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Abstract 

Background:  Compared to medium-density single nucleotide polymorphism (SNP) data, high-density SNP data con-
tain abundant genetic variants and provide more information for the genetic evaluation of livestock, but it has been 
shown that they do not confer any advantage for genomic prediction and heritability estimation. One possible reason 
is the uneven distribution of the linkage disequilibrium (LD) along the genome, i.e., LD heterogeneity among regions. 
The aim of this study was to effectively use genome-wide SNP data for genomic prediction and heritability estimation 
by using models that control LD heterogeneity among regions.

Methods:  The LD-adjusted kinship (LDAK) and LD-stratified multicomponent (LDS) models were used to control 
LD heterogeneity among regions and were compared with the classical model that has no such control. Simulated 
and real traits of 2000 dairy cattle individuals with imputed high-density (770K) SNP data were used. Five types of 
phenotypes were simulated, which were controlled by very strongly, strongly, moderately, weakly and very weakly 
tagged causal variants, respectively. The performances of the models with high- and medium-density (50K) panels 
were compared to verify that the models that controlled LD heterogeneity among regions were more effective with 
high-density data.

Results:  Compared to the medium-density panel, the use of the high-density panel did not improve and even 
decreased prediction accuracies and heritability estimates from the classical model for both simulated and real traits. 
Compared to the classical model, LDS effectively improved the accuracy of genomic predictions and unbiasedness 
of heritability estimates, regardless of the genetic architecture of the trait. LDAK applies only to traits that are mainly 
controlled by weakly tagged causal variants, but is still less effective than LDS for this type of trait. Compared with the 
classical model, LDS improved prediction accuracy by about 13% for simulated phenotypes and by 0.3 to ~ 10.7% for 
real traits with the high-density panel, and by ~ 1% for simulated phenotypes and by − 0.1 to ~ 6.9% for real traits with 
the medium-density panel.

Conclusions:  Grouping SNPs based on regional LD to construct the LD-stratified multicomponent model can effec-
tively eliminate the adverse effects of LD heterogeneity among regions, and greatly improve the efficiency of high-
density SNP data for genomic prediction and heritability estimation.
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Background
Since genomic prediction was proposed [1], the meth-
ods for genomic prediction have undergone consid-
erable optimizations to adapt to traits with different 
genetic architectures and to populations with different 
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genetic backgrounds. Nevertheless, with the develop-
ment of quantitative genetics and genome sequencing 
technologies, there is still room for further optimization 
of genomic prediction methods. Currently, many statisti-
cal learning methods such as the Bayesian methods [2, 3] 
and machine learning methods [4, 5] have been applied 
to genomic prediction. Most of these methods focus on 
improving the estimates of marker effects to optimize the 
prediction accuracy of the model, but little attention is 
paid to some other key factors that affect genomic pre-
diction, such as linkage disequilibrium (LD) between sin-
gle nucleotide polymorphisms (SNPs).

In general, LD information between markers is used 
to pre-select markers or construct LD-based haplotypes, 
but these processes have little impact on the accuracy 
of genomic prediction [6–8]. However, another factor 
that seems to have a greater impact on genomic predic-
tion is the uneven distribution of LD along the genome, 
i.e. the LD heterogeneity among regions. Contributions 
of genetic variance are overestimated for causal variants 
in regions of high LD and are underestimated in regions 
of low LD. Several methods have been developed to 
eliminate the adverse effects of LD heterogeneity among 
regions on the unbiasedness of heritability estimates, 
among which LD-adjusted kinship (LDAK) [9] and LD-
stratified multicomponent restricted maximum likeli-
hood estimation (GREML-LDS) [10, 11] are widely used. 
LDAK constructs an LD-weighted genomic relation-
ship matrix (GRM) by assigning small weights to SNPs 
in high LD regions and large weights to SNPs in low 
LD regions [9]. GREML-LDS groups SNPs by regional 
[10] or individual [11] SNP LD score and constructs the 
GRM with SNPs in each group separately. Previous stud-
ies have shown that LDAK and GREML-LDS can bet-
ter ensure the unbiasedness of heritability estimates for 
human complex and disease traits [11, 12]. Other stud-
ies have found that controlling LD heterogeneity among 
regions can also improve the unbiasedness of heritability 
estimation [13] and the accuracy of genomic prediction 
[14] of the marker effect model. However, there are few 
studies on genomic selection methods for controlling 
LD heterogeneity among regions in livestock. Although 
a previously proposed LD-corrected GRM achieved good 
results in heritability estimation and genomic prediction, 
this method seems to be suitable only for low-density 
SNP panels [15].

Whole-genome sequence (WGS) data and high-density 
SNP data have been used in animal genetic evaluation 
[16, 17]. Compared with SNP chip data (i.e., medium-
density SNP data), high-density SNP data provide more 
information, but how to use this information effectively 
remains a challenge. Recent studies have found that, 
compared with medium-density SNP data, the use of 

high-density SNP data has no advantage or even results 
in a decline in genomic prediction [7, 18, 19]. The GRM 
constructed in the classical genomic prediction model 
can accurately capture the relationship between indi-
viduals using medium-density markers. However, with 
the increase in marker density, this method to construct 
GRM does not seem to be able to explain the relationship 
between individuals more accurately. Therefore, classi-
cal genomic prediction methods cannot make full use of 
the information provided by high-density SNP data and 
need to be further optimized. Since the LD between adja-
cent SNPs in high-density panels is stronger than that 
in medium-density panels, an important reason for the 
unsatisfactory genomic prediction results obtained with 
high-density SNP data may be that they are more affected 
by LD heterogeneity among regions.

