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Abstract

In this paper we analyzed, by the FDFA root mean square fluctuation (rms) function, the

motor/imaginary human activity produced by a 64-channel electroencephalography (EEG).

We utilized the Physionet on-line databank, a publicly available database of human EEG

signals, as a standardized reference database for this study. Herein, we report the use of

detrended fluctuation analysis (DFA) method for EEG analysis. We show that the complex

time series of the EEG exhibits characteristic fluctuations depending on the analyzed chan-

nel in the scalp-recorded EEG. In order to demonstrate the effectiveness of the proposed

technique, we analyzed four distinct channels represented here by F332, F637 (frontal

region of the head) and P349, P654 (parietal region of the head). We verified that the ampli-

tude of the FDFA rms function is greater for the frontal channels than for the parietal. To tabu-

late this information in a better way, we define and calculate the difference between FDFA

(in log scale) for the channels, thus defining a new path for analysis of EEG signals. Finally,

related to the studied EEG signals, we obtain the auto-correlation exponent, αDFA by DFA

method, that reveals self-affinity at specific time scale. Our results shows that this strategy

can be applied to study the human brain activity in EEG processing.

Introduction

The electroencephalogram (EEG) is generally an noninvasive method to record electrical activ-

ity of the brain. EEG machine is composed of electrodes, which are placed on the scalp to

detect the brain waves [1]. Most EEG machines amplify the signals and records on computer

by European Data Format (EDF) file. The EEG measurement is the voltage fluctuations, and

with this measure it is possible to diagnose tumors, stroke, epilepsy, and other brain disorders

which leads to some abnormalities in EEG readings. Despite the spatial resolution limitations,

EEG remains a valuable tool for research and diagnosis, especially when a time resolution

interval of milliseconds is required (which is not possible with computed tomography or mag-

netic resonance imaging) [2, 3]. See [4] for history of EEG. Therefore, in the last two decades,

emerges the field of Brain-Computer Interface (BCI) [5], providing communication and
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control capabilities to people with severe motor inability. Hence, the typical BCI system is

built for one particular method and is not adjusted to others. In view of this limitation [6, 7]

implemented a platform called BCI2000 [8], a general-purpose software system for BCI

research. Thus, from BCI2000 system and the full documentation presented in [9], we down-

load and analyzed, as we will see below, data of subjects performed different motor/imagery

Tasks in 64-channel EEG, Fig 1.

Here, each subject performed 14 experimental runs: two one-minute baseline (one with

eyes open, one with eyes closed), and three two-minute of the following Tasks [9]:

Fig 1. (Color on-line) Setup for EEG channels: 64 electrodes as per the international 10-20 system

(excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10). The specific points (full circle

in red) (F332, F637, P349, P654) identify the channels used in this paper.

https://doi.org/10.1371/journal.pone.0183121.g001
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• Task 1 a target appears on either the left or the right side of the screen. The subject opens

and closes the corresponding fist until the target disappears. Then the subject relaxes. (Real

(L/R));

• Task 2 a target appears on either the left or the right side of the screen. The subject imagines

opening and closing the corresponding fist until the target disappears. Then the subject

relaxes. (Imag (L/R));

• Task 3 a target appears on either the top or the bottom of the screen. The subject opens and

closes either both fists (if the target is on top) or both feet (if the target is on the bottom)

until the target disappears. Then the subject relaxes. (Real (T/D));

• Task 4 a target appears on either the top or the bottom of the screen. The subject imagines

opening and closing either both fists (if the target is on top) or both feet (if the target is on

the bottom) until the target disappears. Then the subject relaxes. (Imag (T/D)).

In summary, see Table 1:

Based on these Tasks and given that usually the diagnostic of EEG focus on the spectral con-

tent, like a Fourier analysis, we analyzed the brain activity of 10 subjects in three experiments,

by DFA method, randomly chosen in [9]. Our focus was only in four channels, represented in

the Fig 1, by specific points (full circle in red) in the brain: (i) F332 located in the frontal region,

left hemisphere; (ii) F637 located in the frontal region, right hemisphere; (iii) P349 located in

the parietal region, left hemisphere; (iv) P654 located in the parietal region, right hemisphere.

