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Energy scaling of targeted optimal control
of complex networks
Isaac Klickstein1, Afroza Shirin1 & Francesco Sorrentino1

Recently it has been shown that the control energy required to control a dynamical complex

network is prohibitively large when there are only a few control inputs. Most methods to

reduce the control energy have focused on where, in the network, to place additional control

inputs. Here, in contrast, we show that by controlling the states of a subset of the nodes of a

network, rather than the state of every node, while holding the number of control signals

constant, the required energy to control a portion of the network can be reduced

substantially. The energy requirements exponentially decay with the number of target nodes,

suggesting that large networks can be controlled by a relatively small number of inputs as

long as the target set is appropriately sized. We validate our conclusions in model and real

networks to arrive at an energy scaling law to better design control objectives regardless of

system size, energy restrictions, state restrictions, input node choices and target node

choices.
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R
ecent years have witnessed increased interest from the
scientific community regarding the control of complex
dynamical networks1–14. Some common types of networks

examined throughout the literature are power grids15,16,
communication networks17,18, gene regulatory networks19,
neuronal systems20,21, food webs22 and social systems23. We
define networks as being composed of two components; the nodes
that constitute the individual members of the network and the
edges that describe the coupling or information sharing between
nodes24. Particular focus has been paid to our ability to control
these networks6,8–12,14,25. A network is deemed controllable if a
set of appropriate control signals can drive the network from an
arbitrary initial condition to any final condition in finite time. If a
network is controllable, a control signal that achieves such a goal
is not necessarily unique.

One important metric to characterize these control signals is
the energy that each one requires. From optimal control theory,
we can define the control action that, for a given distribution of
the control input signals, satisfies both our initial and final
conditions as well as minimizes the energy required to perform
the task26. The energy associated with the minimum energy
control action provides an energetic theoretical limit. Knowledge
of the minimum control energy is crucial to understand how
expensive it can be to control a given network when applying any
alternative control signal. The minimum energy framework has
recently been examined in refs 27,28, which have shown that
based on the underlying network structure, the distribution of the
control input signals, the desired final state and other parameters,
the energy to control a network may lie on a distribution that
spans a broad range of orders of magnitude. In this paper, we
focus on reducing the energy that is maximum with respect to the
choice of the initial state, final state and, in general, of an arbitrary
control action. We note that in real applications involving large
complex networks, achieving control over all of the network
nodes is often unfeasible27,28 and ultimately unnecessary.

One possible method to reduce the required energy was
investigated in ref. 29, where additional control signals were
added in optimal locations in the network according to each
node’s distance from the current set of control signals. In
refs 30,31, the minimum dominating set (MDS) of the underlying
graph of a network is determined and each node in the MDS is
assumed capable of generating an independent signal along each
of its outgoing edges. As every node not in the MDS is only one
edge away from a node in the MDS, and each edge from an MDS
node to a non-MDS represents a unique control signal, the
control energy will be relatively small. In this paper, for the first
time, we adjust the control goal to affect only a subset of the
network nodes, chosen as the targets of the control action, and
consider the effect of this choice on the required control energy.
This type of target control action is typically what is needed in
applications in gene regulatory networks32, financial networks33

and social systems34.
Our first main contribution is determining how the energy

scales with the cardinality of the target set. In particular, we find
that the minimum control energy to control a portion of the
complex network decays exponentially as the number of targets is
decreased. Previous work27,28 has only investigated the control
energy for complex networks when the target set coincides with
the set of all nodes. We also look at the energetic relation between
the number of targets and other network parameters such as the
number of inputs and the amount of time allocated for the
control action. Our second main contribution is showing that
target control is applicable to other control actions generated with
respect to other cost functions. Target control has received recent
attention in refs 14,35, which examined methods to choose a
minimal set of independent control signals necessary to control

just the targets. Here a target control signal is examined that is
optimal with respect to a general quadratic cost function that
appears often in the control of many real systems.

Results
Problem formulation. Complex networks consist of two parts; a
set of nodes with their interconnections that represent the
topology of the network, and the dynamics that describe the time
evolution of the network nodes. First, we summarize the defini-
tions needed to describe a network. We define V ¼ fig, i¼ 1,y,n
to be the set of n nodes that constitute a network. The adjacency
matrix is a real, square n� n matrix, A, which has non-zero
elements aij if node i receives a signal from node j. For each node i
we count the number of receiving connections, called the in-
degree kin

i , and the number of outgoing connections, called the
out-degree kout

i . The average in-degree and average out-degree for
a network is kav. One common way to characterize the topology
of a network is by its degree distribution. Often the in-degree and
out-degree distributions of networks that appear in science and
engineering applications are scale-free, that is, p(k)Bk� g where k
is either the in-degree or the out-degree with corresponding gin

and gout, and most often 2rgr3 (ref. 36).
While most dynamical networks that arise in science and

engineering are governed by nonlinear differential equations, the
fundamental differences between individual networks and the
uncertainty of precise dynamics make any substantial overarching
conclusions difficult6,35,36. Nonetheless, linear controllers have
proven to be adequate in many applications by approximating
nonlinear systems as linear systems in local regions of the n-
dimensional state space37. We examine linear dynamical systems,
as it is a necessary first step to understanding how target control
may benefit nonlinear systems. The linear time invariant network
dynamics are

