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Abstract: Osteochondral structure reconstruction by tissue engineering, a challenge in regenerative
medicine, requires a scaffold that ensures both articular cartilage and subchondral bone remodel-
ing. Functional hydrogels and scaffolds present a strategy for the controlled delivery of signaling
molecules (growth factors and therapeutic drugs) and are considered a promising therapeutic ap-
proach. Icariin is a pharmacologically-active small molecule of prenylated flavonol glycoside and
the main bioactive flavonoid isolated from Epimedium spp. The in vitro and in vivo testing of icariin
showed chondrogenic and ostseoinductive effects, comparable to bone morphogenetic proteins, and
suggested its use as an alternative to growth factors, representing a low-cost, promising approach for
osteochondral regeneration. This paper reviews the complex structure of the osteochondral tissue, un-
derlining the main aspects of osteochondral defects and those specifically occurring in osteoarthritis.
The significance of icariin’s structure and the extraction methods were emphasized. Studies revealing
the valuable chondrogenic and osteogenic effects of icariin for osteochondral restoration were also re-
viewed. The review highlighted th recent state-of-the-art related to hydrogels and scaffolds enriched
with icariin developed as biocompatible materials for osteochondral regeneration strategies.

Keywords: hydrogel; flavonoids; cartilage; osteoarthritis; osteochondral defect; bone morphogenetic
proteins

1. Introduction

Osteochondral defects represent usual clinical issues for orthopedic surgeons around
the world. They involve both articular cartilage and underlying subchondral bones and
are the result of traumatic injuries, aging, and degradative diseases, such as osteoarthritis
(OA), osteochondritis dissecans, or osteonecrosis [1,2].

OA is the most encountered chronic joint disorder worldwide with a multifactorial
etiology and a major cause of pain and disability in the elderly [3]. It generally affects
the knee, hip, and hand, but also acts on any synovial joint, including the joints of the
spine [4]. OA is characterized by chronic pain and joint stiffness caused by progressive
degradation of the articular cartilage, synovial inflammation, abnormal remodeling of
subchondral bone, and calcification of ligaments [5]. All of these lead to loss of mobility
and functional decline of the affected joints, lowering the quality of life and, in the worst
scenario, causing disability.

The cellular and molecular mechanisms of OA pathogenesis are not fully understood,
but it is certain that OA manifestations are caused by an imbalance between cartilage
degradation and repair processes, in which the extracellular matrix (ECM) remodeling
enzymes are involved [6,7]. Advancing age is the most important risk factor of OA [8].
Other major risk factors are genetic susceptibility, sex, obesity, metabolic diseases, joint
injuries, mechanical stress, occupation, and diet [9,10]. Commonly, OA affects people over
the age of 40, and the risk of disease increases with age, reaching 40% of people over the
age of 70 suffering from OA [6,11]. In 2017, 303 million people were globally affected by
OA [12] and, according to the most recent report from 2019, the number of people suffering
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from this condition exceeded 500 million (prevalence of 6.5%) [13]. WHO estimates that the
number of people affected by OA in the U.S. will increase from 30 million (9% prevalence)
to 67 million by the year 2030 [8] and it will reach 130 million by the year 2050 [14]. In
Europe, the prevalence of OA varies from 2.8% in Romania to over 12% in the United
Kingdom and 18% in Hungary [14,15] and it is estimated that 20% of the population of
Western Europe will suffer from this disease by 2023 [16]. In Australia, the prevalence of
OA is 9.3% [17]. More recent data show that the global incidence of knee OA is 3.5 times
higher than hand OA and 3 times higher than hip OA in patients around the age of 75 [18].
In addition to the suffering and social impacts, OA is also a major economic burden. In the
U.S., the yearly estimates of OA spending are over USD 185 billion [19], with half of the
direct costs going to patients’ arthritis drugs, mostly pain-related medications [14].

The management of OA symptoms involves non-pharmacological, pharmacological,
and surgical treatments to reduce pain and slow the progression of the disease, the treat-
ment being symptomatic, and not curative [20]. Non-pharmacological treatment mainly
consisting of physical therapy is often associated with pharmacological treatment that in-
volves the administration of analgesics and/or intra-articular administration of hyaluronic
acid, in which case short-term effects are recorded [19,21]. In more severe cases, surgery
is performed by replacing the joints, but this form of treatment is not completely curative
because of the persistence of postoperative symptoms, which are present in approximately
20% of the patients. Both the European Society for Clinical and Economic Aspects of
Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the Osteoarthritis
Research Society International (OARSI) recommend non-surgical treatment to patients
suffering from knee OA [22].

