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Abstract

Allelic imbalance (AI) occurs when alleles in a diploid individual are differentially expressed and indicates cis acting regulatory variation.
What is the distribution of allelic effects in a natural population? Are all alleles the same? Are all alleles distinct? The approach described
applies to any technology generating allele-specific sequence counts, for example for chromatin accessibility and can be applied generally
including to comparisons between tissues or environments for the same genotype. Tests of allelic effect are generally performed by cross-
ing individuals and comparing expression between alleles directly in the F1. However, a crossing scheme that compares alleles pairwise is
a prohibitive cost for more than a handful of alleles as the number of crosses is at least (n2-n)/2 where n is the number of alleles. We show
here that a testcross design followed by a hypothesis test of AI between testcrosses can be used to infer differences between nontester
alleles, allowing n alleles to be compared with n crosses. Using a mouse data set where both testcrosses and direct comparisons have
been performed, we show that the predicted differences between nontester alleles are validated at levels of over 90% when a parent-of-or-
igin effect is present and of 60%�80% overall. Power considerations for a testcross, are similar to those in a reciprocal cross. In all applica-
tions, the testing for AI involves several complex bioinformatics steps. BayesASE is a complete bioinformatics pipeline that incorporates
state-of-the-art error reduction techniques and a flexible Bayesian approach to estimating AI and formally comparing levels of AI between
conditions. The modular structure of BayesASE has been packaged in Galaxy, made available in Nextflow and as a collection of scripts for
the SLURM workload manager on github (https://github.com/McIntyre-Lab/BayesASE).
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Introduction
Allele-specific expression (ASE) is the amount of mRNA each al-
lele transcribes. Allelic imbalance (AI) indicates a difference in
the level of expression of transcripts derived from the two alleles
of a diploid individual or among alleles in a polyploidy (Wittkopp
et al. 2004; Boatwright et al. 2018). AI is a result of genetic variation
in regulation, both in cis (e.g., promoters, enhancers, and other
noncoding sequences), and in trans (transcription factors). The in-
terpretation of cis and trans effects depends upon the experimen-
tal design deployed (McIntyre et al. 2006; Graze et al. 2009, 2012,
2014; Fear et al. 2016). Testing for regulatory variation that affects
expression in cis is conceptually straightforward and involves the

comparison of the expression profiles of two alleles with the null

hypothesis that the expression profiles are equal. If AI is ob-

served, there is direct evidence of cis differences between alleles

(Wittkopp et al. 2004). There are also some potential cis by trans

interactions captured in this comparison (Wittkopp et al. 2004;

Graze et al. 2014). Comparisons of AI across different physiologi-

cal or environmental conditions is of increasing interest (von

Korff et al. 2009; Tung et al. 2011; Cubillos et al. 2014; Buil et al.

2015; Chen et al. 2015; Pinter et al. 2015; Fear et al. 2016;

Moyerbrailean et al. 2016; Knowles et al. 2017). Formally testing

for differences in AI between conditions reveals environmental

effects of variation in cis regulation (León-Novelo et al. 2018) and
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can also be used to identify parent of origin effects between recip-
rocal genotypes (Zou et al. 2014).

The direct assessment of AI among n alleles would require at
least (n2-n)/2 crosses. This quickly becomes a very large number;
for example, directly testing differences between 10 alleles would
require 45 crosses. Theoretically, it is possible to obtain this infor-
mation by performing n crosses, between one tester inbred line
and several nontester inbred lines to obtain n F1 carrying each
the same tester allele and different “line” alleles (Figure 1A, red
boxes). Testcrosses (or a reference design) are crosses in which
two (or more) nontester alleles are each crossed to a common tes-
ter allele. If the nontester alleles do not differ from the tester,
then all three alleles (the two nontester and the tester) are similar
in their effect. If one of the tester/nontester F1 combinations
shows AI but the other does not, this implies that the expression
of one of the nontester allele differs from the other nontester/
tester. What if both alleles differ from the tester? Does this imply
these two alleles are similar? A formal test of whether the AI in
these two crosses is equal can be used to identify nontester
alleles with divergent cis effects. This is an innovative way of esti-
mating allelic effects in a population and predicting alleles likely
to differ in cis.