_xðtÞ ¼ AxðtÞþBuðtÞ
yðtÞ ¼ CxðtÞ:

ð1Þ

where x(t)¼ [x1(t),y,xn(t)]T is the n� 1 time-varying state
vector, u(t)¼ [u1(t),y,um(t)]T is the m� 1 time-varying external
control input vector and y(t)¼ [y1(t),y,yp(t)]T is the p� 1 time-
varying vector of outputs, or targets. The n� n matrix A¼ {aij} is
the adjacency matrix described previously, the n�m matrix B
defines the nodes in which the m control input signals are
injected, and the p� n matrix C expresses the relations between
the states that are designated as the outputs. In addition, the
diagonal values of A, aii, i¼ 1,y,n, which represent self-
regulation, such as birth/death rates in food webs, station
keeping in vehicle consensus, degradation of cellular products
and so on, are chosen to be unique at each node (see proposition
1 in ref. 38). These diagonal values are chosen to also guarantee
that A is Hurwitz so the system in equation (1) is internally stable.
We restrict ourselves to the case when B (C) has linearly
independent columns (rows) with a single non-zero element, that
is, each control signal is injected into a single node (defined as an
input node) and each output is drawn from a single node (defined
as a target node). Our particular choice of the matrix C is
consistent with target control, as our goal is to individually
control each one of the target nodes. Our selection of the matrix B
is due to our assumption that different network nodes may be
selectively affected by a particular control signal, for example, a
drug interacting with a specific node in a protein network. Note
that in today’s information-rich world, a main technological
limitation is not generating control signal, but rather placing
actuators at the input nodes; hence our assumption that each
actuator is driven by an independent control signal is sound14.
We define Pp � V as the subset of target nodes and p ¼ Pp

�� �� as
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the number of target nodes. A small sample schematic is shown in
Fig. 1a, which demonstrates the graphical layout of our problem
emphasizing the graph structure and the role of input nodes
and targets. Here by an input node, we mean a node that directly
receives one and only one control input such as nodes 1 and 2
in Fig. 1a. The explicit equation for the time evolution of the
outputs is

yðtÞ ¼ CeAðt� t0Þx0þC
Z t

t0

eAðt� tÞBuðtÞdt; ð2Þ

where we are free to choose u(t) such that it satisfies the
prescribed initial state, x(t0)¼ x0 and desired final output,
y(tf)¼ yf. Note that if we set C¼ In, where In is the n� n
identity matrix, then y(t)¼ x(t).

The minimum energy control input, well known from
linear systems theory39, minimizes the cost function
J ¼ 1

2

R tf

t0
uTðtÞuðtÞdt and satisfies an arbitrary initial condition

and an arbitrary final condition if the system is controllable. A
similar control input is optimal when the final condition is
imposed on only some of the states, that is, on the target nodes

(see the derivation in Supplementary Note 2)

u�ðtÞ ¼ BT eAT ðtf � tÞCT CWCT
� �� 1 yf �CeAðtf � t0Þx0

� �
: ð3Þ

The real, symmetric, semi-positive definite matrix
W ¼

R tf

t0
eAðtf � tÞBBT eAT ðtf � tÞdt is the controllability Gramian.

Note that in deriving equation (3) we must assume that the triplet
(A, B, C) is output controllable, which can be determined if the
matrix rank(CB|CAB|y|CAn� 1B)¼ p. If the triplet is output
controllable, it implies that the matrix CWCT is invertible39,40.
This suggests the possibility that while the entire network may
not be controllable (that is, C¼ In and W is singular), for a given
B (of the form described above) there may be a controllable
subspace (subset of nodes) within the network. On the other
hand, every subspace of the controllable subspace is also
controllable. In the following discussions we proceed under the
assumption that the pair (A, B) is controllable by following the
methodology in ref. 38, and focus on the effect that the choice of
the matrix C has on the control energy.

We also consider a more general linear-quadratic optimal
control problem, that is, we attempt to minimize a quadratic cost
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Figure 1 | An example network and control energy reduction with fewer targets. (a) A sample network with seven nodes and colour-coded input signals

(blue) and output sensors (pink). Note that each control input is directly connected to a single node, and each output sensor receives the state of a single

node. Nodes directly connected to the pink outputs are target nodes, that is, they have a prescribed final state that we wish to achieve in finite time, tf. The

corresponding vector y(tf) is defined in terms of the states as well. Nodes directly receiving a signal from a blue node are called input nodes and the

remaining nodes are neither input nodes nor target nodes. (b) We examine a three-node network where every node is a target node (pink nodes) and one

node receives a control input (blue). The edge weights are shown and the self-loop magnitude k¼ 1. (c) The state evolution is shown where the initial

condition is the origin and the final state for each target node is yi(tf)¼ 1, i¼ 1,2,3. (d) The square of the magnitude of the control input is also shown. The

energy, or the control effort, is found by integrating the square of the magnitude of the control input. For this case, E¼
R

|u(t)|2E382 (a.u.). (e) The same

network as in b but now only one node is declared a target node. (f) The state evolution is shown where the initial condition remains the origin but the final

condition is only defined for y3(tf)¼ 1. (g) The square of the magnitude of the control input is also shown. Note the different vertical axis scale as compared

to d. For the second case, E¼
R

|u(t)|2E66.3 (a.u.).
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function that applies a weight to the states, x(t), and the control
inputs, u(t). This type of cost function is applied in a variety
of science and engineering applications such as medical
treatments or biological systems41,42, consensus or
synchronization of distributed agents43–45, networked systems46,
social interactions47 and many more