Natural compounds, such as flavonoids, are increasingly explored for their therapeutic
potential in cartilage and bone health. Icariin (ICA) is described as a bioactive flavonoid
due to its multiple pharmacological effects, such as osteoprotective, anti-osteoporosis,
anti-inflammatory, and antioxidative effects, and a positive effect on the reproductive
system [16,23,24]. In addition to its biological activities that support bone health, ICA
improves cardiovascular function, regulates hormones, enhances the immune response,
and has anti-hepatotoxic, antiviral, and anticancer activity [25–28].

Recent studies have shown the advantage of using ICA in osteochondral regeneration
due to both osteogenic and chondrogenic effect, compared to other flavonoids, such as
naringin and kaempferol, which presented only osteogenic effects [23]. Reports on another
flavonoid, quercetin, indicated its osteogenic and chondrogenic effects, but evidence on
cartilage regeneration and the mechanisms of action were limited [29].

This review presents the osteochondral tissue structure, underlining the basic as-
pects of osteochondral defects and those specific to OA, the ICA structure, and extraction
methods, emphasizing the importance of ICA chondrogenic, and osteogenic effect in osteo-
chondral restoration. Moreover, the review highlighted the recent state-of-the-art related
to hydrogels and scaffolds enriched with ICA and their use as biocompatible materials
for osteochondral regeneration strategies, which must take into account the healing of
subchondral bone and articular cartilage, as well as the joint interface. To our knowledge,
this is the first paper that presents the effect and the importance of ICA-incorporated
biomaterials in the field of osteochondral engineering.

2. Osteochondral Tissue and Associated Defects
2.1. Osteochondral Tissue

Osteochondral tissue regeneration represents a challenge of regenerative medicine
due to its structural complexity, layered architecture, and biomechanical properties. Hier-
archically, the osteochondral tissue consists of articular cartilage, osteochondral interface,
and the underlying subchondral bone.

Human adult articular cartilage (hyaline cartilage) (2–4 mm thick) is void of blood
vessels, nerves, or lymphatics and has a specific structure and composition adapted to
its function of load-bearing surface and lubrication of synovial joints. The structural
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organization of articular cartilage plays a central role in modulating the biomechanical
function, according to cartilage thickness, chondrocyte-mediated matrix deposition, and
remodeling or tissue loading parameters [30]. Histologically, the human adult articular
cartilage is a multiphase connective tissue composed of structurally and biochemically
distinct zones: the superficial, intermediate and deep zone [31–33]. Each zone has its own:
(i) ECM composition, consisting mainly of collagen (COL) type II, other non-collagenous
proteins, proteoglycans, and water; (ii) COL orientation; and (iii) chondrocytes’ phenotype,
morphology, density, and rate of metabolic activity [30,34].

The ECM secreted by chondrocytes is heterogeneous and has been divided into three
distinct regions: the pericellular, territorial and interterritorial region, based on proximity
to the cells, composition, and COL fibril diameter and organization. Each matrix zone
is characterized by different COL types and the expression of distinct molecules [35,36].
Thus, the pericellular zone is a thin layer rich in COL type II, VI, and IX and proteoglycans,
such as aggrecan, hyaluronan, and decorin, placed next to cell membrane receptors, as the
integrins. The territorial zone contains COL type VI, non-collagenous molecules, such as
matrilins 1 and 3, and the small proteoglycans, biglycan and decorin. The interterritorial
zone is composed of COL types II, IX, and XI, non-collagenous molecules, such as matrilin
3, aspirin, and cartilage oligomeric protein, and proteoglycans, such as heparan sulfate,
fibromodulin and decorin [37]. The depth-dependent composition, organization, and
structure are responsible for the unique biomechanical properties of the articular cartilage,
such as tensile strength, flexibility, and load-bearing ability [38,39]. Thus, the recorded
values of the compressive modulus of its superficial, middle, and deep zone were 0.079, 2.1,
and 320 MPa, respectively, indicating notable differences in the stiffness of this tissue [40].

Chondrocytes, the only cellular component of articular cartilage have different mor-
phologies, varying from more flattened at the surface to more rounded and larger in the
deeper zones. They live within the cartilage matrix at low oxygen tension, ranging from
10% at the surface to less than 1% in the deep zones [32,41].

The superficial (tangential) zone (10–20%) has an ECM consisting of COL fibrils of
30–35 nm in diameter (86%), tightly packed and oriented parallel to the articular surface,
mainly represented by COL types II (60–70%) and IX, and minimal proteoglycan content,
such as aggrecan (5–15%) [2,31,42]. The synovial fluid present in the cartilage overlaying
zone consists of a high proportion of water (70–84%), hyaluronic acid, and lubricin, a splice
form of proteoglycan 4, enabling the gliding surface [37,41,43].