There are many bioinformatics steps needed to get to the
point where the expression can be compared across conditions;
this causes difficulties in reproducibility and has the potential to
discourage researchers without extensive bioinformatics capabil-
ities. Differential mapping of the two alleles on the common ref-
erence (Degner et al. 2009) has led to a demonstration that strain-
specific reference improves the estimation of AI and lowers type I
error (Skelly et al. 2011; Turro et al. 2011; Graze et al. 2012; Satya
et al. 2012; León-Novelo et al. 2014; Munger et al. 2014; Fear et al.
2016). This step requires mapping to strain specific references
and comparing alignment outputs. Although it should be noted
that even with strain-specific mapping, residual bias can persist
due to undiscovered structural variants or aspects of sequences
that interfere with the mapping algorithms. When DNA can be
used as a control, all of these biases are accounted for Wittkopp
et al. (2004), Graze et al. (2009, 2012) but some residual bias may
persist for example when gene families are considered. Bias due
to sequence similarity across the genome and/or mapping algo-
rithm can be estimated using simulation (Degner et al. 2009;
Stevenson et al. 2013; León-Novelo et al. 2014) these estimates can
be accounted for in the model reducing type I error (Graze et al.
2012). Other bioinformatic challenges include tracking overall ex-
pression and nonspecific read mapping, as they both affect the
power for detection of AI (Fear et al. 2016; León-Novelo et al. 2018).

Here, we present BayesASE, a series of clearly elucidated bioin-
formatic steps modularized and well-documented in a robust
high-performing computing (HPC) pipeline. BayesASE requires
only reads in FASTQ file format, a reference genome, genotype
specific VCF file for variant calling, and a series of design files as
input. The tools within the pipeline are modular and provide a
clear and reproducible analysis workflow. The template provided
makes for transparent substitution and easy execution.
Workflow templates have been constructed for SLURM schedu-
lers, for Nextflow (Di Tommaso et al. 2017), and for Galaxy
(Goecks et al. 2010). Galaxy BayesASE consists of individual tools,
associated workflows and a detailed conda package environment
and associated PyPi package for integration into local
Galaxy installs or servers. Individual BayesASE tools are also
available for installation from the Galaxy ToolShed. Galaxy is a
well-supported open-source environment and training is avail-
able here (https://galaxyproject.github.io/training-material/).

While this study focuses on the use of testcrosses for compari-
son, BayesASE is entirely general. The first design file specifies in-
dividual crosses and the corresponding genomes. Any crossing
design can be accommodated and the pipeline will then automat-
ically assemble the relevant genomes and count alleles mapping
to each parental genome. Furthermore, the unit for which allele-
specific reads are to be counted is completely general as the pro-
cess expects a labeled BED file. This is used throughout the pro-
cess to identify results for each row of the user-provided BED file.
Pairwise comparisons are specified in a separate design file and
the only limitation is the requirement that the identifiers on the
genomic regions match. For example, two tissues/environments
from the same genotype, two sexes, reciprocal crosses, and the
testcrosses presented here can all be analyzed with the same pro-
cess. Our Bayesian model allowing simultaneous estimation of AI
in two conditions and direct estimation of the difference in AI be-
tween conditions (León-Novelo et al. 2018), has been recoded in
Stan (Carpenter et al. 2017) making the code more robust.
Although conceived for measuring AI in expression, our model is
suitable for testing allele imbalance in other genomic data, such
as assays for chromatin accessibility. The modular development
also allows alternate approaches to be included in a straightfor-
ward manner. A custom model for AI in a particular circum-
stance can easily be deployed (Zou et al. 2014) instead of the
model included with the package while using modules in
BayesASE to count allele-specific and nonspecific reads.