These points were selected because, as you know, the left side of the brain is responsible for

controlling the right side of the body, and performs tasks that have to do with logic. On the

other hand, the right hemisphere coordinates the left side of the body, and performs tasks that

have do with creativity. Already the parietal lobe, integrates sensory information, including

spacial sense and navigation [10, 11]. Thus, we can cross the four channels (hemispheres) in

attempt to analyze the EEG, by FDFA rms function and the αDFA exponent. This is a new meth-

odology of EEG analysis, where interesting results can be seen and easily applicable in subse-

quent studies, as we will see below.

Materials and methods

0.1 Database

The time series were analyzed by DFA method from the database available in https://

physionet.org/pn4/eegmmidb/. We selected randomly ten subjects in this database, that are:

S020, S029, S043, S046, S050, S051, S060, S071, S086, and S099. Each subject performed three

experiments for a defined Task (see Table 1). The data are provided in EDF+ format (contain-

ing 64 EEG signals, at 160 samples per second, and an annotation channel). The variable mea-

sured by the EEG device is the electrical voltage on scalp, with amplitude quite small in units

of microvolts (μV). Fig 2 presents an example of these time series for the channels F332, F637,

P349, and P654.

Table 1. 14 experimental runs for each subject: Two one-minute baseline (eyes open/closed) and

three two-minute of four Tasks.

1 eyes open 2 eyes closed - -

3 Task 1 4 Task 2 5 Task 3 6 Task 4

7 Task 1 8 Task 2 9 Task 3 10 Task 4

11 Task 1 12 Task 2 13 Task 3 14 Task 4

https://doi.org/10.1371/journal.pone.0183121.t001
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0.2 DFA method

In order to analyze the EEG time series, we briefly present the DFA method [12], which

involves the following steps:

1. Consider a correlated signal intensity, u(i) (EEG signal), where i = 1, . . ., Nmax, and Nmax is

the total number of points in the time series. We integrate the signal u(i) and obtain

yðkÞ ¼
Pk

i¼1½uðiÞ� < u >�, where <u> is the average of u;

2. The integrated signal y(k) is divided into boxes of equal length n (time scale);

3. For each n-size box, we fit y(k), using a polynomial function of order l, which represents the

trend in the box. The y coordinate of the fitting line in each box is denoted by yn(k), since

we use a polynomial fitting of order l, we denote the algorithm as DFA-l;

4. The integrated signal y(k) is detrended by subtracting the local trend yn(k) in each box (of

length n);

5. For a given n-size box, the FDFA(n) root mean square fluctuation (rms) function for this

integrated and detrended signal is given by

FDFAðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nmax

XNmax

k¼1

½yðkÞ � ynðkÞ�
2

s

; ð1Þ

6. The above computation is repeated for a broad range of scales (n-sizes box) to provide a

relationship between FDFA(n) and the box size n, characterized by a power-law

Fig 2. (Color on-line) Original time series of the EEG signal. Channels (a) F332 and (b) F637 represent

the frontal region of the brain, and (c) P349 and (d) P654 represent the parietal region. These time series

correspond to the subject S020 at the Task 1 (open and close left or right fist).

https://doi.org/10.1371/journal.pone.0183121.g002
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FðnÞ � naDFA . In this way, αDFA is the scaling exponent, a self-affinity parameter represent-

ing the long-range power-law correlation properties of the signal, such as [13], see Table 2:

The advantages of DFA over many others methods are that it permits the detection of long-

range correlations embedded in seemingly non-stationary time series, and also avoids the spu-

rious detection of apparent long-range correlations, that are an artifact of non-stationarity

[14, 15]. The obtained exponent is similar to the Hurst exponent [16], except that DFA may

also be applied to signals whose underlying statistics (such as mean and variance) or dynamics

are non-stationary [17–20]. See the papers [19, 21–24], for which DFA and EEG were applied.

