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Abstract: The fatigue damage behavior of bone has attracted significant attention in both the me-
chanical and orthopedic fields. However, due to the complex and hierarchical structure of bone,
describing the damage process quantitively or qualitatively is still a significant challenge for re-
searchers in this area. In this study, a nonlinear bi-modulus gradient model was proposed to quantify
the neutral axis skewing under fatigue load in a four-point bending test. The digital image correla-
tion technique was used to analyze the tensile and compressive strains during the fatigue process.
The results showed that the compressive strain demonstrated an obvious two-stage ascending be-
havior, whereas the tensile strain revealed a slow upward progression during the fatigue process.
Subsequently, a theoretical model was proposed to describe the degradation process of the elastic
modulus and the movement of the neutral axis. The changes in the bone properties were determined
using the FEM method based on the newly developed model. The results obtained from two different
methods exhibited a good degree of consistency. The results obtained in this study are of help in
terms of effectively exploring the damage evolution of the bone materials.

Keywords: neutral axis; fatigue; functionally graded beams; bi-modulus; FEM method

1. Introduction

Bone, as a supporting organ of our body, is vulnerable to fatigue loadings due to its
brittle nature. The damage resistance of bone can be improved by modifying its hierarchical
structure. However, it is challenging for researchers in the orthopedic and mechanical fields
to model the bone damage and fracture process. Clinically, the bone graft materials are
widely used to repair segmental defects and restore mechanical function [1–3]. However,
the difference in the elastic modulus of these materials and bone tissue can result in a
serious “stress shield”, which is one of the main causes leading to interface loosening or
even implantation failure [1,3]. Therefore, it is vital to study the bone modulus, especially
the evolution of the bi-modulus during fatigue damage. As shown in Figure 1, osteons
are the main structural unit in the cortical bone, which are assembled from the collagen
fiber arrays [4,5]. The fibers are composed of type-I collagen fibers and hydroxyapatites [6].
The type-I collagen fibers, as the organic ductile phase, represent the soft constituent in
bones [6]. The hard hydroxyapatite nanocrystals are interspersed with fibers, increasing
their stiffness but decreasing their ultimate strain [6–8]. The bones exhibit much higher
strength and toughness than either of the constituents; thus, these are classified as strong
composites with weak constituents [9–12]. The peculiar hierarchical structures make the
bones stiff, strong, tough and light [8]. The bulk mechanical behavior of bones is affected by
the contributions of the two basic microconstituents. The collagen fibers exhibit different
mechanical behavior in tension and compression, owing to the large aspect ratio and
intrinsic properties of the composed molecules [13,14].
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Figure 1. The multistage structure of bone. 

It is generally accepted that the brittle hydroxyapatites, which are as fragile as 
chalk, exhibit different moduli during tensile and compressive loadings [15,16]. The fa-
tigue damage originates from the positions with high local stress in bones, thereby ex-
hibiting different types of cracks as a function of the stress state [17,18]. The diffuse 
damage occurs under tensile loading, whereas the linear microcracks appear under 
compressive loading [19,20]. For the same stress in tension or compression, the bones 
exhibit different tensile and compressive strains, thus signifying the bi-modular effect 
[13]. The downtrend of the modulus was observed to be more obvious [21], especially at 
the strain values of 2500 με and 4000 με under tensile and compressive cyclic loading 
[22]. The tensile strength of bones was observed to be much smaller than their compres-
sive strength under quasi-static loading, whereas the tensile modulus was found to be 
6% greater than the compressive modulus [13].  

However, during the analysis of the bone fatigue damage, there was no accurate 
consideration of the bi-modular effects, especially with respect to the stress state during 
tension and compression. To simplify the experimental analysis, the bones were always 
considered to be a uniformly linear elastic material without considering their bimodular 
behavior. As bone is a bimodular material, the neutral axis is not located at the mid-
depth of the bone beam [13]. Owing to this behavior, the modulus determined from the 
classical linear elastic model is neither a tensile nor a compressive modulus. In fact, re-
search studies on the bi-modulus phenomenon have existed for a long time. Many 
scholars have studied the elastic modulus of tension and compression in pure bending 
beams. In the longitudinal fibers, Bert’s model made a great contribution to the criterion 
of positive-negative signs of the strains [23]. Ambartsumyan et. al. conducted outstand-
ing work in this field. They established a bilinear mechanical model based on the posi-
tive and negative criteria of the principal stress to explore the different elastic moduli 
under tension and compression [24]. 