Materials and methods
BayesASE modules
BayesASE consists of four main modules: Genotype Specific
References, Alignment and SAM Compare, Prior Calculation, and
Bayesian Model (Figure 2). Flexibility, generality and process check-
ing are present in each of the four modules that make up the
BayesASE pipeline. Workflows for each module are coded accord-
ing to SLURM workflow manager, Nextflow and Galaxy specifica-
tions, and all scripts are available on Github (https://github.com/
McIntyre-Lab/BayesASE). The Galaxy package BayesASE has a de-
tailed User Guide (Supplementary File S1) that describes the
structure of the workflow and all input and output requirements
for each of the individual scripts. The code is also available as a
PyPI package, a bioconda package and in the Galaxy Toolshed
(see Data Availability Section).

The Genotype Specific References module (Supplementary Figure
S1) requires as input the reference genome as FASTA file, and ge-
notype specific SNP variants as VCF files, and returns as output a
set of genotype specific references obtained incorporating SNP
variants into the reference genome. Genotype specific reference
reduce mapping bias that occurs when a common reference is
used (Skelly et al. 2011; Turro et al. 2011; Graze et al. 2012; Satya
et al. 2012; León-Novelo et al. 2014; Munger et al. 2014; Fear et al.
2016). Input VCF files can be generated using the GATK (DePristo
et al. 2011), and index input genotype VCF files. BWA index (Li
and Durbin 2010) is used to create index files needed for down-
stream alignment.

The Alignment and SAM Compare module (Supplementary
Figure S2) quantifies alignment counts for each input file for
each of the two genotype specific genomes of the parents of the
F1, compares the alignment files in SAM format, and outputs
count tables of reads aligned to each parental genome. In this
module, input experimental reads for each F1 sample are aligned
to each of their updated parental reference genomes with BWA-
MEM (Li 2013). Alignment output counts are compared and reads
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are designated as mapping to one of the parental genomes (or to
both when reads mapping equally well to the two genomes).
Technical replicates are summed together, and coverage metrics
are calculated. The data are then flagged for low coverage (user
defined).

The Bayesian model requires an estimate of a prior to specify
the probability that a read generated from the gene in genome 1
maps better to genome 1 than to genome 2 or is mapping equally
well on both genomes for each condition. In this implementation,
the prior is specified for each gene/cross and each condition sepa-
rately allowing for maximum flexibility. For each gene/cross/

condition, q1 is the prior probability that a read originating from
genome 1 maps better to genome 1 and q2 is the prior probability
that a read originated from genome 2 maps better to genome 2,
with the following constraint: 0 < q1, q2< 1. The Prior Calculation
module (Supplementary Figure S3) estimates priors from DNA
data, the RNA data, or simulated data. This module receives
count tables for read counts for both informative (mapping to a
particular parent) and uninformative reads as input and uses
them to estimate a prior probability distribution for each given
feature. Priors can also derive independently from this tool and
supplied directly to the model. Priors provide information on

Figure 1 Schematic representation of the crosses used in this study. (A) Maternal genotypes as columns (PWK, WSB, and CAST) and paternal genotypes
in rows (PWK, WSB, and CAST). We focus here on the comparison of PWK vs WSB; the approach is valid for all the possible comparisons. The test
crosses are outlined with red boxes and the direct crosses with blue boxes. H1 is a test within any single cross of the null for allelic balance. H3

represents a test of the null hypothesis that the AI is the same between two crosses. (B) Alleles PWK and WSB, can be compared directly with a test of H1

in either of the two reciprocal crosses in the blue boxes in (A). These tests can be labeled as H1 and H2 with the label of 1 or 2 assigned arbitrarily. The
test of the (H3) is then a test of whether the AI is the same between the two reciprocal crosses. A test of H3 for the two crosses in the red box can also be
conducted, here the test of H3 is an indirect inference for difference in cis effects contributed by PWK and WSB alleles. Note that the comparison of PWK
vs WSB in the testcross compares the two alleles inherited from the same parent, while the direct cross is confounded by the parent of origin.
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differences in mapping on the two genomes in absence of AI