J ¼ 1
2

Z tf

t0

xTðtÞQxðtÞþ 2xTðtÞMuðtÞþuTðtÞRuðtÞ
� �

dt: ð4Þ

The n� n matrix Q applies a weight to the states and the m�m
matrix R applies a weight to the control inputs. The n�m matrix
M allows for mixed-term weights, which may arise for specially
designed trajectories, optimization of human motion or other
physical constraints48–51. We restrict the cost function matrix Q
to be symmetric semi-positive definite and the matrix R to be
symmetric positive definite. We derive a closed-form expression
for the optimal control input associated with equation (4) using
the property that the Hamiltonian system, which arises during the
solution (derived in Supplementary Note 4) can be decoupled

u�cðtÞ ¼ �R� 1 MT þBT S
� �

xðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u�c1ðtÞ

þ �R� 1BT e
~AT ðtf � tÞCT C ~WCT

� �� 1
yf �Ce

~Aðtf � t0Þx0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

u�c2ðtÞ

:

ð5Þ
The symmetric matrix S is the solution to S�B�BT S� S�A�
�AT S� �Q ¼ On, the continuous time algebraic Riccati equation
and the other matrices are defined as

�A ¼ A�BR� 1MT ; �B ¼ BR̂� 1=2; �Q ¼ Q�MR� 1MT

~A ¼ A�BR� 1MT �BR� 1BT S;

~W ¼
Z tf

t0

e
~Aðtf � tÞBR̂� 1BT e

~AT ðtf � tÞdt

ð6Þ

The derivation of equations (5) and (6) is detailed in
Supplementary Note 4.

Optimal energy and worst case direction. The energy associated
with an arbitrary control input, such as equation (3) or (5),
while only targeting the nodes in Pp, is defined as
EðpÞ ¼

R tf

t0
uTðtÞuðtÞdt. Note that E(p) also depends on which p

nodes are in the target set, Pp, that is, there is a distribution of
values of E(p) for all target node sets of size p. The energy E(p) is a
measure of the ‘effort’, which must be provided to achieve the
control goal. In the subsequent definitions and relations, when a
variable is a function of p, we more specifically mean it is a
function of a specific target set of size p of which there are

n !
p ! ðn� pÞ ! possible sets. We can define the energy when the control
input is of the form in equation (3) as

EðpÞ ¼ yf �CeAðtf � t0Þx0

� �T
CWCT
� �� 1

yf �CeAðtf � t0Þx0

� �
¼ bT W � 1

p b;

ð7Þ
where the vector b ¼ yf �CeAðtf � t0Þx0 is the control manoeuvre
and Wp is the p� p symmetric, real, non-negative definite output
controllability Gramian. Note that when C is defined as above,
that is, its rows are linearly independent versors, the reduced
Gramian Wp is a p-dimensional principal submatrix of W. A
small, three-node example of the benefits of target control is
shown in Fig. 1b–g. In the first scenario (Fig. 1b–d) each node has
a prescribed final state (p¼ n¼ 3) and in the second scenario

(Fig. 1e–g) only a single node is targeted (p¼ 1). The energy is
calculated for each scenario by integrating the curves in Fig. 1d,g
from which we find that E(3)¼ 382 and E(1)¼ 66.3. Even though
the second scenario has one-third of the targets, the energy is
reduced by a sixth (compare also the different scales on the y axis
of Fig. 1d,g). We denote the eigenvalues of Wp as mðpÞi , i¼ 1,y,p,
which are ordered such that 0omðpÞ1 � . . . � mðpÞp when the tri-
plet (A, B, C) is output controllable. By defining the magnitude of
the vector, |b|¼b, we can define the ‘worst-case’ (or maximum)
energy according to the Min–Max theorem, which provides a
bound for equation (7). The bounds are functions of the extremal
eigenvalues of Wp

0o
b2

mðpÞp

� bT W � 1
p b � b2

mðpÞ1

o1: ð8Þ

The upper extreme of the control energy for any control action is
max EðpÞ


 �
� 1

mðpÞ1

, which is what we call the ‘worst-case’ energy.

For an arbitrary vector b, which can be represented as a linear
combination of the eigenvectors of Wp, the energy can be defined

as a weighted sum of the inverse eigenvalues, 1=mðpÞi , which
includes the worst-case energy. Moreover, for the large scale-free

networks that are of interest in applications, typically mðpÞ1 � mðpÞj ,

j¼ 2,y,p, and 1=mðpÞ1 provides the approximate order of the
energy required to move the system in any arbitrary direction of
state space. This is demonstrated with an example in
Supplementary Note 5.