As shown in Figure 2, this model transforms the nonlinear relationship (dashed 
line) between stress and strain under tensile and compressive loading into the corre-
sponding linear relationship (linear), by making the tangent of the stress-strain curve 
discontinuous at zero [25]. In the pure bending analysis, both the modulus of the bi-
linear model and the normal stress are not continuous at the neutral axis. For bones with 
an ability to adjust continuously to external loadings, the mechanical properties are 
more likely to change gradually, thus providing a superior resistance to fatigue. The 

Figure 1. The multistage structure of bone.

It is generally accepted that the brittle hydroxyapatites, which are as fragile as chalk,
exhibit different moduli during tensile and compressive loadings [15,16]. The fatigue
damage originates from the positions with high local stress in bones, thereby exhibiting
different types of cracks as a function of the stress state [17,18]. The diffuse damage
occurs under tensile loading, whereas the linear microcracks appear under compressive
loading [19,20]. For the same stress in tension or compression, the bones exhibit different
tensile and compressive strains, thus signifying the bi-modular effect [13]. The downtrend
of the modulus was observed to be more obvious [21], especially at the strain values
of 2500 µε and 4000 µε under tensile and compressive cyclic loading [22]. The tensile
strength of bones was observed to be much smaller than their compressive strength under
quasi-static loading, whereas the tensile modulus was found to be 6% greater than the
compressive modulus [13].

However, during the analysis of the bone fatigue damage, there was no accurate
consideration of the bi-modular effects, especially with respect to the stress state during
tension and compression. To simplify the experimental analysis, the bones were always
considered to be a uniformly linear elastic material without considering their bimodular
behavior. As bone is a bimodular material, the neutral axis is not located at the mid-depth
of the bone beam [13]. Owing to this behavior, the modulus determined from the classical
linear elastic model is neither a tensile nor a compressive modulus. In fact, research studies
on the bi-modulus phenomenon have existed for a long time. Many scholars have studied
the elastic modulus of tension and compression in pure bending beams. In the longitudinal
fibers, Bert’s model made a great contribution to the criterion of positive-negative signs
of the strains [23]. Ambartsumyan et. al. conducted outstanding work in this field. They
established a bilinear mechanical model based on the positive and negative criteria of the
principal stress to explore the different elastic moduli under tension and compression [24].

As shown in Figure 2, this model transforms the nonlinear relationship (dashed line)
between stress and strain under tensile and compressive loading into the corresponding
linear relationship (linear), by making the tangent of the stress-strain curve discontinuous
at zero [25]. In the pure bending analysis, both the modulus of the bi-linear model and
the normal stress are not continuous at the neutral axis. For bones with an ability to
adjust continuously to external loadings, the mechanical properties are more likely to
change gradually, thus providing a superior resistance to fatigue. The stress and strain are
nonlinear, and the normal stress at the neutral axis is continuous, which is also the focus of
interest in this study (Figure 2).
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modulus at the neutral axis is assumed to remain constant. Based on the experimental 
data, the modulus gradients under tension and compression are included, followed by 
the analysis of the modulus evolution under tension and compression during the cyclic 
loading. The findings from the finite element analysis are compared with the experi-
mental results to verify the validity of the theoretical model. The argumentation route of 
the paper is shown in Figure 3. This study enables an effective understanding of the bi-
modular effects during cyclic loading, which have been largely ignored in the literature 
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the appropriateness of the bone substitutes for the intended applications, along with 
helping to develop an inclusive model to explore the complex stress state. 
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Figure 2. The stress–strain curves depicted by the bi-linear model.

The previously reported mechanical models are largely incapable of explaining the
evolution of the modulus as a function of fatigue strain during four-point bending. Addi-
tionally, the bimodular functionally graded model of bones has not been provided. For an
accurate understanding of the mechanism of bone fatigue damage, it is necessary to take the
bimodular effect into consideration, owing to its significant influence on damage resistance.