The chondrocytes in this zone exhibit small and circular morphology (flattened ellip-
soid) and lie parallel to the surface [41,43] and show distinct spatial patterns as single cells,
pairs, clusters, or strings, depending on the joint type [44]. They also present the properties
of mesenchymal stem cells [45]. The superficial zone is covered by lamina splendens, a
clear film with small COL fibrils, which have a parallel orientation to the articular surface
and a cellular layer of flattened chondrocytes [46].

This thin zone acts as a barrier regulating the diffusion transport of nutrients and
oxygen to the underlying cartilage structure, as well as the ingress and egress of large
biomolecules [2]. It also has good tensile strength providing high resistance to strong shear
forces, due to well-organized COL fibrils. Still, disruption of the superficial zone results in
the alteration of the cartilage’s mechanical properties and is the first to show degenerative
changes, contributing to the development of OA [46].

Intermediate (middle) zone (40–60%) contains round chondrocytes distributed among
randomly oriented COL fibrils and the highest proteoglycans concentration. In the mid-
dle zone, chondrocytes synthesize high amounts of aggrecan and there are also variable
amounts of small proteoglycans [41]. Under normal, low turnover conditions, chondro-
cytes resting in the unstressed steady state maintain the synthesis of proteoglycans and
other non-collagenous molecules [47]. There is very little turnover of COL type II [48].
Functionally, the middle zone is the first line of resistance to compressive forces [35].

Deep (radial) zone (20–30%) presents round or ellipsoid chondrocytes, which are
packed in columns parallel to the organized COL fibers and show 10-fold higher synthesis
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activity than the cells in the superficial zone, while they have only twice as much sur-
face area and volume. In the deep zone, COL fibrils (67%) have a larger diameter of up
to 40–80 nm and are oriented perpendicular to the articular surface, while the proteogly-
cans (20%) and water (40–60%) content is lower than in the superficial and intermediate
zones [31].

The cartilage-bone interface represents a network hub anatomically connecting the
articular cartilage and the subchondral bone. The complex composition and morphological
characteristics of this interface are required to make the transition between significantly
different physiology and biomechanical properties of the cartilage and those of the sub-
chondral bone [32].

Tidemark (approximately 3 µm in thickness), a complex three-dimensional structure
visible between the non-calcified deep zone and the underlying calcified cartilage, anatomi-
cally divides the cartilage from the subchondral bone [49]. The wavy tidemark composed
of matrix vesicles serves to COL fibrils attachment, allows nutrient diffusion through small
gaps located within the structure, and prevents the invasion of vasculature and nerves into
the articular cartilage [31,32].

Calcified cartilage is the main component of the osteochondral interface, bridging
the unmineralized articular cartilage to the subchondral bone. It contains hypertrophic
chondrocytes, has a unique ECM composition with a considerable amount of hydroxya-
patite, COL type X (vertically oriented fibrils), is void of proteoglycans [41,49], and is
connected to the subchondral bone through interdigitations, which assist in transforming
the articulation shear stress into tensile and compressive stress [31]. The calcified zone has
lower permeability than the articular cartilage, which allows the migration of molecules
smaller than 500 Da from the subchondral bone to the cartilage in both directions [42].
Moreover, the calcified zone has vascularization and innervations originating from the
subchondral bone in association with advanced age [41].

The cement line represents the lower boundary, marking the COL type and fiber
orientation changes [42].

Subchondral bone, an important part of subchondral tissue, consists of the subchon-
dral bone plate and the subarticular spongiosa and is separated from the calcified cartilage
by the cement line. The subchondral bone maintains the shape of the joint bone and pro-
vides a suitable mechanical and biological environment for cartilage development and
differentiation [50]. The subchondral region has characteristic anatomy, but is variable
in thickness, density, and composition of the subchondral bone plate, the contour of the
tidemark, and cement line, and the number and types of channels penetrating the calcified
cartilage [51]. The main components of the subchondral bone include: HA, COL types I and
X, fibronectin, and laminin [40]. Moreover, the subchondral bone has powerful compressive
strength and strong stiffness provided by considerable amounts of hydroxyapatite and
COL type I fibers, high compressive modulus (5.7 GPa), and low elasticity [32,40].

2.2. Osteochondral Defects: Basic Aspects and Restoration

The defects affecting only the articular cartilage layer or chondral defects can be
divided into the partial thickness and full-thickness defects, according to their depths,
while osteochondral defects extend deep into the subchondral bone (Figure 1).

Partial thickness defects of the articular cartilage do not reach down to the subchondral
bone and fail to heal spontaneously, due to the fact that they do not have access to the
progenitor cells from the bone marrow space [43,52]. In mature tissue, a limited repair
process takes place at the defect situs, immediately after the injury.

Full-thickness defects are lesions that affect the areas up to the subchondral bone
comprising the articular cartilage, tidemark, and calcified cartilage [52].