We investigate how the selection of the target nodes affects
EðpÞmax, the inverse of the smallest eigenvalue of the output
Gramian. To better understand the role of the number of target
nodes on the worst-case energy, we consider an iterative process
by which we start from the case when every node is in the target
set, Pn ¼ V, and progressively remove nodes. Say mðiÞj ðm

ði� 1Þ
j Þ is

an eigenvalue of Wi before (after) removal of a target node. By
Cauchy’s interlacing theorem we have that

0omðiÞ1 � mði� 1Þ
1 � mðiÞ2 � . . . � mðiÞi� 1 � mði� 1Þ

i� 1 � mðiÞi : ð9Þ

In particular, from (9) we note that mðiÞ1 � mði� 1Þ
1 , indicating that

the smallest eigenvalue cannot decrease after removal of a target
node. This implies that the maximum energy EðiÞmax 	 Eði� 1Þ

max for
all i such that 1rirn� 1.

Energy scaling with reduction of target space. We would like to
determine the rate of increase of mðpÞ1 as p decreases, which is not
obvious from equation (9). At each step p, Pp contains p nodes in
the target set (such that Pp 
 Ppþ 1 and p decreases from n� 1 to
1) and the output controllability Gramian is partitioned such that
Wp is a principal minor of Wpþ 1.

Wpþ 1 ¼
wpp wT

p
wp Wp

� 
: ð10Þ

We let the matrix �Wp be the matrix Wpþ 1 except that the first
row of Wpþ 1 in equation (10) has been replaced with zeros, and
we define the vectors vpð�vpÞ to be the left (right) eigenvector
associated with the smallest eigenvalue of Wp ( �Wp). The relation

between two consecutive values, mðpÞ1 and mðpþ 1Þ
1 , can be expressed

linearly as mðpÞ1 ¼ mðpþ 1Þ
1 Zp, where Zp ¼ 1� vp½ �1 �vpþ 1½ �1

vT
p �vpþ 1

	 1. The

notation [a]1 denotes the first value of a vector a. Each value of Zp

exactly quantifies the rate of increase at each step of the specific

process and also relates the maximum energies Eðpþ 1Þ
max ¼ EðpÞmaxZp.

We can also relate any two target sets of size k and j such that
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1rkojrn and Pk 
 Pj

log EðjÞmax� log EðkÞmax ¼
Xj� 1

i¼k

log Zi ¼ ðj� kÞlog �Zðk!jÞ: ð11Þ

where �Zðk!jÞ is the geometric mean of Zi, i¼ k,y, (j� 1), which is
independent of the order of the nodes chosen to be removed
between Pk and Pj. To define a network characteristic parameter
Z, we average equation (11) over many possible choices of the
target sets Pk and Pj, where we have selected k¼ n/10 and j¼ n

Z � n log �Z n
10!nð Þ

D E
; ð12Þ

where the symbol h  i indicates an average over many possible
choices of n/10 nodes for the target set. By applying equation (12)
to equation (11) and by setting k¼ n/10 and j¼ p4k (for an
extended discussion see Supplementary Note 3), we achieve the
scaling equation used throughout the simulations

log EðpÞmax

D E
� p

n
Z: ð13Þ

The linear relationship is shown in Figs 2–4, where p/n is
decreased from 1 (the target set Pn ¼ V) to 0.1 (the target set
consists of 10% of the nodes drawn randomly from the set of all
nodes). Further details of the scaling law and its relation to the
spectral characteristics of the output controllability Gramian can
be found in Supplementary Note 3, and the practical calculation
can be found in the Methods section. For the simulations in
Figs 2–7, around 50% of the nodes are chosen to be input nodes
(which we have verified yields a controllable pair (A, B)).

The exponential decay of the energy as p/n decreases has
immediate practical relevance as it indicates that large networks,
which may require a very large amount of energy to fully
control27, will require much less even when a significant portion
of the network is controlled. However, the rate of this exponential
decrease, Z, is network-specific. We compute the value of Z for 50
scale-free model networks, constructed with the static model in
ref. 52 for specific parameters kav, the average degree, and
gin¼ gout¼ g, the power law exponents of the in- and out-degrees,
and take the mean over the realizations. We observe in Fig. 2 that
Z varies with both of the network parameters g and kav. A large
value of Z indicates that target control is highly beneficial for that
particular network, that is, the average energy required to control
a portion of that network is much lower when the size of the
target set is reduced. In Fig. 2a,b, the exponentially increasing
value of the worst-case energy EðpÞmax is shown with respect to the
size of the target set normalized by the size of the network, p/n,
for various values of gin¼ gout¼ g when kav¼ 2.5 and 8.0,
respectively. The bars in Fig. 2a,b are one s.d. over the 50
realizations each point represents, or in other words, when p
nodes are in the target set Pp, it is most likely that EðpÞmax will lie
between those bars. The decrease of Z as g and kav increase for
scale-free networks is displayed in Fig. 2c. Overall, we see that Z is
largest for sparse, non-homogeneous networks (that is, low kav

and low g), which are also the ‘hardest’ to control, that is, they
have the largest worst-case energy when all of the nodes are
targeted. This indicates that target control will be particularly
beneficial when applied to metabolic interaction networks and
protein structures, some of which are symmetric and which are
known to have low values of g (ref. 36), as seen in Fig. 2b, where
both classes of networks are shown to have large values of Z.