(Graze et al. 2012; Fear et al. 2016; León-Novelo et al. 2018).
The Bayesian Model module (Supplementary Figure S4) requires

as input a design file to identify comparisons to be performed,

alignment count tables and priors, either from the previous mod-

ule or as direct input. The Bayesian model itself is the STAN

(Carpenter et al. 2017) implementation of a previously published

model for the detection of AI in one or between multiple condi-

tions (León-Novelo et al. 2018) with an extension allowing the pri-

ors to be independently specified between conditions. Model

output files include values for estimates of levels of AI and their

95% central credible intervals. Output also includes the Bayesian

measure of evidence against allelic balance (De Bragança Pereira

and Stern 1999; Thulin 2014), defined as the smallest number ev

such that the 1-ev central credible interval for estimate of AI does

not contain the null value indicating allelic balance. Values of ev

can be used in a decision theory context to make decisions about
rejecting the null hypothesis.

Workflow deployment platforms and protocol
To facilitate its use, BayesASE is available for SLURM schedulers,
as workflows on the Nextflow platform, and as a Galaxy Tool.
There is an example set of sbatch scripts for the SLURM imple-
mentation on GitHub (https://github.com/McIntyre-Lab/
BayesASE). Source code is available under the MIT license.
BayesASE has a modular structure; flowcharts of the individual
modules outline the logic (Supplementary Figures S1–S4) and de-
tailed information about input/output is described in the Galaxy
User Guide available on GitHub and as Supplemental File S1.
Names are consistent with the flow charts and standard naming
conventions for sbatch and Nextflow are used.

The most direct option that is provided for users is through
several templates for sbatch scripts; they can be modified as
needed with the input and output file names and submitted to a
SLURM scheduler. SLURM is an open-source cluster management
and job scheduling system (https://slurm.schedmd.com/); while
our work has been focused on SLURM scheduler, our scripts can
be used as templates for deployment using a different scheduler.
Nextflow (Di Tommaso et al. 2017) is a portable, parallelizable
and reproducible framework available in the cluster environ-
ment. It defines data workflows that can be executed on diverse
portable batch system schedulers such as SGE, SLURM, or Cloud
platforms. Nextflow pipelines consist of a configuration file and a
series of processes that define the major steps in the pipeline.
Processes are independently executed from one another and the
platform supports a variety of languages such as Bash, Python, R,
and so on. Processes are connected through input or output
channels, allowing data to be passed through the pipeline.
Nextflow also provides an automatic caching mechanism for
identifying and skipping successfully completed tasks and using
previously cached results for downstream tasks. Each BasyesASE
module has been coded in Nextflow and is available on GitHub
(https://github.com/McIntyre-Lab/BayesASE). Galaxy is an open-
source project designed to be deployed in a web browser, provid-
ing a user-friendly platform that can be configured to run on
global servers in large universities or on the local individual
machines (Goecks et al. 2010). Reproducibility in Galaxy is accom-
plished via histories and the creation of workflows that can be
shared among collaborators. The BayesASE modules are devel-
oped for use with Galaxy, and have been deposited in the Galaxy
Toolshed. Details about how to deploy these tools are in the User
Guide.

Testcrosses can be used to efficiently estimate cis
effects
To demonstrate that the testcross can be used to predict allelic
differences between nontester alleles we analyzed a publicly
available data set of male and female F1 Mus musculus brain
RNA-seq from three different inbred mouse strains, CAST/EiJ,
PWK/PhJ, and WSB/EiJ (Zou et al. 2014; Crowley et al. 2015). The
authors provided two alternative notations for the inbred strains:
CAST/EiJ ¼ F, PWK/PhJ ¼ G, and WSB/EiJ ¼ H, or alternatively
CAST/EiJ ¼ CAST, PWK/PhJ ¼ PWK, and WSB/EiJ¼ WSB. We de-
note each F1 sample by its maternal strain � paternal strain. For
example, a CAST � WSB mouse is an offspring of a CAST/EiJ fe-
male that is mated with a WSB/EiJ male. This same F1 sample
can be denoted as FH (short for F � H) in which an F male is
mated with an H female. This shorter notation is used to label
some tests/figures and the model results. For the original study,

Figure 2 Flowchart of the Bayesian analysis of allele imbalance process
for testing for allele imbalance.
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the main hypothesis of interest was a test of the null AIFG ¼AIGF,
AIGH ¼AIHG, AIFH ¼AIHF, i.e. the absence of a parent-of-origin ef-
fect. We repeated the analysis with BayesASE, using the same
read counts as the original work, and male and female offspring
of each cross were analyzed separately as a series of pairwise
analyses using the Bayesian model (León-Novelo et al. 2018) and
not jointly (Zou et al. 2014).