It is generally assumed that the greater is the heritabil-
ity (genetic variance) captured by the model, the higher 
is the prediction accuracy of the model. However, studies 
have shown that the variation of the estimates of herit-
ability is not consistent with the variation of genomic 
prediction accuracy, i.e. the genomic prediction accuracy 
does not necessarily increase or it even decreases as the 
estimates of heritability increase [18]. This makes the 
results of many methods difficult to understand [20–22]. 
Therefore, it is necessary to further study the relationship 
between the estimates of heritability and genomic predic-
tion accuracy.

In this study, we compared a series of models that con-
trol LD heterogeneity among regions with the classical 
model [23] to: (1) find effective models to eliminate the 
adverse effects of LD heterogeneity among regions and 
to optimize genomic prediction and heritability estima-
tion, (2) determine whether the models that control LD 
heterogeneity among regions are more effective with 
high-density SNP data, and (3) determine why genomic 
prediction accuracy and estimates of heritability vary 
inconsistently, and find a unified indicator to measure the 
model’s performance in genomic prediction and SNP-
heritability estimation.

Methods
Population and genotypes
This study used a German dairy cattle population of 
2000 bulls from Vereinigte Informationssysteme Tier-
haltung Wirtschaftlicher Verein, which has previously 
been described in [24]. All individuals were genotyped 
with the Illumina Bovine SNP50 Beadchip (~ 54,000 
SNPs). One of our previous studies used Beagle 4.0 [25] 
to impute the 2000 bulls genotyped with 54K SNP chip 
data to 770K SNP data [16], which were also used in this 
study. Genotype imputation was based on a multi-breed 
reference population that included 1577 cattle from the 
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fifth run of the 1000 Bull Genomes project [26], of which 
474 were Holstein breed. WGS data are available for all 
the individuals in this reference population. In our impu-
tation process, first we extracted the corresponding loci 
on the Illumina BovineHD (~ 770,000 SNPs) from the 
WGS data to construct a 770K high-density reference 
panel, and then used this high-density reference panel to 
impute 54K chip data to 770K SNP data. The consistency 
rate of the genotype imputation was 0.99 through masked 
analysis. The masked analysis was implemented by ran-
domly masking the genotypes of 100 loci in the 54K chip 
and calculating the consistency between the imputed 
and the true genotypes (repeated 20 times). After geno-
type imputation, SNPs with a minor allele frequency 
(MAF) lower than 0.01, a genotype call rate lower than 
0.9, or that deviated from Hardy–Weinberg equilibrium 
(p < 10–6) were removed; after filtering, 336,977 SNPs 
(referred to as the 300K SNP panel hereafter) remained 
for further analyses.

Phenotypes
Simulated phenotypes
We established a series of simulation studies to explore 
the effects of LD heterogeneity among regions on 
genomic prediction and heritability estimation. The 
real dairy cattle genotypic data were used as a base for 
the simulations. Heritability and number of causal vari-
ants were fixed at 0.8 and 100, respectively. Using 
∑M

k=1r
2
jk as a measure of the tagging of SNP j [27], 

where r2jk denotes the squared correlation between 
SNPs j and k , M the number of SNPs in the 10-Mb 
region centered on SNP j , we defined those in the bot-
tom 40 and 20% of values for this sum as weakly and 
very weakly tagged SNPs, respectively, and those in the 
top 40 and 20% as strongly and very strongly tagged 
SNPs. We selected the causal variants from weakly, very 
weakly, strongly, and very strongly tagged SNPs, 
respectively. At the same time, SNPs were randomly 
selected throughout the genome to obtain causal vari-
ants with average tagging levels. Thus, five scenarios of 
phenotypes with causal variants of different tagging 
levels (very weak, weak, average, strong, very strong) 
were produced. The above-method of selection of 
causal variants refers to an earlier study [9]. The pheno-
typic variance δ2p was set to 1. The allele substitution 
effect of the i-th causal variant ai was calculated as 
ai = (2pi(1− pi))

−1/2δg/
√
m , where δg =

√

δ2p × h2 
represents the genetic standard deviation caused by all 
causal variants, pi is the frequency of a given allele of 
the i-th causal variant, and m is the total number of 
causal variants. All GRM in this study were constructed 
based on the method proposed by Yang et al. [23]. This 

method to construct GRM assumes that all the causal 
variants contribute equally to heritability, i.e., all 
h2i = 2pi(1− pi)a

2
i  are equal. Our simulation of the 

allele substitution effect was designed to satisfy this 
assumption. This simulation method avoids the bias of 
heritability estimates caused by inconsistency between 
the simulated and assumed effect of causal variants 
during GRM construction. Therefore, only the LD level 
of the causal variants had an effect on heritability esti-
mation in the simulation study. Environmental effects 
were drawn from a normal distribution 
N (0,

(

1− h2
)

δ2p) . The simulated phenotype of an indi-
vidual was calculated as the sum of the effects of its 
causal variant and an environmental effect, each sce-
nario was repeated 100 times. Our phenotypic simula-
tion scripts are available at https://​github.​com/​
SCAU-​Anima​lGene​tics/​LD-​heter​ogene​ity/​tree/​main/​
simphe.