One motivation for estimating αDFA, or the root mean square fluctuation FDFA(n), lies in

the fact that these measures may potentially be used to classify or discriminate between differ-

ent types of EEG signals, like we can see in Fig 2. Thus, characterized by the fact that at specific

time scales the signal have the same type of behavior (self-affinity, see Figs 3 and 4), we can

define (crossing these behaviors) the limit of the variability transition in the EEG signals [25].

Anyway, FDFA(n) was conceived as a method for detrending local variability in a sequence of

events, and hence providing insight into long-term variations in the data sets. With the DFA

method it is possible to remove trends that often exist in the EEG, and estimate the scaling

from a wider range.

Results

Every time series of EEG motor/imaginary experience has approximately 2min (Nffi 20,000

points) with Δt = 0.00625s, for Task {1, 2, 3, 4} and three times repeated, see Table 1. Fig 2 pres-

ents an example of the original EEG signal in the Task 1 (a target appears on either the left or

the right side of the screen. The subject opens and closes the corresponding fist until the target

disappears. Then the subject relaxes. (Real (L/R))). In this figure, we can not see clearly which

channels are the ones with the greatest amplitude, but with FDFA it is simple and possible, as

will see below.

For our analysis we selected randomly ten subjects from the Physionet on-line database:

S020, S029, S043, S046, S050, S051, S060, S071, S086, and S099. After, we calculated FDFA for

every specific Task. Fig 3 (Real/Imaginary (L/R)) and Fig 4 (Real/Imaginary (T/D)) shows

FDFA × n (a and b) for all four Tasks and for S020, as an example,.

In the Figs 3 and 4 (c and d) we present a new function, defined as the difference logFDFA

between the channel F332 with the others:

DlogF32;xx � logFDFA� 32
� logFDFA� xx ð2Þ

Therefore, ΔlogF32;xx give us information about the relative intensity of the rms fluctuation

function, that is, if:

Table 2. Information about DFA exponent.

exponent type of signal

αDFA < 0.5 anti-persistent

αDFA’ 0.5 uncorrelated, white noise

αDFA > 0.5 long-range correlated persistent

αDFA’ 1 1/f noise

αDFA > 1 non-stationary

αDFA’ 3/2 Brownian noise

https://doi.org/10.1371/journal.pone.0183121.t002
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• ΔlogF32;xx > 0, the amplitude of the rms fluctuation function about the channel F332, in rela-

tion of the channel xx, is larger;

• ΔlogF32;xx = 0, the amplitude of the rms fluctuation function about the channel F332, in rela-

tion of the channel xx, is zero;

• ΔlogF32;xx < 0, the amplitude of the rms fluctuation function about the channel F332, in rela-

tion of the channel xx, is smaller.

Now, taking into account all experiments, tasks, and subjects, initially as a result we calcu-

lated the FDFA, observing if there is or not a power-law FðnÞ � naDFA for these EEG time series.

We observe that FDFA(n) does not appear as a single power-law (see [25]), but we can identify

three behaviors (slope in the time scale range), like FDFA(n)/ nα(i), with i = 1, 2, 3 (see Figs 3

and 4 vertical lines), where:

• i = 1, 4� n� 90, with α1;

• i = 2, 91� n� 655, with α2;

• i = 3, n> 655, with α3.

For example, one visible transition is around n = 656 (t = 4.1s), corresponding here to a

time between two rests in the experiments.

In possession of this information for every subject in their four Tasks, in all three experi-

ments, we calculated the mean value of α’s (in a specific time scale) for the channels F332, F637,

P349, and P654, and we place these values at the Table 3.