In this study, the bimodular behavior during cyclic loading is described using a
bimodular functionally graded model, based on experimental data. The modulus gradient,
under tension and compression, is defined as two logarithmic relationships. The elastic
modulus at the neutral axis is assumed to remain constant. Based on the experimental
data, the modulus gradients under tension and compression are included, followed by the
analysis of the modulus evolution under tension and compression during the cyclic loading.
The findings from the finite element analysis are compared with the experimental results to
verify the validity of the theoretical model. The argumentation route of the paper is shown
in Figure 3. This study enables an effective understanding of the bimodular effects during
cyclic loading, which have been largely ignored in the literature due to the complexity of
the analysis. The findings obtained herein provide insights into the appropriateness of the
bone substitutes for the intended applications, along with helping to develop an inclusive
model to explore the complex stress state.
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2. Materials and Methods
2.1. Fatigue Experiment

The tibiae of bovine (approximately 24~36 months old) were collected from a local
slaughterhouse in Tianjin, China. The cancellous bone was removed from the ends of
the fresh bovine bone using a BOSCH angle grinder (Chengdu, China). Subsequently,
a boning knife and hot water were used to clean the remaining tendons and meat scraps in
the middle of a compact bone. Thereafter, the bones were soaked in clean water for 24 h.
Afterwards, the bones were placed in 1:1 chloroform methanol and 30% H2O2 for 24 h,
respectively, and the cycle was repeated 3 times (24 × 6 h). Later, the bones were soaked in
distilled water for 24 h, followed by drying in air. The treated bones were sawed into blocks
of dimensions 10 mm × 10 mm × 80 mm along the longitudinal direction. The blocks were
ground to the size 6.5 mm × 6.5 mm × 62 mm using silicon carbide (SiC) papers with grit
sizes of 400~800. Thereafter, the samples were finely ground to form rectangular specimens
(6.0 ± 0.2 mm × 6.0 ± 0.2 mm × 50 ± 0.2 mm) using the SiC papers with grit sizes of
1500~5000. The cooling water was poured continuously throughout the manufacturing
process. The long axis of the rectangular specimen was parallel to the longitudinal direction.
The angle between each pair of planes was 90◦, with a maximum deviation of 2.5%. The
height difference was noted to be less than 10 µm, as measured using a 3D surface profiler
(ST400, Nanovea, Irvine, CA, USA). Finally, four specimens were used for the pure bending
fatigue test. Prior to spraying the speckle and cyclic loading, the specimens were placed in
an ultrasonic cleaning setup for 10 min.

As shown in Figure 4, a four-point bending test was performed, and the region
between the inner contacting points was under the constant bending moment [13,26].
The details of the pure bending test are reported in the literature. The inner span b was
34 mm, whereas the outer span b + 2a was 42 mm, with the parameter a = 4 mm. The
sinusoidal waves with a frequency of 10 Hz were generated using ElectroPulsinstron
(E10000N, High Wycombe, UK). The load was determined by F = (σxx × w × h2)/(3a) [13].
a is the distance between the inner and outer supports. w is the width of the beam, h is the
height of the beam, and σxx is the applied fatigue stress.
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radius was 2.0 mm, which was sufficient to avoid the stress concentration. After every 
200 fatigue cycles, the loading machine was automatically suspended at 66 MPa stress 

Figure 4. The four-point bending fatigue test.

Three samples were loaded for fracturing under quasi-static conditions. The measured
ultimate strength of the specimens was 170 ± 8 MPa. The maximum stress σxx used in the
study was 120 MPa, whereas the minimum stress σmin was 12 MPa. The contact radius
was 2.0 mm, which was sufficient to avoid the stress concentration. After every 200 fatigue
cycles, the loading machine was automatically suspended at 66 MPa stress (Figure 4).
The images were swiftly acquired during the off time. All samples were fatigue loaded to
attain failure. The measured parameters are shown in Table 1.
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Table 1. The four-point bending fatigue test and initial strains as a function of the stress state.