The effects other network parameters have on Z are examined
in Fig. 3. Figure 3a displays some sample curves for EðpÞmax for
shorter or longer values of (tf� t0), the time horizon. The inset
shows how Z increases as the time horizon (tf� t0) decreases. We
see that when (tf� t0) approaches zero from the right, Z increases
sharply, which shows the increased benefit of target control as the
time horizon is reduced. Figure 3b examines how EðpÞmax changes
for various numbers of input nodes (represented as a fraction of
the total number of nodes in the network). The inset collects
values of Z for different values of nd, which increases as the
number of input nodes is decreased. The role of the time
horizon28 and the number of input nodes27 on the control energy
have been discussed in the literature for the case in which all the
nodes were targeted.

Comparing the results between both panels in Fig. 3 and the
results in Fig. 2, we see that each parameter has more or less of an
effect on the control energy. Shortening the time horizon from
the nominal value tf¼ 1 (which was used in Fig. 2) by four orders
of magnitude doubled the value of Z. Decreasing the number of
input nodes from n/2 (the number used in Fig. 2) to only n/5 also
roughly doubled the value of Z. In comparison, increasing the
heterogeneity of the network, by decreasing the power-law
exponent g, from 3 to slightly larger than 2 increased Z 10- to
20-fold. Clearly the underlying topology, as described by the
power-law exponent, plays the largest role in determining (and
thus affecting) the control energy.
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Figure 2 | The variation of g with respect to model network parameters.

(a) The maximum control energy is computed for model networks

constructed with the static model and the Erdos–Renyi (ER) model while

varying the target node fraction. For the static model, four different power-

law exponents are used. The average degree of each model network is

kav¼ 2.5 and its size is n¼ 500. The input node fraction nd¼0.5, chosen

such that the pair (A, B) is controllable. Further aspects like edge weights

and values along the diagonal of the adjacency matrix are discussed in the

Methods section. Each set of target nodes is chosen randomly from the

nodes in the network. Each point represents the mean value of the control

energy taken over 50 realizations. The error bars represent one s.d. Note

the linear growth of the logarithm of the control energy. The slopes of these

curves are the values of Z corresponding to each set of parameters. A linear

fit curve is provided in grey. Also, as g grows, that is, the scale-free models

become more homogeneous, the slope approaches that of the Erdos–Renyi

model. (b) The same study as in a except that kav¼ 8.0. The same

behaviour is seen but note the difference in scales of the vertical axis. Each

point is the mean over 50 realizations, and error bars represent one s.d.

(c) The study in a and b is performed for more values of kav, and the value

of Z is computed for each curve.
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We also analyse data sets collected from various fields in
science and engineering to study how the worst-case energy
changes with the size of the target set for networks with more

realistic structures. We are particularly interested in the
possibility that these networks display different properties in
terms of their target controllability, when compared to the model
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Figure 3 | Energy scaling as time horizon and input node fraction are varied. Besides the average degree and power-law exponent that describe the

underlying graph of the network (Fig. 2), there are other parameters that can affect the control energy such as the time horizon and the number of

designated input nodes. (a) The time horizon, defined as tf� t0, is varied for networks constructed using the static model with the following properties:

n¼ 500; gin¼ gout¼ 3.0; kav¼ 5.0; and nd¼0.5. As we choose t0¼0, the time horizon is equivalent to just tf. The main plot shows how the log of the

maximum control energy changes with target node fraction, p/n. Each point represents the mean over 50 realizations, and error bars represent one s.d.

The inset shows how Z changes with the time horizon. We see a sharp increase as the time horizon decreases. (b) We also investigate how Z varies with

the number of input nodes. The same class of network is examined as in a: n¼ 500; gin¼ gout¼ 3.0; and kav¼ 5.0. For both simulations, nodes are randomly

and independently chosen to be in each target set. We see that Z grows as the number of input nodes decreases as shown in the inset.
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Figure 4 | Values of g for real data sets. (a) We compute the maximum control energy required for the s420st circuit network and the TM metabolic

network for increasing target node fraction, p/n. Each point represents the mean of 50 realizations where each realization is a specific choice of the nodes

in the target node set. Error bars represent one s.d. (b) The same analysis performed for the Carpinteria food web, the protein structure 1 network and a

Facebook forum network. Each point represents the mean of 50 realizations where each realization is a specific choice of the nodes in the target node set.

Error bars represent one s.d. For both a and b, the linear behaviour exists only when the target fraction increases beyond p/n¼0.1. (c) We numerically

compute values of Z for real data sets (compiled in Supplementary Table 1) for comparison when nd¼0.45 or larger. The values of Z are plotted against

each network’s average degree as the degree distribution that best describes the degree sequence may or may not be scale-free. Nonetheless, we see a

similar trend that low average-degree networks have a larger value of Z, as demonstrated in Fig. 2c. Also worth noting is that networks from the same class

(as defined in the legend) tend to have similar values of Z.
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Figure 5 | DPR of real networks. Probability density functions (PDF) of the distribution of Z for a selection of real networks that have undergone DPR and

nd¼0.45. (a) RHS59 from social. (b) s420st (ref. 53) from circuit. (c) TP-met54 from metabolic. (d) North Euro Grid60 from infrastructure.