Fig 3. (Color on-line) FDFA in function of n for S020 experiment 1 for (Left/Right): (a) Real and (b) Imaginary

case. Black line represents F332, red line F637, blue line P349, and green line P654. Also, the figures below

show the difference ΔlogF32;xx, defined by Eq 2, between the channels for the above function FDFA: (c) Real

and (d) Imaginary case. Here, ΔlogF32;37 (�), ΔlogF32;49 (4), and ΔlogF32;54 (*).

https://doi.org/10.1371/journal.pone.0183121.g003
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At the end of the Table 3 we present the global average value of αDFA for the following Task:

(Real (Left/Right)), (Imag (Left/Right)), (Real (Top/Down)), and (Imag (Top/Down)). These

exponents clearly are time dependent, with specific value. For example:

• time scale 1 has αDFA > 1 (representing a non-stationary case);

• time scale 2 has αDFA ’ 1 (representing a 1/f noise) and;

• time scale 3 has αDFA ⋍ 0.5 (representing a random case).

We noticed that, αDFA is independent of the Task performed by the subject, see Fig 5 for

better visualization.

However, our main objective was to measure the ΔlogF32;xx, to compare the brain activities

between the hemispheres (left/right and frontal/parietal). Figs 3 and 4 showed preliminary

results of this study, with ΔlogF32;xx in function of n, and interesting things can be observed.

We can identify that:

DlogF32;49 > 0;

DlogF32;54 > 0; and

DlogF32;37 ’ 0:

This analysis shows the greater prevalence in amplitude of the frontal channels in relation to

the parietal channels, for this Task. The maximum of ΔlogF32;49, ΔlogF32;54 is found in n’ 90

(t = 0.56s), and the Fig 6 presents the global average of the rms fluctuation function.

Fig 4. (Color on-line) FDFA in function of n for S020 in the experiment 1 for (Top/Down): (a) Real and (b)

Imaginary case. Black line represents F332, red line F637, blue line P349, and green line P654. Also, the

figures below show the difference ΔlogF32;xx, defined by Eq 2, between the channels for the above function

FDFA: (c) Real and (d) Imaginary case. Here, ΔlogF32;37 (�), ΔlogF32;49 (4), and ΔlogF32;54 (*).

https://doi.org/10.1371/journal.pone.0183121.g004
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Table 3. Mean values of αDFA for all experiments (three). First column represents the subjects, and their respective Task. The remaining columns repre-

sents the analyzed channels. Time scale represent the range for DFA analysis of αDFA(n) (slope): α1 in time scale 1, α2 in time scale 2, and α3 in time scale 3.

Last line show the mean value of the columns for: Real (L/R), Imag (L/R), Real (T/D), Imag (T/D).