The option of performing pairwise analysis of AI is a novel fea-
ture of our Bayesian model (León-Novelo et al. 2018), in which we
introduced the possibility of analyzing AI in two different condi-
tions or genotypes and at the same time testing the hypothesis of
difference in the levels of AI between the two conditions. We indi-
cate with H1 the hypothesis of allelic balance in condition 1, with
H2 the hypothesis of allelic balance in condition 2, and with H3

the hypothesis of no difference between the levels of AI in condi-
tions 1 and 2 (Figure 1).

Our main interest was to assess whether the theoretical pre-
diction that the testcross can be used to compare different non-
tester alleles. In the mouse data, the offspring of the crosses
CAST � PWK and CAST �WSB, represent a testcross of the PWK
and WSB alleles with CAST as the tester allele. Using the flexible
design in BayesASE, we estimated AI and tested whether the AI
was significant between alleles CAST and PWK in the offspring of
CAST � PWK (H1 in Figure 1; red boxes), alleles CAST and WSB in
the offspring of CAST � WSB (H2 in Figure 1, red boxes), and the
difference in AI between the two offspring (H3 in Figure 1, red
boxes). The null hypothesis H3 is that the expression of PWK in
CAST � PWK is the same as the expression of WSB in CAST �
WSB. Because CAST is common to both crosses (and the mater-
nal allele, in this case), testing H3 is a test between PWK and
WSB. We also compared the test crosses PWK � CAST and WSB �
CAST in this case CAST is still the tester allele but here it is inher-
ited paternally. The other two testcross combinations were tested
in the same manner. Male and female offspring were evaluated
separately. We focus only on the autosomal effects and do not
consider the X, Y, or mitochondrial loci.

To verify the predictions made in the testcross, the reciprocal
crosses were used (Figure 1, blue boxes). For example, to verify
differences in the PWK and WSB alleles predicted by the CAST �
PWK and CAST � WSB cross we examined the PWK � WSB and
WSB � PWK crosses. Because the alleles in the testcrosses are
compared with the same parental inheritance and the alleles in
the direct test have different parental inheritance, we do not ex-
pect that 100% of the predictions will be realized. In addition, the
trans environments are different between the testcrosses, with
trans effects of the tester allele shared but differing in the non-
tester allele. The Spearman coefficient of correlation was used to
compare the estimates for AI estimated from BayesASE with the
estimates of AI used in the original work (Zou et al. 2014; Crowley
et al. 2015) for the 95 imprinted genes and all data were analyzed
using the same counts from the original analysis.

Data availability
All scripts, together with a test data set and a readme file are
available at https://github.com/McIntyre-Lab/BayesASE, and as a
PyPi repository (https://pypi.org/project/BayesASE/), and a bio-
conda package (https://anaconda.org/bioconda/bayesase). A de-
tailed User Guide providing step by step instructions for the each
module and detailed instructions for the Galaxy interface is in-
cluded as Supplementary File S1. Supplemental Material avail-
able at figshare: https://doi.org/10.25387/g3.14174291. All tools
are deposited in the Galaxy ToolShed for download and

installation (https://testtoolshed.g2.bx.psu.edu/repository?reposi
tory_id¼ef69fe5507b8d8c7&changeset_revision¼8b2027117ce5).
The mouse data are available from prior publications (Zou et al.
2014, Crowley et al. 2015).