(e) Carpinteria55 from Food Web. (f) Each of the corresponding P values are listed in the table. The vertical lines mark the value of Zreal, which corresponds

to the original network.
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Figure 6 | Average energy for increasing state weight matrices. We

demonstrate that for both model networks and real data sets, increasing z
(where the state weight matrix, Q¼ zIn), does not significantly increase the

average energy. (a) The static model is used to generate model networks

with parameters n¼ 300 and kav¼ 5.0, where nd¼0.5. Note that the order

of magnitude, here represented as a linear scale with respect to the

logarithm of the energy, is approximately constant. Each point is averaged

over 50 iterations of model networks and final desired states, which have

Euclidean norm equal to one. (b) Two real networks are also examined and

the average energy is computed. Each point is the mean over 50

realizations where each realization represents a choice of final condition

such that the final condition has Euclidean norm equal to one. For both

studies, error bars represent one s.d.
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Figure 7 | Energy reduction for increasing state weight matrices. We

construct a single model network using the static model52 with the

parameters n¼ 300, nd¼ n/4, g¼ 2.7 and kav¼ 5. The energy scaling is

examined for the general quadratic cost function. We compute Z for

different values of z such that the state weight matrix Q¼ zIn. The values of

Z for z¼0, 1 and 10 are Z¼ 13.46, 13.66 and 13.53, respectively. Each point

is averaged over 50 iterations of target node sets. The simulations are

performed with initial condition set to the origin and the final condition

chosen randomly such that ||yf||¼ 1. Error bars represent one s.d.
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networks analysed. To this end, we consider different classes of
networks, for example, food webs, infrastructure, metabolic
networks, social interactions and so on. The name, source and
some important properties of each of the data sets are collected in
Supplementary Note 8. For each network we choose edge weights
and diagonal values from the uniform distribution as discussed in
the Methods section below. Overall, we see a similar relationship
in terms of the average degree kav and Z in Fig. 4c as for the model
networks in Fig. 2c. The real data sets that have a large worst-case
energy when all of the nodes are targeted, EðnÞmax, tend to also have
the largest value of Z, which acts as a measure of the rate of
improvement with target control. It should be noted that the
value of Z varies little within each class of networks (for example,
food webs, infrastructure, metabolic networks, social interactions
and so on as seen in Fig. 4c), which suggests that the structure of
each class is similar. Fields of study where networks tend to have
a large Z would benefit the most from examining situations when
a control law could be implemented that only targets some of the
elements in the network.

For an arbitrary network, Z cannot be accurately determined
from a single value of EðpÞmax. Some networks, which have a large
worst-case energy when every node is targeted, can have a much
smaller worst-case energy when only a small portion of the
network is controlled as compared to other networks. It is
interesting to note from Fig. 4a,b that at some target fraction p/n
the energy trends of two different real networks may cross.
Specifically, in Fig. 4a, when every node is targeted, p/n¼ 1, the
s420st (ref. 53) circuit has a larger maximum energy, EðnÞmax, than
the TM-met54 metabolic network. However, when p/n is smaller
than 0.6, it requires, on average, more energy to control a portion
of the TM-met network than an equivalent portion in the s420st
network. The same type of behaviour is seen in Fig. 4b between
three networks: Food web Carpinteria55, a protein interaction
network prot_struct_1 (ref. 53) and social network Facebook
forum56. In summary, we can see that one can estimate the value
of Z from the average degree of the network but to determine the
worst-case energy, at least one point along the energy curve for a
specific cardinality of the target set is also required (as in
Fig. 4a,b).

Figure 5 shows a comparison for several real networks between
the value of Z of each original network and the values of Z for an
ensemble of networks that have been generated by randomly
rewiring each real network’s connectivity while preserving the
degrees of its nodes (see Methods). We see that for all the real
networks examined, their value of Z is larger than the values of Z
obtained for the randomized versions to a statistically significant
level. We conclude that the potential advantage of applying target
control to real networks is higher than for networks derived from
random connections such as the static model52, which we have
used to construct our model networks.

We compute the energy for the control input u�c ðtÞ. The
control consists of two parts, u�c1ðtÞ that is proportional to the
states and u�c2ðtÞ that is of a similar form to equation (3).

EðpÞc ¼
Z tf

t0

u�c1ðtÞþ u�c2ðtÞ
� �T

u�c1ðtÞþu�c2ðtÞ
� �

dt

¼
Z tf

t0

u�Tc1 ðtÞu�c1ðtÞþ 2u�Tc1 ðtÞu�c2ðtÞ
� �

dt

þ
Z tf

t0

u�Tc2 ðtÞu�c2ðtÞdt:

ð14Þ

Note that the integral in the third line of equation (14), when
R¼ Im, is the quadratic form ~bT ~W � 1

p
~b, which scales exponen-

tially with the cardinality of the target set. The other two terms

are functions of the state trajectory, which are not appreciably
altered by the number of targeted nodes. We thus expect to see
similar energy scaling behaviour for the cost function
equation (4) with QaOn� n and MaOn�m.