Channel 32 37 49 54

Time scale 1 2 3 1 2 3 1 2 3 1 2 3

20 Real (L/R) 1.36 0.90 0.45 1.40 0.97 0.49 1.12 1.02 0.41 1.14 1.21 0.47

Imag (L/R) 1.00 0.87 0.50 1.35 0.87 0.50 1.08 1.10 0.52 1.10 1.09 0.43

Real (T/D) 1.33 1.16 0.43 1.39 1.18 0.46 1.15 1.29 0.48 1.18 1.35 0.49

Imag (T/D) 1.35 1.01 0.54 1.40 1.27 0.51 1.08 1.04 0.46 1.08 1.22 0.59

29 Real (L/R) 0.97 1.31 0.31 1.33 1.31 0.33 0.97 1.31 0.31 1.14 1.31 0.31

Imag (L/R) 1.13 1.19 0.33 0.97 0.97 0.40 0.97 1.19 0.40 0.89 1.19 0.40

Real (T/D) 1.18 1.14 0.24 1.07 1.19 0.45 1.02 1.37 0.32 0.95 1.39 0.29

Imag (T/D) 0.95 1.30 0.24 0.95 0.99 0.24 0.95 1.39 0.24 0.95 1.39 0.24

43 Real (L/R) 1.09 1.08 0.65 0.96 0.93 0.96 1.09 1.17 0.65 1.07 1.08 0.56

Imag (L/R) 1.29 0.94 0.44 1.29 0.94 0.44 0.96 1.12 0.60 0.87 1.08 0.58

Real (T/D) 1.29 0.99 0.48 1.21 0.99 0.45 1.05 1.12 0.48 1.05 1.11 0.49

Imag (T/D) 1.11 0.97 0.49 0.98 0.97 0.41 1.11 1.17 0.49 1.06 1.06 0.46

46 Real (L/R) 1.18 0.97 0.56 1.18 1.01 0.56 1.18 1.01 0.56 0.93 1.01 0.56

Imag (L/R) 1.14 0.91 0.35 1.14 0.91 0.35 1.09 1.04 0.32 1.01 1.01 0.56

Real (T/D) 1.26 0.90 0.40 1.26 0.90 0.40 1.01 1.02 0.39 1.01 1.02 0.39

Imag (T/D) 1.29 0.74 0.43 1.29 0.74 0.43 1.17 0.88 0.49 1.17 0.88 0.49

50 Real (L/R) 1.10 0.81 0.48 0.97 0.81 0.43 0.94 1.01 0.51 0.95 0.88 0.50

Imag (L/R) 0.98 0.99 0.55 0.86 0.94 0.45 0.90 1.01 0.55 0.92 0.84 0.52

Real (T/D) 1.01 0.89 0.43 0.90 0.91 0.48 0.89 0.94 0.49 0.90 0.81 0.52

Imag (T/D) 1.08 0.85 0.41 0.94 0.88 0.38 0.94 0.97 0.43 0.95 0.89 0.45

51 Real (L/R) 1.40 0.82 0.40 1.44 0.86 0.38 1.16 0.95 0.65 1.17 0.96 0.53

Imag (L/R) 1.41 0.80 0.34 1.46 0.80 0.38 1.19 0.97 0.57 1.20 1.01 0.55

Real (T/D) 1.44 0.81 0.37 1.47 0.79 0.36 1.21 0.95 0.60 1.21 0.96 0.59

Imag (T/D) 1.45 0.77 0.58 1.49 0.76 0.54 1.25 0.99 0.82 1.23 1.01 0.91

60 Real (L/R) 1.22 1.01 0.69 1.19 0.92 0.68 0.99 1.18 0.85 1.01 1.21 0.90

Imag (L/R) 1.12 1.08 0.86 1.09 0.96 0.76 0.92 1.26 0.89 0.94 1.32 0.91

Real (T/D) 1.06 1.01 0.75 1.08 0.92 0.73 0.86 1.22 0.80 0.85 1.30 0.85

Imag (T/D) 1.16 1.08 0.70 1.16 0.96 0.70 0.90 1.21 0.79 0.94 1.25 0.85

71 Real (L/R) 0.94 1.05 0.54 0.94 1.08 0.51 0.88 1.06 0.55 0.93 1.07 0.57

Imag (L/R) 0.94 1.13 0.65 0.93 1.07 0.51 0.89 1.03 0.55 0.93 1.04 0.59

Real (T/D) 0.87 1.08 0.61 0.93 1.07 0.52 0.92 1.03 0.52 0.92 1.08 0.58

Imag (T/D) 0.93 1.05 0.94 0.94 1.07 0.50 0.88 1.06 0.55 0.93 1.06 0.56

86 Real (L/R) 1.36 0.88 0.50 1.39 0.81 0.53 1.15 0.98 0.57 1.15 1.03 0.49

Imag (L/R) 1.38 0.75 0.49 1.39 0.77 0.48 1.19 0.87 0.48 1.21 0.91 0.44

Real (T/D) 1.36 0.87 0.48 1.39 0.88 0.53 1.14 1.04 0.49 1.17 1.06 0.48

Imag (T/D) 1.36 0.85 0.46 1.37 0.84 0.50 1.17 0.96 0.49 1.18 0.96 0.51

99 Real (L/R) 0.82 0.87 0.18 0.92 0.87 0.18 0.79 1.12 0.21 0.82 1.30 0.18

Imag (L/R) 0.84 0.88 0.21 0.99 0.86 0.19 0.79 1.08 0.18 0.82 1.27 0.15

Real (T/D) 0.84 0.80 0.25 0.98 0.85 0.17 0.81 0.96 0.22 0.81 1.19 0.19

Imag (T/D) 0.90 0.78 0.18 1.04 0.77 0.25 0.82 0.97 0.23 0.85 1.21 0.17

mean Real (L/R) 1.14 0.97 0.48 1.17 0.96 0.51 1.03 1.08 0.53 1.03 1.11 0.51

Imag (L/R) 1.12 0.95 0.47 1.15 0.91 0.45 1.00 1.07 0.51 0.99 1.08 0.51

Real (T/D) 1.16 0.97 0.44 1.17 0.97 0.46 1.01 1.09 0.48 1.01 1.13 0.49