Osteochondral defects are lesions or disruptions of the articular cartilage and subchon-
dral bone that occur after an acute traumatic injury of the joint or an underlying disorder of
the bone appeared on specific weight-bearing sites, at the end of the thighbone, shinbone,
and the back of the kneecap [53]. In contrast to the chondral defects that have poor healing
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capacity, the small osteochondral defects present healing capacity by recruitment of the
non-differentiated bone marrow mesenchymal stem cells from the damaged site [54].
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Figure 1. Types of cartilage defects. Partial thickness defect develops only in the articular cartilage.
In full-thickness defect, the subchondral bone plate is exposed, but not disturbed. The osteochondral
defect develops in the cartilage and subchondral bone.

Osteochondral regeneration involves simultaneous renewal of three tissues with dif-
ferent mechanical and biological properties: the articular cartilage, osteochondral interface
(the functional calcified layer), and osteochondral bone. Due to the weak regeneration
capacity of the articular cartilage, two major problems need to be taken into account for its
repair: (1) to fill the defect with a tissue that has the same mechanical properties as articu-
lar cartilage and (2) to promote successful integration between the repair tissue and the
host/native articular cartilage [55]. Calcified zone regeneration is essential for integrative
and functional osteochondral repair [56]. Despite the remarkable advances in the field
of osteochondral/cartilage tissue engineering through marrow stimulation, autologous
chondrocytes implantation, and osteochondral autografts and allografts, the restoration
of osteochondral interface and full-thickness articular cartilage defects remain challeng-
ing [57]. Among the proposed therapies, osteochondral tissue engineering has shown
considerable promise using multiple approaches based on cells, scaffolds and signaling
molecules. Ideally, osteochondral structure reconstruction by tissue engineering requires a
scaffold that provides both articular cartilage and subchondral bone. Along with scaffold
design, effective inductors are needed to efficiently synthesize the osteochondral ECM.
Furthermore, functional scaffolds with controlled delivery of signaling molecules (growth
factors, therapeutic drugs, and genes) are considered a promising therapeutic approach [58].
Studies have reported that certain growth factors (bone morphogenetic protein-2 (BMP-2),
BMP-7, insulin-like growth factor-1 (IGF-1), fibroblast growth factor-2 (FGF-2) can support
the maturation of cartilage, while others (IGF-1, IGF-2, platelet-derived growth factor,
transforming growth factor-beta (TGF-β), BMP-2, BMP-4, BMP-6, and BMP-7) can induce
osteogenic differentiation [32]. The signaling molecules induce ECM formation within the
osteochondral tissue, while growth factors and cytokines residing in the scaffolds are used
to stimulate the formation of osteochondral structural constituents.

3. ICA—Trigger for Osteochondral Regeneration

ICA has been used in traditional Chinese medicine for over 2000 years to cure cartilage-
and bone-related disorders, such as OA and osteoporosis (bone microstructure degener-
ation, bone mass reduction, and bone fractures) [24,59,60] and is widely used in China,
Japan and Korea as an antirheumatic drug [61].



Gels 2022, 8, 648 6 of 16

Studies have reported that ICA promotes bone formation, can alleviate bone mass loss,
improves the degree of bone mineralization, and can prevent estrogen deficiency-induced
bone fractures by activating the estrogen receptors. Moreover, ICA inhibits osteoclast
differentiation, and reduces motility and bone resorption, being a potential bone strengthen
inductor [24].

Vascularization is important in bone formation; some research studies have reported
that ICA promotes endothelial cell proliferation and tubulogenesis, could protect vascular
endothelial cells with an anti-apoptosis effect, and could activate angiogenesis [24].

3.1. ICA Structure

ICA is isolated from the dried leaves of the medicinal plant “yinyanghuo” (Epimedium
spp.), as the main bioactive flavonoid, representing no less than 0.5% from 5.0% total
flavonoid content. ICA or 2-(4′-methoxylphenyl)-3-rhamnosido-5-hydroxyl-7-glucosido-
8-(3′-methyl-2-butylenyl)-4-chromanone is a pharmacologically active small molecule of
prenylated flavonol glycoside (Figure 2). Its molecular formula is C33H40O15, it has a
molecular weight of 676.67 g/mol and a melting point of 231~232 ◦C [62,63].
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Pharmacokinetic studies have shown that it is not the original form of ICA that is
responsible for these biological effects, but its metabolites. Qian et al. (2012) [64] have
found 19 different metabolites in rat plasma after injection of ICA, including icariside I and
II, icaritin, desmethyl icaritin, icaritin-3,7-di-O-glucuronide, and icaritin-3-O-rhamnose-7-
O-glucuronide.