In some applications a cost applied to the states may be
beneficial as it will substantially alter the state trajectories (see the
example in Supplementary Note 4). In the following simulations,
to restrict the number of variables we consider, the mixed-term
weight matrix M¼On�m and the state weight matrix Q¼ zI, that
is, a diagonal matrix with constant real value, z, on the diagonal.
In Fig. 6a model networks are considered of different scale-free
exponents g. In Fig. 6b, the real networks IEEE 118 bus test grid
(https://www.ee.washington.edu/research/pstca/pf118/pg_tca118-
bus.htm) and Florida everglades foodweb (http://vlado.fmf.uni-
lj.si/pub/networks/data/) are optimally controlled with respect to
the cost function in equation (4), and the approximate maximum
energy (computed by numerically integrating equation (4)) is
determined for increasing values of the scalar z. As z increases in
Fig. 6a,b, each point along the curve is of approximately the same
order of magnitude. As z is varied, the order of magnitude of the
maximum energy does not change substantially, and mainly
depends on the triplet (A, B, C) without much effect by the
matrix Q.

Finally, we offer evidence to connect the energy scaling law
derived for the minimum energy optimal control problem to the
energy scaling apparent for the control signal that arises in the
solution of the general quadratic cost function, equation (4).
Figure 7 shows that not only does the order of magnitude of the
maximum energy not change significantly but also the rate of
increase, Z, of the maximum energy does not change significantly
with respect to the size of the target set either. We compute Z, the
energy scaling, for a single model network while we increase the
state weight cost matrix defined as the diagonal matrix Q¼ zIn.
This suggests that if Z is computed for a network with respect to
the minimum energy formulation, it can be used to approximate
Z when the cost function is quadratic with respect to the states as
well.

Discussion
This paper discusses a framework to optimally control a portion
of a complex network for assigned initial conditions and final
conditions, and given the sets of input nodes and target nodes.
We provide an analytic solution to this problem in terms of a
reduced Gramian matrix Wp, where the dimensions of this matrix
are equal to the number of target nodes one attempts to control.
We show that for a fixed number of input nodes, the energy
required to control a portion of the network decreases
exponentially with the cardinality of the target set, so even
controlling a significant number of nodes requires much less
energy than when every node is targeted. The energy reduction,
expressed as the rate Z, is largest for networks that are
heterogeneous (small power-law exponent g in a scale-free degree
distribution) and sparse (small kav), with a short time horizon and
fewer control inputs. The control of these networks typically has
especially large control energy demands. Thus, target control is
most beneficial for those networks that are most difficult to
control. From the simulations that we have performed on model
networks, we have seen that the effect each of these parameters
has is not equal. The control energy required is most dependent
on the underlying structure of the network, which we see can
increase Z by as much as 20 times holding all other parameters
constant. Adjusting the time horizon over multiple orders of
magnitude, or reducing the number of input nodes from 50% to
20% doubled the value of Z, which is a comparatively small
increase.
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The potential applications for developing target controls are
numerous, from local jobs among networked robots to economic
policies designed to affect only specific sectors. We see that data
sets from the literature in many fields also experience the reduced
energy benefits from target control. The networks that describe
metabolic interactions and protein structures have some of the
largest values of Z suggesting target control would be the most
beneficial in those fields.

We have also considered a linear-quadratic optimal control
problem (in terms of the objective function (4)) applied to
dynamical complex networks. We show that the scaling factor Z
for a network with control parameters nd and tf remains nearly
the same whether the control is optimal with respect to the
minimum energy control input as in equation (3) or is optimal
with respect to the quadratic cost function as in equation (5). The
observed decrease of the control energy over many orders of
magnitude indicates a strong potential impact of this research in
applications where control over the entire network is not
necessarily required.

Methods
Model networks. In our analyses, similar to ref. 27, we assume the networks have
stable dynamics. The scale-free model networks we consider throughout the paper
and the Supplementary Information are constructed with the static model52. The
Erdos–Renyi graphs represent the static model when the nodal weights are all the
same, that is, when the power-law exponent approaches infinity. Edge weights are
chosen from a uniform distribution between 0.5 and 1.5. Unique values, di, are
included, drawn from a uniform distribution between� 1 and 1 so that the
eigenvalues of the adjacency matrix are all unique. The weighted adjacency matrix
A is stabilized with a value e such that each diagonal value of A is {aii}¼ diþ e,
where i¼ 1,y, n. The value e is chosen such that the maximum eigenvalue of A is
equal to � 1. The matrix B is constructed by choosing which nodes in the network
require an independent control signal. The matrices B (C) are composed of m (p)
versors as columns (rows). The controllability Gramian, Wp, can be calculated as a
function of the eigendecomposition of the state matrix A¼VLV� 1

Wp ¼ CV Y � V � 1BBT V �T
� �

VT CT ; ð15Þ
where the notation V�T denotes the transpose of the inverse of a matrix V and the
� operator denotes the direct product. Note that V must be invertible (so that A is
diagonalizable), that is, the eigenvectors of A must span Rn . The matrix Y has
elements

Yij ¼
exp ðli þ ljÞðtf � t0Þ
� �

� 1
li þ lj

: ð16Þ

Note that the uniqueness and negative definiteness of the eigenvalues ensure that
Yij is finite for every i, j¼ 1,y, n, that is, liþ lja0, and the set of eigenvectors of A
are linearly independent and thus the inverse of V exists.