Imag (T/D) 1.16 0.94 0.50 1.16 0.93 0.45 1.03 1.06 0.50 1.03 1.09 0.52

https://doi.org/10.1371/journal.pone.0183121.t003
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Fig 5. (Color on-line) Mean values of αDFA for all subjects in all Tasks: (a) Real (L/R), (b) Imag (L/R), (c)

Real (T/D), and (d) Imag (T/D) Tasks. The symbol (□) represents time scale 1, (�) time scale 2, and (4) time

scale 3.

https://doi.org/10.1371/journal.pone.0183121.g005

Fig 6. (Color on-line) Mean value ofΔlogF32;xx between the channel F332 and others three. Every curve

represent the difference between F332 and: (�) F637, (4) P349, and (*) P654.

https://doi.org/10.1371/journal.pone.0183121.g006
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If we remember what means ΔlogF32;xx, Eq 2, then we clearly see that the channels P349 and

P654 have a smaller fluctuation if we compare with channel F332, and the maximum of this dif-

ference is around n = 90 (t = 0.56s). The difference between F332 and F637 is approximately

zero, but with a slight negative level. This result shows that the channel F637 has a higher value

for FDFA rms function. But, for n’ 15 the amplitude in relation to channel F332 had the same

magnitude, because ΔlogF32;37’ 0.

Discussion

In this paper we studied how the amplitude of the rms fluctuation function, FDFA, behaves in a

64 channels EEG, taken for 10 subject in different tasks (motor/imaginary). In this sense, in a

logical way, we analyzed how the cerebral hemispheres left/right (frontal) and left/right (parie-

tal) are related. As you know, the left side of the brain is responsible for controlling the right

side of the body. It also performs tasks that have to do with logic. On the other hand, the right

hemisphere coordinates the left side of the body, and performs tasks that have to do with crea-

tivity. Already the parietal lobe, integrates sensory information, including spacial sense and

navigation. The major sensory inputs from the skin (touch, temperature, and pain receptors),

relay through the thalamus to the parietal lobe. Also, areas of the parietal lobe are important in

language processing.

Thus, by the motor/imaginary experience presented here, where the subjects perform activ-

ities that are not related with the parietal lobe, we expect to find a greater activity in the frontal

channels. And even more, how does this happen in time scale? In this sense we chose the cen-

tral channels in each hemisphere (frontal and parietal), present here by F332 (left frontal), F637

(right frontal), P349 (left parietal), and P654 (right parietal). Hence, applying the DFA method

in first hand, we found three time scales with three values of αDFA exponents, see Table 3 and

Fig 5. This figure shows that the channels F332 and F637 behave in a similar way, in other

words, for time scale 1 the tendency is to find αDFA > 1 (non-stationary) and for time scale 2

the value of αDFA ’ 1 (1/f noise). For time scale 3 αDFA ⋍ 0.5 (uncorrelated). However, this sit-

uation changes for the channels P349 and P654, because time scales 1 and 2 tend to a same

value for αDFA, mainly the channel P349.