Specimen a (mm) b (mm) εC (µε) εT (µε) σxx (MPa) Ne N

1 4 34 3157 2953 120 200 8117
2 4 34 2749 2731 120 200 10,962
3 4 34 2726 2604 120 200 9279
4 4 34 2644 2544 120 200 12,665

Average 4 34 2819 2807 120 200 10,270

a = Inner Span; b = Outer Span; εC = Compressive Strain; εT = Tensile Strain; σxx = Fatigue Stress; Ne = Cycle
Interval; N = Cycle Number.

2.2. Digital Image Correlation

The digital image correlation (DIC) technique was used to infer the strain field by
comparing the two digital images corresponding to the undeformed and deformed states of
the specimen (see Figure 5) [17,27,28]. As a non-contact, real-time and wide-range method,
DIC has found widespread use in the field of biomechanics, thus substantiating its use in
the current study [29,30].
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Figure 5. The schematic diagram of the DIC method. For the reference image, f (x,y) is the gray value
of the coordinate (x,y). For the target image, g(x*,y*) is the gray level value of the coordinate (x*,y*).
f and g are the average gray values of each image.

The image at a stress value of 0 MPa before cyclic loading was used as the reference
image. The images at a stress value of 66 MPa at different life fractions were used as the
deformed images. After acquiring the images, the displacement fields in the DIC calculation
areas were computed by tracing the gray level value of each point in the reference and
deformed images as well as performing their image correlation. The correlation coefficient
is defined as follows:

2.3. The Bimodular Structure of Cortical Bone under Pure Bending Fatigue

The cortical bone is a typical bi-modulus nonlinear biomaterial, and its tensile modulus
is significantly different from its compression modulus, as verified previously through
experiments [13]. The fatigue load can lead to the formation of the microcracks in the
cortical bone, and a slight change in the bone structure can be reflected by the corresponding
change in the elastic modulus [21]. Based on the four-point bending fatigue load model,
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a new bi-modulus nonlinear model is presented in this study. As shown in Figure 6, the
previously reported theoretical studies on the bi-modulus gradient beams took the elastic
modulus E0(t) at the neutral axis as the boundary [31]. Based on the pure bending model,
the elastic modulus under compression is defined as EC(y, t), whereas the elastic modulus
under tension is defined as ET(y, t). The elastic modulus is closely related to the distance
from the neutral axis and the fatigue duration.
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At present, the quadratic and exponential functions are generally used for exploring
the elastic modulus variation of the functionally gradient beam under pure bending action.
On this basis, it was noted that the previously reported models could not describe the
changes in the gradient modulus of the bone materials, and the logarithmic function
relationship was highly consistent with the actual mechanical properties of bone. Therefore,
a gradient model of elastic modulus was expressed in this study in the form of logarithmic
function, by considering the dynamic influence of the damage life:

EC(t)= E0(t)
[

1− ln
(

1+
αC(t)y

6

)]
0 < y < hC(t) (1)

ET(t)= E0(t)
[

1− ln
(

1+
αT(t)y

6

)]
− hT(t) < y < 0 (2)

The parameters αC(t) and αT(t) were used to describes the dynamic offset of the
neutral axis. In this paper, αC(t) and αT(t), which were uncertain at first, were obtained
using simultaneous equations based on experimental data. Once the parameters were
determined, the elastic modulus gradient model could be determined.

The change in displacement under pure bending is shown in Figure 7. A small section
of the pure bending beam is considered. Further, ρ(t) is the distance between the neutral
axis and center of curvature. It is known that the tension and compression deformations
are absent at the neutral axis. Moreover, ρ(t)dθ is the original length of the pure bent beam,
and (ρ(t) + y)dθ is the new length of the micro-beam under the bending load. The strain at
the cross-section could be obtained using Equation (3) as:

ε(y, t) =
4l
l

=
(ρ(t) + y)dθ − ρdθ

ρ(t)dθ
=

y
ρ(t)