Choosing input nodes. When determining the set of input nodes that guarantees
network controllability, often the methods presented in ref. 6, derived from
structural controllability, are applied. As the networks we are concerned with have
unique diagonal elements in the adjacency matrix, structural controllability states
that the network can be controlled with a single control input attached to every
node in the network (see theorem 1 and proof in ref. 38). Cowan et al.38 consider
an adjacency matrix with unique diagonal elements along the main diagonal and
state that this type of matrix can be controlled with a single control input attached
to the power-dominating set (PDS) of the underlying graph. The PDS is the
smallest set of nodes from which all other nodes can be reached, that is, there is at
least one directed path from the nodes in the PDS to every other node in the
network. In the work presented here, different from ref. 38, we compute an
overestimate of the PDS (that retains the property that all other nodes in the
network are reachable) and attach a unique control input to each node in the set.
We then add additional nodes, chosen randomly, to the set of input nodes until
there are m input nodes where m is a predefined integer less than n. Thus, if there
are m input nodes, then there are m control inputs (see the sample network in
Fig. 1a).

Practical computation of g. Here we provide additional details on how Figs 2–4,
which show the exponential scaling of the energy with respect to the cardinality of
the target set, were generated. For large networks, computing the mean over all
possible sets of target nodes is computationally expensive. Instead, we approximate
Z by computing the mean value of log EðpÞmax for some sample values of p, p¼ n/10,
2n/10,y,n by randomly choosing p nodes to be in a target set and computing the
inverse of the smallest eigenvalue of Wp. In each of the simulations, we compute
the mean and s.d. of the logarithm of the smallest eigenvalue of Wp for typically

50 iterations. By plotting the values of log EðpÞmax

D E
, we see that a linear model is

appropriate and we compute a linear least-squares best fit for the data. The linear
curve fit provides a good approximation of log EðpÞmax as shown in Figs 2–4.

Degree-preserving randomization. To test whether the value of Z measured for
the real networks is a function of just the average degree, kav, and the degree
distribution (scale-free, exponential and so on) or if there are other factors that play
a role, we measure Z for randomized versions of the real networks. We use degree-
preserving randomization (DPR) to ensure that the randomized real network has
the same average degree and the same degree sequence. The randomization
‘rewires’ the edges of the network by randomly choosing two edges and swapping
the receiving nodes. The process is repeated for an allotted amount of iterations
until the networks are sufficiently rewired. We compare each real network with its
rewired counterparts in terms of their measured values of Z. We see in every case
that Zreal, the value of Z that corresponds to an original network derived from a data
set listed in Supplementary Table 1, deviates significantly from the distribution of Z
for the DPR networks. The corresponding P values are listed in Fig. 5. The disparity
indicates that the real networks have special network features unaccounted for in
the randomly rewired versions. Furthermore, because for all cases Zreal is greater
than any Z obtained from the DPR networks, our target strategies are more ben-
eficial for the original networks.

Numerical controllability. Recent literature on the control of complex networks
has discussed the importance of recognizing the differences between theoretically
controllable networks and numerically controllable networks. The issue arises in
Gramian-based control schemes as the condition number of the Gramian can be
quite large for certain ‘barely’ controllable systems, that is, ones where the control
inputs only just satisfy analytic controllability measures. Sun and Motter57 found a
second phase transition after a system (A, B) becomes analytically controllable,
named the numerical controllability transition. While we acknowledge the
importance of recognizing the second transition, for this article, we opt to use
multi-precision so we can examine trends even when there is a relatively small
number of control inputs, which would otherwise make some networks be not
numerically controllable using double precision. Here, the Matlab toolbox
Advanpix58 allows the computation of the eigendecomposition of the Gramian W
to be performed in an arbitrarily precise manner. Say mi and vi are the ith
eigenvalue and eigenvector of W, respectively. The average residual error, using
Advanpix, is

Wvi �mivij jh i ¼ Oð10� aÞ ð17Þ

Typical values of a used throughout this paper are 100–200.
We also use Advanpix when computing the energy for the general quadratic

cost function in equation (14). To approximate the integral, we use Legendre–
Gauss (LG) quadrature with appropriate weights and points.

EðpÞc ¼
Z tf

t0

u�Tc ðtÞu�c ðtÞdt � tf � t0

2

XL

i¼1

wiu
�T
c ðtiÞu�c ðtiÞ: ð18Þ

We choose L¼ 50 and compute the necessary LG weights wi and LG points ti,
i¼ 1,y, 50.

Data availability. The codes used to obtain the results in this study are available
from the authors on reasonable request.
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