3.2. ICA Extraction Methods

Traditional methods of ICA extraction use polar solvents, such as ethyl acetate and
ethanol, because it is insoluble in non-polar solvents, such as chloroform, ether, and
benzene [62]. The use of chemical solvents for the extraction of compounds intended for
medical purposes can be resource-consuming and also harmful to human health. Thus,
new adsorptive materials with specific selectivity to ICA were synthesized to improve ICA
extraction, as an alternative to traditional methods. Eutectic solvents are a new generation
of solvents characterized by easy preparation, solute stabilization, good biodegradability,
and cost-effectiveness, which can be classified into ionic liquids and deep eutectic solvents.
Therefore, deep eutectic solvents have been proposed for the extraction of ICA, being
safer for humans and also for the environment [65]. Recently, Wang et al. (2020) [66]
have published a comparative study analyzing the yield of ICA extraction from Epimedium
pubescens Maxim by an ultrasonic-assisted method using traditional solvents, such as
methanol, 70% ethanol, 50% ethanol and water, on the one hand, and deep eutectic solvents
with choline chloride as the first component, and lactic acid, ethylene glycol, glycerol and
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1,2-propanediol as the second component, in different molar ratios, on the other hand. The
results have shown that the highest yield (3.25 mg/g) was recorded for ICA extraction in
50% ethanol, while the second highest extraction yield (3.12 mg/g) was found for a mixture
consisting of choline chloride:lactic acid mixture (1:2 ratio), indicating the successful use
of the latter as an eco-friendly alternative to traditional solvents [66]. However, another
team reported that the extraction efficiency of the L-proline:ethylene glycol mixture (1:4
ratio) was better, compared to the choline chloride:lactic acid mixture (1:2 ratio) and 50%
ethanol [65].

In terms of ICA extraction techniques applied to the plant material, the classical
one uses the extraction by stirring, but improved yields are obtained by heat refluxing,
pressurized microwave-assisted, atmospheric pressure microwave-assisted, and ultrasonic-
assisted techniques [67]. Wang et al. (2020) [66] compared the stirring, heat refluxing, and
ultrasonic-assisted extraction methods using deep eutectic solvents with low volatility and
high viscosity. As expected, the extraction of ICA by the stirring method had the lowest
yield, and the addition of heat did not improve the extraction yield. The extraction of ICA
through the ultrasonic-assisted method registered the best yield, but was not significantly
different from that of heat refluxing. In the case of using 40% ethanol for ICA extraction, the
best extraction yield was reported by another team for the pressurized microwave-assisted
technique, followed by heat refluxing and atmospheric pressure microwave-assisted tech-
niques, while the lowest yield was obtained for the ultrasonic-assisted technique [67]. The
difference between the extraction efficiency in these two studies was most likely due to the
use of different extraction solvents.

3.3. ICA Effect on Osteochondral Regeneration

Although long used in traditional medicine, scientific investigations on the chon-
droprotective and osteoprotective effects of ICA were performed in the last period. Some
reports showed that ICA might be a potential accelerator of chondrogenesis, modulating
the proliferation of chondrocytes and reducing ECM degradation [16,68].

Previous studies suggested that high concentration of ICA promoted ECM synthesis
(glycosaminoglycans and COL), upregulated the expression of SRY-type high mobility
group box 9 (SOX9) (early chondrogenic marker), COL type II and aggrecan genes [69]
and downregulated the expression of COL type I gene in the 2D culture of chondro-
cytes [70] (Figure 3).

ICA has demonstrated great in vitro potential to promote bone formation and suppress
bone resorption. A significant osteogenic effect of ICA was observed in human bone
mesenchymal stem cells, rat bone marrow stromal cells, primary osteoblasts (human, rat,
and mouse), and osteoblast-like cells (UMR 106 cells) [71,72].

ICA has revealed its action as a potent bone anabolic agent, which is compara-
ble to BMP-2, enhancing the proliferation and osteogenic differentiation of MC3T3-E1
cells [73–75]. Hsieh et al. (2010) [76] have examined the molecular mechanisms of ICA
in regulating osteoblast metabolism, showing that, at a concentration as low as 10−8 M
ICA, cell proliferation and matrix mineralization reached maximum values and promoted
NO synthesis. Moreover, ICA treatment upregulated the gene expression of BMP-2 by
activating the cAMP/PKA/CREB signaling pathway [26], BMP-4, SMAD4, runt-related
transcription factor (RUNX2), and osteoprotegerin and downregulated the gene expression
of receptor activator of nuclear factor kappa-B ligand (RANKL) [77,78]. Cell viability and
proliferation, osteogenic differentiation markers (alkaline phosphatase, COL type I, osteo-
calcin), calcium deposition, and bone nodule formation increased in the presence of ICA in
a dose-dependent manner [79].
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Figure 3. Icariin’s effect on bone marrow stem cells (BMSCs) as a promoter of bone formation and a
potential accelerator of chondrogenesis via different signaling pathways. Icariin exerts an osteogenic
effect by promoting the expression of osteoblastic specific genes, bone morphogenetic proteins
(BMP-2, BMP-4), SMAD4, RUNX2, osteoprotegerin (OPG), alkaline phosphatase (ALP), collagen
type I (COL I), osteocalcin (OCN) and the downregulation of the receptor activator of nuclear factor
kappa-B ligand (RANKL). Icariin also upregulates calcium deposition and bone nodule formation.
Its chondrogenic effect is due to the upregulated expression of SRY-Box transcription factor 9 (SOX9),
collagen type II (COL II), aggrecan (AGG), and the downregulation of COL I. It also serves as an
activator of hypoxia-inducible factors (HIF-1α and HIF-2α) and several metalloproteinases (MMP)
and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) in chondrocytes.