(3)
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A few studies have demonstrated the strain gradient change in the bone materials
under pure bending state. In this study, the strain value at the top and bottom of the pure
bending beam was extracted. The transverse strain in the cross-section was subsequently
transformed as the gradient function. The position of ρ(t) could be obtained from the
maximum compressive and tensile strains (εC(t) and εT(t), respectively) of the specimen.
As shown in Equation (4), the position of the neutral axis could be determined as:

εC(t) =
hC(t)
ρ(t)

(4)

εT(t) =
hT(t)
ρ(t)

(5)

εC(t) + εT(t) =
hC(t)
ρ(t)

+
hT(t)
ρ(t)

=
h(t)
ρ(t)

(6)

The transverse strain value in the cross-section of the four-point pure bending beam
could be obtained from the experimental data. However, the parameters αC(t) and αT(t),
related to the fatigue loads, were still unknown. For cases in which the reference values of
αC(t) and αT(t) can be obtained under different fatigue loads, a constitutive model could
have been subsequently developed, which could be used to describe the changes in the
bone material modulus gradient.

The transverse compressive and tensile stresses are shown in Equations (7) and (8):

σC(t) = EC(t)εC(t) = EC(t)y/ρ(t) 0 ≤ y ≤ hC(t) (7)

σT(t) = ET(t)εT(t) = ET(t)y/ρ(t) − hT(t) ≤ y ≤ 0 (8)

According to the loading condition of the pure bending beam, no external load was
present in the transverse direction of the beam; thus, the force balance of the cross-section
in a pure bending beam could be obtained using Equation (9) as:

∫ hC(t)

0
σC(t)wdy +

∫ 0

−hT(t)
σT(t)wdy = 0 (9)

Substituting Equations (7) and (8) into Equation (9) and eliminating E0(t), ρ(t) and w,
the following Equation (10) could be obtained:

∫ hC(t)

0
[1 − ln(1 − αC(t)y/6)]ydy +

∫ 0

−hT(t)
[1 − ln(1 + α T(t)y/6)]ydy = 0 (10)

In order to make the model less cumbersome in the subsequent discussions, AC
F and

AT
F were defined to represent the two integral relations in Equation (10), as shown in

Equations (11) and (12). Subsequently, Equation (13), which contains the parameters αC(t)
and αT(t), could be obtained:

∫ hC(t)

0
[1 − ln(1 − αC(t)y/6)]ydy = AC

F (α C(t)) (11)

∫ 0

−hT(t)
[1 − ln(1 + α T(t)y/6)]ydy = AT

F (α T(t)) (12)

AC
F (α C(t)) + AT

F (α T(t)) = 0 (13)

The torque balance was similar to the force balance. The pure bending beam was
subjected to the force moment M, with the force moment equal to M in the internal section.
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Equation (14) could be obtained by factoring w, and Equations (15) and (16) could be
obtained by substituting Equations (7) and (8) in the two integral relations.

∫ hC(t)

0
σC(t)ydy +

∫ 0

−hT(t)
σT(t)ydy = M/w (14)

∫ hC(t)

0
σC(t)ydy = E0(t)/ρ(t)

∫ hC(t)

0
[1 − ln(1 − αC(t)y/6)]y2dy (15)

∫ 0

−hT(t)
σT(t)ydy = E0(t)/ρ(t)

∫ 0

−hT(t)
[1 − ln(1 + α T(t)y/6)]y2dy (16)

Similarly, the new variables AC
M and AT

M were defined to replace the complex and
lengthy integral relations in Equations (15) and (16), as shown in Equations (17) and (18).
On this basis, Equation (19) was obtained from Equations (17) and (18) as:

∫ hC(t)

0
[1 − ln(1 − αC(t)y/6)]y2dy = AC

M(α C(t)) (17)

∫ 0

−hT(t)
[1 − ln(1 + α T(t)y/6)]y2dy = AT

M(α T(t)) (18)

AC
M(α C(t)) + AT

M(α T(t)) =
Mρ(t)
wE0(t)

=
Mh

wE0(t)(ε C(t) + εT(t))
(19)

From Equations (13) and (19), a set of binary equations containing the unknown
parameters αC(t) and αT(t) could be obtained. It is worth noting that the two unknown
parameters were related to the fatigue duration; thus, their values changed as a function of
the fatigue duration. By finding these parameters in the two-element system, the change in
the elastic modulus inside the cortical bone could be described.