Previous studies have shown that the genomic pre-
diction accuracy of medium-density panels (20 to 50K) 
with SNPs evenly distributed throughout the genome 
is higher than that of high-density SNP panels [18]. In 
the simulation study, we constructed a medium-density 
panel (50K) using evenly distributed SNPs and com-
pared the medium- and high-density panels in terms of 
genomic prediction and heritability estimation. In this 
part of the study, the causal variants in the medium- 
and the high-density panels were removed. In the study 
on real traits, we used the 54K commercial SNP panel 
(Illumina Bovine SNP50 Beadchip) as the medium-den-
sity SNP panel.

Real dairy cattle traits
Pedigree-based estimated breeding values (EBV) for milk 
yield (MY), milk protein yield (PY), milk fat yield (FY), 
milk protein percentage (PP), milk fat percentage (FP) 
and somatic cell score (SCS) were available for all the 
bulls. Additional file 1: Table S1 presents the descriptive 
statistics of the EBV and their reliabilities and shows that 
the reliability of the EBV of all the traits is high (mean 
reliability ranging from 0.942 to 0.973), and that the vari-
ation in reliability is small (standard deviation ranging 
from 0.016 to 0.039), thus there was no obvious hetero-
geneity in EBV reliability. In this study, we standardized 
EBV for each trait so that the mean value of EBV was 
zero and the variance was 1. Since for most individuals 
in this population, only their own EBV are available and 
not those of their parents, we used gi/r2i  to calculate der-
egressed EBV of each individual, where gi represents the 
EBV of the i-th individual and r2i  represents the reliability 
of gi [28]. Deregressed EBV were used as phenotypes in 
this study.

https://github.com/SCAU-AnimalGenetics/LD-heterogeneity/tree/main/simphe
https://github.com/SCAU-AnimalGenetics/LD-heterogeneity/tree/main/simphe
https://github.com/SCAU-AnimalGenetics/LD-heterogeneity/tree/main/simphe
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Models for genomic prediction and heritability estimation
Genome‑wide complex trait analysis (GCTA) model
The GCTA model [23] was used as the benchmark method 
in this study. It includes a single random genetic effect and 
is as follows:

where y is the vector of phenotypes, µ is a vector of the 
overall mean, g is a vector of individual genetic values 
captured by all SNPs in the panel, Z is the design matrix 
of genetic values, and e is a vector of residuals. The ran-
dom genetic and residual values are assumed to be inde-
pendent normally distributed values: g ∼ N (0,Gσ2g) and 
e ∼ N (0, Iσ2e) , where σ2g and σ2e are the additive genetic 
variance and residual variance, respectively.

The additive G matrix, also known as the genomic rela-
tionship matrix (GRM), was constructed using all the 
SNPs in the panel:

where matrix X has the general term 
xij = (mij − 2pj)/

√

2pj(1− pj) , with pj being the fre-
quency of a given allele at SNP j , mij is the genotype of 
the j-th SNP in the i-th individual, which is represented 
by 0, 1 and 2. N  is the number of SNPs in the panel.

Linkage disequilibrium adjusted kinship (LDAK) model
Due to LD, SNPs will be repeatedly tagged. Using the 
LDAK software [9], we calculated the level of replicate 
tagging of SNPs, which represents the real contribution 
of SNPs to genomic relationships in the GRM that do not 
control LD heterogeneity among regions. In the GCTA 
model, the genetic variance of the causal variants in high 
LD regions is overestimated, while the genetic variance in 
low LD regions is underestimated [9]. To offset this 
adverse effect, we used an LD-weighted GRM to replace 
the GRM in Eq.  (2). Such LD weighting eliminates the 
overestimation of heritability in high LD regions and the 
underestimation of heritability in low LD regions by giv-
ing a small weight to markers in high LD regions and a 
large weight to markers in low LD regions. We used 
w∗
j = wj

N
∑

jwj
 to represent the LD weight of SNP j , for the 

derivation and calculation of wj , please refer to Speed 
et  al. [9]. The LD-weighted GRM is constructed as 
follows:

where W is the diagonal matrix with elements w∗
j  . To 

generate the LDAK model, the GRMGCTA in Eq.  (1) is 
replaced by the GRMLDAK.

(1)y = µ+ Zg + e,

(2)GRMGCTA =
XX′

N
,

(3)GRMLDAK =
XWX

′

N
,

GREML‑LDS model
In addition to constructing the LDAK model, we also 
used the LD-stratified multicomponent model to offset 
the influence of LD heterogeneity among regions. In this 
study, the regional SNP LD score was used to divide SNPs 
into five equal groups, corresponding to SNPs with very 
high, high, moderate, low and very low LD levels, respec-
tively. The SNPs in each group were used to construct the 
respective GRM and then a multi-component model was 
established [10]:

where y , µ and e are the same as for Eq. (1). gt is a vec-
tor of the genetic values of the individuals captured by 
the SNPs in the t-th group, and gt ∼ N (0,Gtσ

2
gt
) , with 

σ
2
gt

 being the additive genetic variance explained by the 
SNPs in the t-th group, and Gt the GRM constructed 
by the SNPs in the t-th group. The Gt was constructed 
by Eqs.  (2) or (3), respectively, and the corresponding 
models are called the GCTA-LDS model or LDAK-LDS 
model, respectively.