We provide that the current manuscript advances on previous work, because the EEG sig-

nal is mostly analyzed in the frequency domain and here, with DFA method, we are analyzing

the EEG signal in the time domain, which allows us to see directly the time scale. Thus, with

the auto-correlation exponent (αDFA), we could identify three time scales for the rms fluctua-

tion function, that are: i) Time scale 1, with 4� n� 90; ii) Time scale 2, with 91� n� 655; iii)

Time scale 3, with n> 655. Also, we can compare the EEG channels by rms function, and

infer which channel has the greatest (or not) amplitude (brain activity). This goal was reached

when we defined Eq 2 and obtained the results of EEG time series. In our analysis, the frontal

channels are the ones that present greater fluctuation in the Motor/Imaginary activities, if we

compared to the parietal channels. This is a new way to analyze the EEG signals, because it has

not yet been implemented, and that may help in the future assist EEG analysis of people with

some type of brain disorder.

We can see in these results that the proposed method can be used to interpret the function-

ing of the brain from the point of view of the DFA functional mapping, during motor activa-

tion in real/imaginary situation.

Conclusion

In this paper we propose a new methodology to analyze EEG signals, which are generally

treated in the frequency spectrum, by Fourier for example. We study the FDFA rms function.
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Therefore, analyzing the channels F332, F637 (frontal region of the head), P349, and P654 (pari-

etal region of the head), we found that the amplitude of fluctuation tends to be larger in the

frontal channels (F332 and F637), if we compare with the channels located in the parietal

region of the brain (P349 and P654).

We start this paper by calculating the auto-correlation exponent αDFA, that show three val-

ues α1 (time scale 1), α2 (time scale 2), and α3 (time scale 3). For F332 and F637 the auto-

correlation exponent α1 > α2. But, for P349 and P654, α1 < α2. For large time scales, n> 656

or t> 4.1s (which corresponds to the interval between two rests) the time series of EEG

human motor/imaginary has a same type of behavior for all Tasks. In this time scale 3 α3’ 0.5

(uncorrelated time series), for all Tasks (real/imaginary, left/right, top/down) and channels

(see Fig 5).

Our goal was that, from FDFA and the information about the EEG channels amplitude, we

define ΔlogF32;xx, and we applied this new function for human EEG motor/imaginary analysis.

In this sense, we did not identify in this analysis large differences between motor/imaginary

activity, except for the small difference between real/imaginary and left/right Tasks at the

channels P349 and P654, because ΔlogF32;49 < ΔlogF32;54 Fig 6. Likewise, we identify a peak in

ΔlogF32;xx located at n’ 90 (t = 0.56s). For n> 656 (t> 4.1s), ΔlogF32;xx tends to a constant

value.

In order to improve the statistics, we also calculated the difference, ΔlogF32;xx, between the

channel 32 and the channel 09, 11, and 13 (center of the brain, see Fig 1). The results (not

shown here) are very similar to those found between the channel 32 and those below (parietal

region). Also, for test the reference channel in our raw data, we considered as a reference elec-

trode standardization technique (REST) [26, 27]. The results of ΔlogF32;xx(rest) are qualitatively

similar for the original time series, changing only in the amplitude, smaller in the REST.

Finally, this analysis could be done taking into account a single individual (such as S020

explained above). In this case, ΔlogFyy;xx analysis can be very useful for comparing channels

(yy;xx) in individuals with some type of anomaly, such as seizures, epilepsy, head injuries, diz-

ziness, headaches, brain tumors and sleeping problems, amongst others. This is a novel strat-

egy to study brain activity in EEG.
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(PDF)

S1 Fig. Mean values of αDFA exponents for all subjects in all Tasks. (a) Real (L/R), (b) Imag

(L/R), (c) Real (T/D), and (d) Imag (T/D). Results for Channels C39, Cz11, and C413 (central

part of the brain).

(PDF)

S2 Fig. FDFA in function of n for S020 in the experiment 1, the below figure show the differ-

ence defined by Eq 2. Here we have a Left/Right case. Results for Channels C39, Cz11, and

C413 (central part of the brain).

(PDF)

S3 Fig. FDFA in function of n for S020 in the experiment 1, the below figure show the differ-

ence defined by Eq 2. Here we have a Top/Down case. Results for Channels C39, Cz11, and

C413 (central part of the brain).

(PDF)
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