2.4. Finite Element Method Analysis

The MSC. Marc 2015 software was used for the finite element analysis of the bi-
modulus bone specimens. The plane stress state was adopted, and the model had a
quadrilateral mesh [32]. The mechanical boundary conditions and displacement boundary
conditions were consistent with the experiment situation [32]. The material parameters
of the finite element model were given according to the gradient modulus distribution
function (EC(t) and ET(t)). The neutral layer represented the plane of zero strain formed by
the material under external load. The position of the neutral layer was not directly defined
in the study. When the gradient modulus function in each fatigue node was determined,
the function was substituted into the simulation analysis environment, and then the strain
values of the upper and lower sections of the specimen were obtained. The position of
the neutral axis from the finite element method was subsequently compared with the
experiment to verify the rationality of the model.

3. Results

In the four-point bending test, there was an obvious linear relationship between the
transverse strain and the measured position. The position of the neutral axis was closely
related to the inconsistency of the tensile and compression strains. Therefore, the position
of the neutral axis could be determined from the strain values at the upper and lower sides
of the specimen. The strain values of the four specimens were extracted under different
fatigue values to determine the position of the neutral axis of the specimens. The results
presented in Figure 8a were obtained by averaging the strain values. The strain values at
the tensile stage exhibited a linear relationship, with r2 = 0.845. The tensile strain on the
lower side of the specimen revealed a slight increment of 4% with the loading of the fatigue
load. There were significant differences in strain between the upper and lower parts of
the specimen. The compressive strain increased rapidly at first until 28% fatigue life was



Materials 2022, 15, 474 9 of 14

reached. After reaching 28% fatigue life, the strain rose slowly until the specimen broke.
The two phases of the compressive strain were noted to be linear with r2 = 0.959.
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Figure 8. The evolution of the average strain (a) and model parameters (b) as a function of fatigue.

The upper and lower strain relationships of the specimens under different degrees of
fatigue were obtained experimentally. Eleven groups of strain values were substituted in
the two-mode nonlinear model developed in this study to obtain αC(t) and αT(t) under
different degrees of fatigue, as shown in Figure 8b. αC(t) exhibited a similar trend to the
compression strain on the upper side of the specimen, while αT(t) exhibited a downward
trend. On this basis, the dynamic evolution process of the modulus under fatigue load was
obtained, as shown in Figure 9.
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As can be observed from Figure 9, the tensile and compression moduli of the speci-
mens decreased to a certain extent. Owing to the uniqueness of the bone materials, the
changes in the modulus in different mechanical environments exhibited obvious differ-
ences. On increasing the fatigue duration, the neutral axis of the bone material slowly
moved towards the tensile point, and the offset of the neutral axis also demonstrated an
obvious segmentation. In cases where life fraction was less than 0.28, the dynamic change
in the neutral axis was obvious. However, when the life fraction was greater than 0.28, the
dynamic migration speed of the neutral axis decreased. It is worth noting that the neutral
axis shifted towards compression during the whole fatigue process; however, there was an
obvious difference in the offset rate during the offset process.

The position of the neutral axis inside the specimen was determined experimentally.
On this basis, the internal parameters αC(t) and αT(t) of the two-mode nonlinear model
were determined from the force and couple balance. The determined parameters were
subsequently introduced in the numerical simulation software Marc to describe the two-
mode nonlinear model proposed in this study. In the simulation part, different αC(t) and
αT(t) values were obtained by solving the equation at each time point. The obtained
parameters were used to determine the modulus gradient distribution of the simulation
model, and the four-point bending loading process could subsequently be simulated. We
extracted the strain values of corresponding regions and imported them into MATLAB
2018b software (see Figure 10).
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Figure 10. The four-point bending strain distribution.