In this study, we used the mean LD score to repre-
sent the regional LD. The mean LD score was fitted 
with ~ 100-kb segments using a sliding window approach 
[10], and the LD score of each SNP is calculated as the 
sum of the LD r2 values for the target SNP and all SNPs 
within the 10-Mb region centered on the target SNP [27]. 
Our method to calculate the mean LD score is avail-
able on https://​github.​com/​SCAU-​Anima​lGene​tics/​LD-​
heter​ogene​ity/​tree-​save/​main/​regio​nal-​LD. The GCTA, 
LDAK, GCTA-LDS and LDAK-LDS models used in 
this study only consider additive genetic effects, so the 
GCTA-LDS and LDAK-LDS models did not consider the 
covariance of genetic effects corresponding to different 
GRM.

Model assessment
In this study, variance components and genetic val-
ues were estimated using the LDAK software [9]. For 
each simulation repeat, 1800 individuals were randomly 
selected as the training population and the residual 200 
individuals as the validation population. The prediction 
accuracy is the Pearson’s correlation coefficient of the 
true genetic values and genomic estimated breeding val-
ues (GEBV) of the validation individuals. For real traits, 
the 10 × tenfold cross-validation was used to evalu-
ate the models, and the genomic prediction accuracy is 
expressed as Pearson’s correlation coefficient of the dere-
gressed EBV and GEBV. For each trait, a one-way analysis 
of variance was applied to determine whether there were 

(4)y = µ+
T
∑

t

Ztgt + e,

https://github.com/SCAU-AnimalGenetics/LD-heterogeneity/tree-save/main/regional-LD
https://github.com/SCAU-AnimalGenetics/LD-heterogeneity/tree-save/main/regional-LD
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any statistically significant differences in prediction accu-
racy, heritability estimate and model fit (Akaike Infor-
mation Criterion, AIC) between the different models; if 
the null hypothesis was rejected using the significance 
level of 0.05, the multiple paired t-tests were conducted 
between all models, with P values adjusted by Bonferroni 
correction.

Results
Linkage disequilibrium heterogeneity among regions 
and uneven tagging of SNPs
The mean LD score used to represent the regional LD 
ranged from 3.8 to 347.9 for the high-density panel 
(Fig. 1a), which indicates large differences in LD among 
genomic regions. The mean LD score calculated by the 
medium-density panel was relatively low, ranging from 
1.2 to 52.9 (Fig. 1a). The level of replicate tagging of SNPs 
ranged from 1 to ~ 100.2 for SNPs in the high-density 
panel and from 1 to ~ 4.9 for SNPs in the medium-den-
sity panel (Fig. 1b). After adding LD weights, the level of 
replicate tagging of SNPs in both the high- and medium-
density panels was around 1 (see Additional file  2: Fig. 
S1). We divided SNPs into five levels according to their 

mean LD score, corresponding to the genome regions 
with very high, high, moderate, low and very low LD, 
respectively (Table  1). The SNPs in each LD level were 
used to construct the GRM in the GREML-LDS, respec-
tively. Therefore, the GCTA-LDS and LDAK-LDS used in 
this study have five independent genetic effects. For the 
high-density panel, the difference in mean LD score of 
SNPs in adjacent LD levels ranged from 20 to 50, while 
for the medium-density panel, it was between 3 and 8 
(Table 1). Differences in the level of replicate tagging of 
SNPs between LD levels were significant for the high-
density panel and almost null for the medium-density 
panel (Table 1).

Performance of the different models in terms of genomic 
prediction and heritability estimation
The GCTA, LDAK and GREML-LDS models were origi-
nally proposed to improve the unbiasedness of herit-
ability estimates. In this study, the performance of each 
model in terms of genome prediction, heritability estima-
tion and model fit were analyzed simultaneously to fully 
evaluate the effectiveness of each model in dealing with 
LD heterogeneity.

Figure  2a represents the genomic prediction accuracy 
of each model for phenotypes that are controlled by 
causal variants with different tagging levels. Compared 
with GCTA, LDAK increased the genomic prediction 
accuracy of phenotypes that are controlled by weakly (or 
very weakly) tagged causal variants, but decreased that 
for phenotypes controlled by strongly (or very strongly) 
tagged causal variants. Therefore, LDAK is only suitable 
for genomic prediction of phenotypes that are mainly 
controlled by weakly tagged causal variants. Compared 
with GCTA and LDAK, GCTA-LDS and LDAK-LDS 
can greatly improve the genomic prediction accuracy 

Fig. 1  Distribution of mean LD score and level of replicate tagging 
for SNPs in high- and medium-density panels. a The mean LD score is 
used to represent the regional LD, which was fitted by segment with 
an average length of 100 kb using a sliding window approach, and 
the LD score of each SNP is calculated as the sum of the LD r2 values 
for the target SNP and all SNPs within the 10-Mb region centered on 
the target SNP. b The level of replicate tagging was calculated using 
the LDAK software to show that SNPs were repeatedly tagged due 
to LD