ICA promoted bone marrow stem cell (BMSC) osteogenesis via different signaling path-
ways, such as RhoA-TAZ, JNK, Wnt/β-catenin, ERα-Wnt/β-catenin, and PI3K/Akt/eNOS/
NO/cGMP/PKG [80]. Moreover, it was shown that ICA inhibited the expression of the
proteins related to the fusion and formation of osteoclasts, suppressed the activity of
tartrate-resistant acid phosphatase (TRAP) and the expression of matrix metalloproteinase-
9 (MMP-9) [81]. A report has indicated that ICA had an osteoinductive effect in vivo
through the process of endochondral ossification [82].

A recent study revealed the capacity of ICA to exert anti-osteoporotic and anti-
inflammatory effects in OA by preventing inflammation and chondrocytes apoptosis
through activation of autophagy via inhibiting nuclear factor kappa-B (NF-kB) signal-
ing pathway [83]. Wang et al. (2020) [84] demonstrated that ICA increased the vitality of
chondrocytes by suppressing inflammation through the inhibition of the NF-kB/HIF-2α
signaling pathway. Moreover, experiments in interleukin-1β-stimulated chondrosarcoma
cells have shown that ICA exerted a chondroprotective effect through the inhibition of
MMP-1, MMP-3, and MMP-13 and the suppression of osteoprotegerin, RANKL and the
receptor activator of nuclear factor kappa-B (RANK) system via MAPK pathway [85,86].

An important role in inflammation is played by hypoxia-inducible factors (HIFs) family
members, HIF-1α and HIF-2α, consisting of α- and β- subunits, which are highly expressed
in the OA cartilage of mice and humans. ICA could upregulate HIF-1α expression, as a key
mediator of chondrocyte response to oxygen fluctuations during cartilage development and
repair and maintain the chondrocyte phenotype [87,88]. The effect of ICA on HIF-2α is yet
unclear. ICA has inhibited the expression of NF-kB and HIF-2α in mice bone defect, but it
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showed activation of HIF-2α, MMP-9, and expression of disintegrin and metalloproteinase
with thrombospondin motifs 5 (ADAMTS5), as key targets of the NF-kB/HIF-2α signaling
pathway, in TNF-α-treated ADTC5 chondrocytes [84,89].

Zu et al. (2019) [83] have demonstrated that ICA reduced LPS-induced pyroptosis
and the inhibition of COL formation through suppression of the NLRP3 inflammasome-
mediated caspase-1 signaling pathway. The in vivo effect was further confirmed in the
rat OA model by ICA inhibition of NLRP3-mediated pyroptosis. Thus, ICA might play a
therapeutic role in OA treatment [83].

Taken together, all the mentioned characteristics of ICA demonstrated by studies
related to in vitro and in vivo cell proliferation, osteogenic and chondrogenic differentiation,
and the use of ICA alone or in combination with other molecules by direct administration or
integrated into composite hydrogels and scaffolds, represent a very promising and low-cost
approach for osteochondral regeneration and regenerative medicine.

4. Hydrogels and Scaffolds Enriched with ICA for Osteochondral Tissue Engineering

The damaged cartilage has a limited capacity for self-healing due to the lack of blood
vessels, nerves, lymph supplies, and the poor differentiating and migratory abilities of
chondrocytes. Clinically, several methods used to treat osteochondral defects, such as
debridement and bone marrow stimulation techniques or osteochondral grafts (allograft
and autografts) did not provide satisfactory outcomes [82]. Tissue engineering based on
biodegradable hydrogels and scaffolds made of natural materials, synthetic polymers,
ceramic materials, or bioglasses with or without biotic factors, such as growth factors
(TGF-β1, BMP-2) and cells (chondrocytes and mesenchymal stem cells) provides the tools
for the reconstruction of osteochondral defects [40]. ICA can be steadily and locally released
from different biomaterials, thus becoming an attractive candidate for osteochondral tissue
engineering (Figure 4).

