinical practice is described to be safe in hematological adult patients,
but safety in children or adolescents has not yet been confirmed. In fact, ECS plays an
essential role during brain development, as CBs receptors are widely distributed in the
brain in prenatal development [193]. Endocannabinoids may modify neurodevelopment
by controlling neuronal migration; for instance, CB1R modulation may regulate cell growth
and synaptogenesis [194]. Of particular importance could be the neurobiological effects
of cannabinoid exposure during prenatal/perinatal and adolescent periods, in which
the endogenous cannabinoid system plays a fundamental role in neurodevelopmental
processes [195].

It has been demonstrated that CBD and THC cause neural alterations following in
utero administration in an experimental zebrafish model [196]. In fact, exogenous CBs
contact during embryogenesis may affect neurotransmitter systems, thus altering motor
function and reproductive systems; therefore, high doses of CBs are not suggested in pedi-
atric patients [197–199]. During adolescence, CB1R stimulation regulates the relationships
between the prefrontal cortex, amygdala, and hippocampus [200]; in fact, CB1R-mediated
effects are implicated in the control of learning, cognition, memory, and neurogenesis [201].
Therefore, it is plausible that alteration of normal ECS by exogenous THC intake may
modify several brain events. In fact, long-lasting cannabis intake is correlated with mental
alteration and drug dependence in adolescents [202]. Ananth et al. reported data on the
effects of medical marijuana in pediatric cancer patients [203]. They identified several
possible risks of marijuana use, including an effect on neurocognitive status and the onset
of mental health sequelae [203]. For this reason, a thoughtful choice about the best route of
administration and the different doses (depending on different stages of disease and age)
will have to be made by a specialist for the use of CBs for the treatment of hematological
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malignancy. Non-psychoactive CBs, also considered as possible antileukemic agents, may
be used to reduce toxicity and undesirable psychosomatic complications related to the use
of marijuana.

Moreover, both CBs bioavailability and efficacy may depend on the route of admin-
istration; CBs have a low water-solubility, which reduces the possibility of intravenous
dispensation. On the other hand, oral administration has a limit due to CBs degradation
in the acidic milieu of the stomach; similarly, inhalation may affect the respiratory tract
such that the use of precise dosage remains difficult. CBs administration directly into the
neoplastic mass, for instance in a solid tumor, might be considered as a promising alterna-
tive approach [204]. This therapeutic approach could be used in lymphoma patients, but
an unfavorable position could preclude the use of this kind of treatment. Other solutions
have been proposed, such as the use of nanoparticles planned to discharge CBs only under
specific situations (pH levels in the tumor milieu) [205,206].

Finally, inhalation of vaporized cannabis may possibly expose patients to critical
pulmonary infections [207,208]. However, long-acting oral formulations are the backbone of
therapy for chronic conditions, while vaporization might be used as an add-on therapy for
acute symptoms. The daily dose-equivalent of THC should usually be limited to 30 mg/day,
in combination with CBD, if possible, in order to reduce THC side effects [209,210]. Patients
generally assume CBD with the smallest quantity of THC to ameliorate their QOL while
minimizing side effects.

Finally, the different content of CBs might be considered in the natural cannabis plant
(3–4%) compared to the new super plants. For instance, THC (the main psychoactive
compound) level is different in Dutch cannabis, commonly called “nederwiet” [211]. The
average THC level of Dutch home-grown marijuana (20.4% THC) was significantly higher
than that of imported marijuana (7.0% THC) [212]. Therefore, the use of this plant will
have different effects in terms of dependence and immune response as well as on the
relationship between CBs and neoplasms. Similar considerations should be made for the
new synthetic preparations.

8. Conclusions

The use of medical cannabis is acquiring larger medical approval worldwide. In the
field of hematologic diseases and in cancers, most CB effects, mainly directed against CB2R,
are encouraging, as reduction of cell growth and increased programmed cell death have
been reported [213]. In particular, CBs efficacy has been demonstrated for both acute and
chronic lymphoid and myeloid diseases in the management of numerous symptoms and
in the prevention of graft versus host disease after allogeneic transplantation. However,
the encouraging in vitro and in vivo experimental findings have not been translated into
adequate clinical trials, in spite of the rising interest in these substances. Such findings
are intensely suggested to be verified with a focus on cannabinoid ligand bioavailability
and cannabinoid psychotropic characteristics. The initial antineoplastic actions and their
virtual absence of relevant collateral effects must be proven in animal models and in
controlled clinical studies performed in large populations of subjects. Only a careful and
in-depth experimental analysis will make the modulation of the endocannabinoid system a
promising therapeutic target for the therapy of hematological malignancies.

For hematologists, issues relating to the possible risks and potential advantages for
the management of hematological malignancies must be explained before using medical
cannabis as an anti-cancer treatment. Clarifying these data would be an indispensable
phase in the clinical translation of these stimulating results.
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