Table 1  Genomic regions with different LD levels partitioned by 
mean LD score

a :Mean LD score was used to represent regional LD
b Average mean LD score of SNPs at each LD level (standard deviation)
c Average replicate tagging of SNPs at each LD level (standard deviation)

LD levels High-density panel (300K 
SNPs)

Medium-density panel 
(50K SNPs)

Mean LD 
scorea

Replicate 
tagging 
level

Mean LD 
score

Replicate 
tagging 
level

Very high 186.9 (33.0)b 26.9 (15.7)c 27.1 (4.7) 2.5 (1.0)

High 136.3 (8.0) 21.2 (12.2) 19.7 (1.2) 2.5 (1.0)

Moderate 112.3 (6.1) 18.4 (10.6) 16.1 (0.9) 2.4 (1.0)

Low 91.3 (6.2) 16.3 (9.7) 13.0 (0.9) 2.4 (0.9)

Very low 62.8 (13.5) 14.0 (8.5) 8.7 (2.1) 2.3 (0.9)
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regardless of whether the phenotype is controlled by 
weakly or strongly tagged causal variants. For pheno-
types that are controlled by evenly distributed causal 
variants along the genome (causal variants are averagely 
tagged), the genomic prediction results of the four mod-
els were very similar. Figure  2b shows the heritability 
estimates obtained with the different models. GCTA and 
LDAK underestimate the heritability of phenotypes that 
are controlled by weakly (or very weakly) tagged causal 
variants and overestimate the heritability of phenotypes 
that are controlled by strongly (or very strongly) tagged 
causal variants. The heritability estimates of GCTA-LDS 
and LDAK-LDS were unbiased. The model fit (AIC) was 
closely related to the accuracy of genomic prediction and 
the unbiasedness of heritability estimates (Fig. 2a–c), i.e., 
the higher the genomic prediction accuracy, the better 
the unbiasedness of heritability estimates, the lower the 
AIC, and vice versa. In general, GCTA-LDS and LDAK-
LDS can effectively eliminate the adverse effects of LD 
heterogeneity among regions, and improve the unbi-
asedness of heritability estimation and the accuracy of 

genomic prediction, regardless of the genetic architec-
ture of the trait. Considering that most economically-
important traits in livestock have a heritability estimate 
lower than 0.5, we also simulated and analyzed traits with 
a heritability of 0.5 and found that the trend was the same 
as with a heritability of 0.8 (see Additional file 2: Fig. S2).

Impact of marker density on genomic prediction 
and heritability estimation
Figure  3a–c represents the results of genomic predic-
tion, SNP-based heritability estimation and model fit of 
each model for phenotypes that are controlled by weakly 
tagged causal variants. LDAK, GCTA-LDS and LDAK-
LDS have advantages over GCTA with both medium- 
and high-density panels, and the advantages are more 
obvious with the high-density panel. Compared with 
GCTA, GCTA-LDS achieved an improvement of ~ 13% 
in genomic prediction accuracy based on the high-den-
sity panel, but of only ~ 1% based on the medium-density 
panel (Fig. 3a). For GCTA, the genomic prediction accu-
racy based on the high-density panel was significantly 
lower than that of the medium-density panel (Fig. 3a). By 
controlling the LD heterogeneity among regions, GCTA-
LDS and LDAK-LDS can effectively use high-density 
SNP data and significantly improve genomic prediction 
accuracy compared to medium-density data (Fig. 3a). The 
heritability estimates of LDAK, GCTA-LDS and LDAK-
LDS were higher than those of GCTA but still lower than 
the true value (Fig. 3b).

Figure  3d–f represents the results of genomic pre-
diction, SNP-based heritability estimation and model 
fit of each model for phenotypes that are controlled by 
strongly tagged causal variants. Using GCTA, the high-
density panel can improve genomic prediction accuracy 
compared to the medium-density panel (Fig. 3d). As for 
the results in Fig. 2, LDAK does not apply to phenotypes 
that are controlled by strongly tagged causal variants. 
Compared with GCTA, GCTA-LDS and LDAK-LDS 
improved genomic prediction accuracy by 7.3% when 
using the high-density panel and by 1.3% when using the 
medium-density panel (Fig. 3d). GCTA and LDAK over-
estimated the heritability, and the heritability estimates 
of GCTA-LDS and LDAK-LDS were almost unbiased 
(Fig. 3e). Model fit can be used to reflect the accuracy of 
genome prediction and the unbiasedness of heritability 
estimates of the model (Fig. 3c and f ).