Jia et al. (2015) [63] prepared ICA molecularly imprinted polymers by precipitation
polymerization using acrylamide as functional monomer, ethylene glycol dimethacrylate
as cross-linker, and methanol:acetonitrile mixture (3:1, v/v) as the reaction solvent, in a
molar ratio of template molecule:functional monomer:cross-linker of 1:6:80. An innovative
therapy using autologous conditioned serum was proposed as being able to improve tissue
regeneration and to reduce the degenerative mechanisms of OA [23,53]. Moreover, ICA-
conditioned serum and ICA-conditioned serum combined with chitosan had a positive
effect on primary rabbit chondrocyte proliferation and it was also demonstrated the regener-
ation of cartilage in rabbit osteochondral defect models [53]. Moreover, it was observed that
the ICA-conditioned serum and hyaluronic acid treatment of rabbit femoral condyle have
regenerated the cartilage and subchondral bone [23]. In vitro and in vivo studies have in-
vestigated the potential of several cytocompatible, biomimetic biomaterials containing ICA
and natural polymers (fibrin, silk fibrin, hyaluronan, alginate, chitosan, COL), synthetic
polymers (polylactic acid, poly(lactic-co-glycolic acid), polyhydroxyethylmethacrylate,
polycaprolactone), ceramics (hydroxyapatite, tricalcium phosphate), conditioned as com-
posite hydrogels and scaffolds for cartilage repair and bone regeneration in osteochondral
defects [82]. ICA was combined with calcium phosphate cement tablets [73], β-tricalcium
phosphate disks [90], 3D complex alginate hydrogels [87], gelatin/hyaluronic acid compos-
ite microspheres [91], porous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds [36],
chitosan/hydroxyapatite scaffolds [92], nanodiamonds [93] and, more recently, with bioac-
tive glasses [94]. Reiter et al. (2019) [95] have fabricated 3D sponge-like scaffolds based on
45S5 bioactive glass coated with gelatin, as a suitable vehicle for ICA delivery (Table 1).
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Table 1. Composite hydrogels and scaffolds loaded with ICA for osteochondral defects repair.

Composite Hydrogels and Scaffolds Experimental Model Results References

ICA-alginate hydrogel 3D complexes in vivo Enhanced articular cartilage repair in a mouse osteochondral defect model by
improving the ICRS II histological score, compared to controls [87]

ICA-hydroxyapatite/COL hydrogel
in vitro

Upregulated expression of chondrogenic and osteogenic genes (RUNX2, alkaline
phosphatase, osteocalcin) and enhanced matrix synthesis of glycosaminoglycans

and COL type II; [56,96,97]

in vivo Higher expression of COL types X (marker of calcified layer formation), II (in
neo-cartilage layer), and I (in new subchondral bone)

ICA-functionalized nanodiamonds
in vitro Increased osteogenic markers secretion (alkaline phosphatase, calcium) and mRNA

level (alkaline phosphatase, COL type I, osteopontin, RUNX2); [93]

in vivo Bone regeneration by the upregulated expression level of osteogenic marker genes
(alkaline phosphatase, RUNX2, osteocalcin); inhibited osteoclast activity

ICA/β-tricalcium phosphate disks
in vitro

Promoted proliferation and differentiation of Ros17/28 cells; no effect on
attachment and morphology of Ros17/28cells; bone-apatite formation on the

surface of disks after 3 days of soaking in simulated body fluid solution [90]

in vivo Enhanced the bioactivity of β-tricalcium phosphate; new bone formation with
fibrous tissue and slight inflammatory reaction

ICA-calcium phosphate cement tablets in vitro Enhanced in vitro osteogenic differentiation
[73]in vivo Accelerated bone regeneration at 4 and 6 weeks after transplantation

ICA-self-crosslinked network functionalized with
Sr-doped biphasic calcium phosphate bioceramics

in vitro
Co-delivery system with potential synergistic effect on promoting osteogenesis by

an increased level of osteogenesis-related proteins alkaline phosphatase,
osteocalcin, and BMP2 [81]

in vivo Inhibited osteoclastogenesis

ICA-Chitosan/hydroxyapatite
in vitro Cell compatibility

[92]
in vivo Promoted osteogenic differentiation of human bone marrow stem cells,

osteoconduction, and osteoinduction

45S5 bioactive glass doped with ICA
and gelatin-coating in vitro Hydroxyapatite formation in simulated body fluid after 14 days of immersion [95]