The experimental results are compared with the simulation results in Figure 11. The
simulation results are similar to the experimental findings (see Figure 11a). Upon the
increasing of the fatigue degree, the simulation results were observed to become close to
the experimental findings (see Figure 11b). The neutral axis positions in the simulation
analysis were noted to be lower than the experimental values, and the offset was about
6–11%. Therefore, the nonlinear two-mode gradient model proposed in this paper can
reasonably describe the change process of the neutral axis of bone cortex under four-point
bending fatigue load.
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4. Discussion

Due to the complex multi-level structure of bone, the analysis of its mechanical
behavior, especially the damage behavior as a function of the stress states, is extremely
difficult [14]. The elastic modulus has been widely accepted as a parameter to evaluate
the material damage [21]. For a typical brittle material, different tension and compression
moduli represent one of the basic mechanical characteristics [13]. Due to the complexity
caused by the different tension and compression modulus values, many studies in the
literature have ignored this phenomenon in their experiments. Importantly, in order to
reflect the actual mechanical state, the use of the gradient damage model with the bi-
modulus aspect is vital and meaningful.

The accumulation of damage will affect the deviation of the neutral axis. Specifically,
the strain on the compression side increases significantly, while the strain on the tensile
side does not change significantly. The neutral axis shifts downward because the strain
distribution at the cross section of the specimen changes linearly along the longitudinal
axis. Brittle materials can resist large compressive stress, and tensile stress can easily make
them fracture. The downward offset of the neutral axis increases the compression portion
of the cross section to better resist fatigue loading.

The cortical bone is subjected to diffuse damage on the stretching side [33] and lin-
ear microcracks on the compression side [34]. The differences in the damage and the
unique characteristics of brittle material lead to different evolutions of the modulus of the
compression side and the tensile side in the fatigue process.

The strain distribution of the experiment is similar to the results of previous stud-
ies [16]. Some scholars have studied the influence of the fatigue load on the modulus of bone
material. It is obvious that the modulus will decrease during fatigue experiments [35,36].
However, previous studies have not discussed the change of the modulus of bone mate-
rial during fatigue in four-point bending experiments; therefore, this phenomenon was
discussed in depth in this paper.

In this article, a nonlinear functionally graded beam method was proposed to describe
the offset of the neutral axis and the downtrend of the modulus value. When describing
functional gradient characteristics, many functions can be selected according to the actual
situation. In theoretical analysis, the exponential function is always selected to describe
the functional gradient characteristics of materials [31,37,38]. However, based on the
experimental parameters measured in this paper and the actual mechanical properties
of bone samples, the logarithmic function was found to be more suitable to describe the
functional gradient characteristics of bone fatigue. The stress continuity condition of the
neutral layer was introduced because the undetermined constants were increased due to
the consideration of different moduli of tension and compression.



Materials 2022, 15, 474 12 of 14

During the experiment, the specimens were acquired from the same bone plate. Prior
to the fatigue loading, the mechanical properties were analyzed by static loading. The bone
specimens with similar strain values were selected to reduce the dispersion.

The theoretical model did not consider the multistage structure and pores of bone,
and the four-point bending experiment could not determine the undetermined parameters
in the orthotropic model. In order to facilitate the analysis, the research of this paper only
considered the elastic modulus along the long axis, and used the Ambartsumyan model to
describe the bi-modulus effect. These factors resulted in an error of 6~11% in the neutral
axis position of the two groups. The effect of the internal anisotropy of the bone material on
the deviation of the neutral axis should be considered in the future research. The findings
obtained in this study will help to understand the internal properties of bone materials and
provide a benchmark for the future research on bone replacement materials.

5. Conclusions

In this study, the weakening of the elastic modulus in the cortical bone was studied
both experimentally and theoretically. Through the four-point bending fatigue test, the
tensile and compression strain data of the bone specimens were collected, and the position
of the neutral axis was subsequently determined. On this basis, a two-mode model in the
form of logarithmic function was proposed to describe the mechanical behavior.

Based on the experimental data, the specific values of the two parameters in the
model were determined. Afterwards, the results from the finite element analysis were
compared with the experimental results to verify the validity of the theoretical model.
The downward shift of the neutral axis and gradient weakening of the modulus caused
the stress at the tensile point to remain stable, while the stress at the compression point
exhibited a downward trend. Thus, the model could effectively reduce the maximum stress
in the specimen and enhance the fatigue resistance of the bone material.
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