Application to real dairy cattle traits
Additional file  2: Fig. S3 shows the heritability enrich-
ment of simulated phenotypes for each LD level. The 
estimates of heritability enrichment from GREML-LDS 
are consistent with the true value, which means that it 
is a reliable method to estimate the genetic contribution 

Fig. 2  Performance of GCTA, LDAK, GCTA-LDS and LDAK-LDS in 
terms of genomic prediction (a), heritability estimation (b), and 
model fit (c) for phenotypes that are controlled by causal variants 
with different tagging levels. Paired t-test was applied to compare 
the difference between models, with P values adjusted by Bonferroni 
correction. *** indicates significant differences at P < 0.001, ** 
significant differences at 0.001 < P < 0.01, * significant differences at 
0.01 < P < 0.05, and ns indicates no statistically significant difference
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of SNPs at each LD level. Regardless of the genetic vari-
ance not captured by the 300K SNP data, GREML-LDS 
was used to estimate the contribution of SNPs at each LD 
level to the genetic variance of dairy cattle traits (Fig. 4). 
For the FP, FY and MY traits, the SNPs that contribute 
most of the genetic variance (72.1 to 86.5%) are those in 
LD levels 4 and 5, which means that most of the causal 
variants are located in regions of the genome of relatively 
low LD. For PY and SCS, the heritability estimates were 
almost evenly distributed among all the LD levels. For 
PP, SNPs in LD levels 1 and 2 contributed 50.9% of the 
genetic variance, which indicates that most of the causal 
variants are located in regions of the genome of relatively 
high LD. Thus, the causal variants of these quantitative 
traits were not evenly distributed among LD levels, and 
LD heterogeneity among regions should be considered 
when conducting genomic prediction and heritability 
estimation.

Figure 5 shows the genomic prediction accuracy of the 
models that control LD heterogeneity among regions 
compared to the GCTA model for dairy cattle traits. 

The results of Fig. 5 combined with those of Fig. 4 show 
that more the distribution of the causal variants is une-
ven at each LD level, more does the advantage of the 
models that control LD heterogeneity among regions 
become obvious. This is consistent with the results of the 
simulation study (Fig.  2). When the high-density panel 
was used, the genomic prediction accuracy of LDAK, 
GCTA-LDS and LDAK-LDS was higher (0.3 to 10.7%) 
than that of GCTA for all traits (Fig. 5). When using the 
medium-density panel, both the advantage of the mod-
els that control LD heterogeneity among regions and 
the improvement in genomic prediction accuracy (− 0.1 
to 6.9%) decrease. Similarly, for real traits, the higher is 
the genomic prediction accuracy of the model (see Addi-
tional file  1: Table  S2), the better is the model fit (see 
Additional file 1: Table S3).

Discussion
Currently, studies on LD heterogeneity among regions 
have focused on the estimation of the heritability of 
human complex traits and diseases [9, 10]. However, how 

Fig. 3  Performance of different models in terms of genomic prediction, heritability estimation, and model fit based on the medium-density (50K 
SNPs) and high-density (300K SNPs) panels. The three plots in the upper half represent the results for genomic prediction (a), heritability estimation 
(b) and model fit (c) for phenotypes that are controlled by weakly tagged causal variants. The three plots in the lower half represent the results for 
genomic prediction (d), heritability estimation (e) and model fit (f) for phenotypes that are controlled by strongly tagged causal variants. Paired 
t-test was applied to compare the difference between methods, with P values adjusted by Bonferroni correction. *** indicates significant differences 
at P < 0.001, ** significant differences at 0.001 < P < 0.01, * significant differences at 0.01 < P < 0.05, and ns indicates no statistically significant 
difference
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does LD heterogeneity among regions affect genomic 
prediction and heritability estimation of livestock quan-
titative traits, and how can its adverse effects be elimi-
nated are rarely investigated in the literature. In this 
study, we used LDAK, GCTA-LDS and LDAK-LDS to 
control LD heterogeneity among regions, and tested their 

effectiveness for genomic prediction and heritability esti-
mation in dairy cattle. We found that GCTA-LDS and 
LDAK-LDS can effectively eliminate the adverse effects 
of LD heterogeneity among regions, and improve the 
accuracy of genomic prediction and unbiasedness of her-
itability estimates. Furthermore, the models that control 
LD heterogeneity among regions are more effective with 
high-density SNP data.

Controlling LD heterogeneity among regions improves 
genomic prediction and heritability estimation
In this study, all GRM were constructed based on the 
method proposed by Yang et  al. [23]. This method 
assumes that all causal variants contribute equally to 
heritability. The contribution of a causal variant to herit-
ability can be divided into two parts: the genotype vari-
ance ( 2pi(1− pi)) and the effect variance ( a2i  ). The equal 
contribution of all causal variants to heritability means 
that h2 = 2pi(1− pi)a

2
i  of all causal variants are equal. 

In Eq.  (2), all genotypes of each locus were standard-
ized first, and then XX′/N  was used to construct GRM, 
which ensured the assumption that each locus contrib-
uted equally to heritability [23]. In this study, the simula-
tion of the effect of the causal variant is consistent with 
this assumption (see the Methods section). Therefore, 
in the simulation study, if there are no other influencing 
factors apart from the allele frequency and the effect of 
the causal variant, the GCTA model constructed by the 
method of Yang et al. [23] should be unbiased for herit-
ability estimation. As shown by Fig. 2b, when the causal 
variants of simulated phenotypes had an average tagging 

Fig. 4  Percentage of genetic variance captured by SNPs at each LD level for dairy cattle traits. The GREML-LDS method was used to estimate the 
genetic variance of each LD level. SNPs in the high-density panel were used to construct the GRM used in GREML-LDS. The percentage of genetic 
variance captured by each LD level is the proportion of the genetic variance explained by that LD level to the genetic variance explained by all LD 
levels

Fig. 5  Genomic prediction accuracy of LDAK, GCTA-LDS and 
LDAK-LDS for dairy cattle traits based on high- and medium-density 
panels. The prediction accuracy was expressed as the percentage 
of increase in prediction accuracy relative to that obtained with the 
GCTA model. The boxes and points report the percentage increase in 
prediction accuracy relative to that with GCTA​
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level, i.e., the causal variants were not affected by LD 
heterogeneity among regions, the heritability estimates 
based on the Yang et al.’s GRM were basically unbiased. 
However, when the causal variants of simulated pheno-
types were in either the high LD regions (strongly tagging 
level) or low LD regions (weakly tagging level), i.e., the 
causal variants were affected by LD heterogeneity among 
regions, the estimates of heritability obtained with the 
GCTA model were not unbiased (Fig. 2b).