ICA-releasing PCL/PLGA/nanohydroxyapatite 3D
printed composite scaffold

in vitro Promoted osteogenic differentiation of MC3T3-E1 cells
[98]in vivo Healing of calvaria bone
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Yuan et al. (2015) [96] have shown that ICA might be a substitute for growth factors
in cartilage tissue engineering when used through chemical conjugation to a hyaluronic
acid/COL hydrogel. The presence of ICA and hyaluronic acid macromolecules had no
significant effect on the mechanical properties and degradation of the composite hydrogel.
The prepared hydrogel maintained the seeded chondrocytes’ morphology and promoted
the biosynthesis of the cartilage matrix. It was reported an increase of SOX9, aggrecan, and
COL type II gene expression in chondrocytes and the production of glycosaminoglycans
and COL type II in the hydrogel. Thus, the formation of new cartilage in ICA-loaded
hydrogel was better than that in hydrogel without ICA, underlining the positive role of
ICA chemical conjugation to the polymeric components [96].

The same hydrogel seeded with mesenchymal stem cells showed that conjugated
ICA can be gradually released and had the ability to promote both cartilage and bone
formation, depending on the used inductive medium [97]. Thus, under cartilage induction
conditions, the cells seeded in ICA-loaded hydrogel showed chondrocyte-like morphology,
upregulation of the expression of cartilage-related genes, and increase of the secretion of
cartilage matrix in the hydrogel, while in the bone induction microenvironment, the seeded
cells showed osteoblast morphology, the deposition of calcium, and a significant increase of
the expressions of bone-related genes and proteins. These results have suggested enhanced
osteochondral defect repair ability of the hyaluronic acid-COL hydrogel after ICA chemical
conjugation [97].

Gorji et al. (2020) [99] have prepared novel delivery systems of fibrin-ICA nanopar-
ticles loaded in poly(lactic-co-glycolic acid) polymeric biomaterials for the chondrogenic
effect on human adipose tissue stem cells. The in vivo anabolic effect of ICA was confirmed
in a mouse calvarial defect model [73]. The study has shown significant new bone formation
in C57BL/6N mice, at 4 weeks after transplantation with ICA-calcium phosphate cement
tablets, compared to tablets without ICA. After 6 weeks, the new bone thickness increased
and blood vessel formation was observed [73]. Rabbit chondrocytes were embedded within
an in vitro-engineered ICA/COL I hydrogel used for the restoration of adult rabbit os-
teochondral defect [82]. It was shown that ICA upregulated the expression of aggrecan,
SOX9, and COL type II in seeded chondrocytes and, also, accelerated the formation of
chondroid tissue in the hydrogel. It improved the restoration of the osteochondral defect
in the adult rabbit model and enhanced the integration of newly-formed cartilage with
subchondral bone [82]. Zhao et al. (2019) [100] loaded ICA onto poly(lactic-co-glycolic
acid) fibers by electrospinning to prepare a composite scaffold with high hydrophilicity
and good biocompatibility, showing a slow and steady release of ICA. In models of rabbit
OA, the composite scaffold promoted the synthesis of ECM components (COL type II,
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aggrecan), maintained the functional morphology of the articular cartilage, and inhibited
the resorption of subchondral bone trabeculae, demonstrating its therapeutic potential
to inhibit OA progression. A new core-shell scaffold was fabricated using the polymers
COL, polycaprolactone, and hydroxyapatite for shell design and ICA-loaded chitosan
microspheres for the core, and showed great potential for bone regeneration and repair of
tibia bone defects in rabbit models [101].

Zhu et al. (2022) [102] designed a novel injectable and thermoresponsive ICA-loaded
composite hydrogel made by in situ crosslinking of hyaluronic acid, and Poloxamer 407, as
a 3D cell culture system for intra-articular injection of bone marrow mesenchymal stem cells
in a rat model of OA. This injectable hydrogel showed good biocompatibility in chondrocyte
and mesenchymal stem cell cultures, promoted the proliferation and differentiation of
mesenchymal stem cells through the Wnt/β-catenin signaling pathway, and relieved pain
by regulating the expression of the anti-inflammatory cytokine IL-10 and collagenase-3
(MMP-13) in the OA model [102].

5. Conclusions and Future Prospects

Osteochondral tissue engineering based on hydrogels, stem cells, and signaling
molecules showed considerable potential for the repair of the complex osteochondral
structure. Due to its chondroinductive, osteoinductive, anti-inflammatory, and non-toxic
effects, ICA could be used as a key constituent within the composition of composite hydro-
gels intended for osteochondral tissue repair, in order to improve the chondrogenesis and
osteogenesis processes inside the osteochondral defects. At present, few studies have been
conducted on ICA embedding in micro- and nano-formulations to increase its bioavailabil-
ity and potential activity. Future studies are needed to address these key issues, along with
more in-depth analyses of ICA interactions and mechanisms of action.
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