Due to LD heterogeneity among regions, the genetic 
contribution of causal variants was overestimated in 
high LD regions and underestimated in low LD regions 
[9, 29, 30]. Using LDAK to construct the LD-weighted 
GRM can increase the weight of weakly tagged SNPs [9], 
which is beneficial to genomic prediction and heritability 
estimation for traits that are mainly controlled by weakly 
tagged causal variants (Fig. 2a, b). LDAK can reduce the 
weight of strongly tagged SNPs [9], which is unfavora-
ble for genomic prediction and heritability estimation of 
traits that are mainly controlled by strongly tagged causal 
variants (Fig. 2a, b). Previous studies have confirmed that 
increasing the weight of markers near the causal variants 
is beneficial for genomic prediction [22, 24, 31]. For the 
simulated phenotypes in this study, all the causal variants 
had the same genetic variance, which is consistent with 
the assumption of GCTA [23]. Therefore, in the simula-
tion study, MAF does not affect the genetic variance, and 
LD heterogeneity among regions has to be accounted 
for in the construction of the GCTA-LDS and LDAK-
LDS models [10]. Compared with GCTA and LDAK, 
GCTA-LDS and LDAK-LDS can improve the accuracy of 
genomic prediction and the unbiasedness of heritability 
estimates, regardless of the genetic architecture of the 
trait (Fig. 2a, b).

This result confirms that GREML-LDS is effective for 
heritability estimation and proves that GREML-LDS is 
also beneficial to genomic prediction for livestock popu-
lations. Thus, GCTA-LDS and LDAK-LDS can be used 
as reliable models to control LD heterogeneity among 
regions, and the LD stratified genomic best linear unbi-
ased prediction (GBLUP) or the single-step GBLUP 
models can be constructed based on these methods to 
eliminate the adverse effects of LD heterogeneity among 
regions and improve the accuracy of genomic prediction 
in livestock.

It is generally assumed that the greater is the genetic 
variance (or heritability) explained by the model, the 
higher is the genomic prediction accuracy [20]. However, 
in the literature, there are exceptions to this relation-
ship and for example, Ren et al. [18] reported estimates 
of heritability that increased while the genomic predic-
tion accuracies remained unchanged or even decreased. 
By performing a joint analysis of the performance of each 

model in terms of genome prediction and heritability 
estimation, we found that more the heritability estimates 
were unbiased, the higher was the genomic prediction 
accuracy (Figs. 2 and 3). Therefore, it is difficult to judge 
the prediction performance of the model based on the 
heritability estimate, because in reality, the true herit-
ability is difficult to obtain. At the same time, we found 
that model fit can be a reliable indicator of model perfor-
mance in genomic prediction and heritability estimation. 
That is, the better is the performance of the model for 
genomic prediction and heritability estimation, the bet-
ter is the model fit (Figs. 2 and 3). In fact, studies based 
on the heritability model usually select models based on 
model fit [32].

Models that control LD heterogeneity among regions are 
more efficient with high‑density data
Due to LD, the level of replicate tagging of SNPs is une-
venly distributed along the genome (Fig.  1b) and (see 
Additional file  2: Fig. S1). SNPs in low LD regions have 
a lower level of replicate tagging and those in high LD 
regions have a higher level of replicate tagging (Table 1).

With the higher-density panel, the differences in the 
level of replicate tagging between SNPs in high and low 
LD regions increase (Table  1). Thus, increased marker 
density leads to underestimation of the genetic variance 
of the causal variants in low-LD regions, which results in 
reduced genomic prediction accuracy (Fig.  3a) and her-
itability estimates (Fig. 3b). This may be the reason why 
previous studies found that genomic prediction accuracy 
and heritability estimates decreased as marker density 
increased [18, 19]. Similarly, the relative weights of SNPs 
in high LD regions of the high-density panel are larger 
than those of the medium-density panel. For phenotypes 
that are mainly controlled by strongly tagged causal vari-
ants, the genetic contribution of the causal variants in 
the high-density panel was overestimated compared to 
that in the medium-density panel (Fig. 3e). Therefore, LD 
heterogeneity among regions is more obvious in high-
density SNP data and has a greater impact on genome 
prediction and heritability estimation based on a high-
density panel. Thus, to efficiently use high-density SNP 
data for genomic prediction or heritability estimation, LD 
heterogeneity among regions needs to be controlled. The 
use of GCTA-LDS or LDAK-LDS to control LD hetero-
geneity among regions can greatly improve the efficiency 
of high-density SNP data in genomic prediction and her-
itability estimation (Fig.  3). In contrast, controlling for 
the adverse effects of LD heterogeneity among regions 
with medium-density SNP data results in less improve-
ment in genomic prediction and heritability estimation 
(Fig. 3). Therefore, models that control LD heterogeneity 
among regions are more efficient with high-density SNP 
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data, which can be used to effectively exploit the poten-
tial of high-density SNP data in genomic prediction and 
heritability estimation.

Controlling LD heterogeneity among regions improves 
genomic prediction accuracy for dairy cattle traits
The results of the estimation of variance components 
based on GREML-LDS showed that the causal variants 
of quantitative traits are not evenly distributed among 
LD levels (Fig. 4). As discussed above, with an increase in 
marker density, the genetic variance of the causal variants 
in the low LD regions will be underestimated and that 
of causal variants in the high LD regions will be overes-
timated, resulting in a decrease in genomic prediction 
accuracy of the models that do not control LD heteroge-
neity among regions. Compared with the medium-den-
sity panel, the genomic prediction accuracies obtained 
with the high-density panel decreased by − 0.4 to 5.8%, 
and the heritability estimates decreased by − 1.3 to 3.8% 
when using GCTA (see Additional file  1: Tables S2 and 
S4). Compared with the simulated traits (Fig. 3a–c), the 
prediction accuracies and heritability estimates of some 
of the real traits decreased more severely, which may be 
due to the complex genetic architecture of real traits. 
This is in agreement with results in the literature [18, 30], 
which suggest that the use of classical methods that do 
not take LD heterogeneity among regions into account 
will lead to an increased bias in heritability estimates as 
marker density increases. Therefore, classical models are 
not appropriate when using whole-genome sequence 
data or high-density SNP data.

In contrast to the simulated traits, LDAK-LDS gave the 
best genomic prediction results for almost all of the real 
dairy traits. In this case, SNPs should not only be grouped 
according to LD heterogeneity among regions but the 
SNPs in low LD regions should have a greater weight. 
Generally, SNPs in low LD regions also have a low MAF, 
and this is also true in the bovine genome data (see Addi-
tional file 2: Fig. S4). This means that loci with a low MAF 
need a greater weight, which may be related to negative 
selection, i.e. the lower the MAF, the larger the effect of 
the SNP. Previous studies have found that negative selec-
tion occurs frequently for human [12, 32–34] and cattle 
[35] complex traits. LDAK increased the weights of SNPs 
in the low LD region and also increased the weights of 
SNPs with a low MAF, which may be the reason for the 
outstanding performance of LDAK-LDS on real traits. 
Although LDAK and GREML-LDS were originally pro-
posed to improve the unbiasedness of heritability esti-
mates [9, 10], these models seem to be more effective 
for genomic prediction. For example, controlling for LD 
heterogeneity among bovine genomic regions, increased 
genomic prediction accuracy based on high-density 

SNP data by 0.3 to 10.7% (Fig. 5), while heritability esti-
mates ranged from − 1.67 to 5.01% (see Additional file 1: 
Table  S4), with a larger variation in genomic predic-
tion accuracy than in heritability estimates. This may be 
because, in the GCTA model, the genetic variance in low 
LD regions that is underestimated, is compensated for 
by the genetic variance in high LD that is overestimated, 
which results in a smaller difference between the herita-
bility estimates obtained with the models that control LD 
heterogeneity among regions and the estimates obtained 
with the GCTA model. Previous studies have found simi-
lar results [9]. For genome prediction, it is more impor-
tant to accurately assess the genetic contribution of each 
genomic region than to estimate the total heritability. 
Models that control LD heterogeneity among regions 
can avoid underestimation of the genetic contribution 
of low LD regions and overestimation of that of high LD 
regions, which is very important for genome prediction.

Controlling for LD heterogeneity among regions sig-
nificantly improved the accuracy of genomic predic-
tion based on the high-density panel (Fig.  5), but it did 
not improve much compared to that obtained with the 
medium-density panel (see Additional file  1: Table  S2). 
Therefore, for real traits, in addition to LD heterogeneity 
among regions, other key factors that affect the accuracy 
of genomic prediction and the unbiasedness of herit-
ability estimates should be investigated. For example, the 
contribution of rare causal variants to genetic variance 
[12, 36], the presence of major genes [37], the distribution 
of marker effects [38] and the application of functional 
annotation in genomic prediction [39]. In addition, the 
combination of the effective methods to control LD het-
erogeneity investigated in this study, with trait-specific 
weighting methods [31], is expected to further improve 
the accuracy of genomic prediction and unbiasedness of 
heritability estimation.

Conclusions
LD heterogeneity among regions has an adverse effect on 
genomic prediction and heritability estimation. Dividing 
SNPs into multiple LD levels based on regional LD and 
constructing an LD-stratified multi-component model 
can effectively eliminate the adverse effects of LD het-
erogeneity among regions and improve the accuracy 
of genomic prediction and the unbiasedness of herit-
ability estimates. For WGS or high-density SNP data, the 
adverse effect of LD heterogeneity among regions is more 
obvious, and the LD-stratified multi-component model 
can greatly improve the efficiency of using high-density 
data in genomic prediction and heritability estimation. In 
addition, the model fit can be used as a reliable indica-
tor to measure the performance of the model in genomic 
prediction and heritability estimation.
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