Results and discussion
Estimates of allelic effect obtained with BayesASE were concor-
dant with the published estimates of AI from the 95 imprinted
genes using the model described by (Zou et al. 2014; Crowley et al.
2015). Supplementary Figure S5 shows, for the reciprocal CAST �
PWK and PWK � CAST crosses, the estimated AI as the ratio of
the paternal to the maternal allele. All the correlation coeffi-
cients are greater than 0.96, even for reciprocal crosses. The cor-
relation for the same cross in the present study and published
results is always 1. Using the analysis in BayesASE, we report the
cis effects as estimated by tests of AI for each cross. The esti-
mates range from 5.39 to 11.74% of genes showing AI for each
cross (Table 1) and an overall estimate of 3629 (26%) loci of the
14, 058 that were tested for all crosses in both sexes. As these
data have been analyzed and reported on elsewhere (Zou et al.
2014; Crowley et al. 2015), we will focus only on the testcross
results.

The testcross predicts �1200 loci with cis effects in PWK �
WSB, �900 loci with cis effects in CAST � PWK and �1000 in
CAST � WSB, accounting for 2–5% of the tested genes (Figure 3).
The frequency of cis effects was similar regardless of the parent
of origin. Using BayesASE, we directly tested the null that the AI
between the offspring sexes was equal for each of the 6 F1
crosses. The detection of cis effects was similar for male and fe-
male offspring with the exception of the CAST � WSB cross
where AI was 2x more likely to be identified in male offspring
compared to female offspring (P< 0.0001 McNemar’s test). An ad-
ditional complication in the cis predictions of direct crosses is the
impact of the parental inheritance on the allelic expression. In
the testcross the comparison is between the two alleles inherited
from the maternal (or paternal) parent, while in the direct cross
one allele is inherited maternally and the other is inherited pater-
nally.

More than 70% of cis effects predicted by the testcross as dif-
ferences between nontester alleles (i.e., rejection of the null hy-
pothesis H3) are validated in the direct comparison (Table 2) for
all comparisons except the CAST � WSB male which has a vali-
dation rate of 46%, or approximately 3 times higher than
expected based on the frequency of cis effects in the direct
crosses. The validation rate when parent of origin effects were
present was higher. For genes in which the null hypothesis H3

was rejected between reciprocal crosses were identified as having
parent of origin effect. When limiting the comparison of the test-
cross to the direct cross to genes where a parent-of-origin effect
was present the validation rates were greater than 90% in all

Table 1 Percentage of genes showing AI in different crosses

AI (%)

Cross Females Males

PWK WSB 7.38 8.03
WSB PWK 8.34 7.87
PWK CAST 7.06 6.44
CAST PWK 7.23 5.38
CAST WSB 8.38 10.7
WSB CAST 8.72 11.23
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cases (Table 2). Of note, the CAST � WSB male offspring have a
much lower proportion of reciprocal effects than the other five
comparisons.

These results indicate that a testcross design is an efficient
way of identifying cis effects. Instead of a joint pairwise n2-n ex-
periment, it is possible to plan an experiment of size n, where n is
the number of alleles tested in one sex or paternal/maternal
effects. There are some subtleties worth considering when think-
ing about cis effects in organisms with a heterogametic sex sys-
tem. The testcross will compare nontester alleles inherited from
either the maternal or paternal parent. The direct comparison, in
contrast, will always compare the maternally inherited allele to
the paternally inherited allele. When there are no interactions
between the heterogametic sex chromosome or cytoplasmic fac-
tors and the autosomes, this should result in the same loci being
identified. However, trans acting factors from the heterogametic
sex chromosome and cytoplasmic factors complicates the inter-
pretation of the direct comparison, particularly in males.

A more technical potential explanation is the potential differ-
ence in power for these two approaches. effect of expression on
power. In the comparison between testcrosses there is potential
for reduced power, compared to the direct cross (León-Novelo
et al. 2018) as the test of H3 between crosses may have lower
power than the test of H1. The number of allele-specific reads
affects power. When testing the H3 hypothesis for difference of AI
between two conditions, power is affected by the number of al-
lele-specific reads from the experiment with the lowest coverage
(León-Novelo et al. 2018). In addition, overall gene expression, if
not accounted for, may affect power (Fear et al. 2016). We note
that in the model presented here this factor has been effectively
accounted for, minimizing this issue (León-Novelo et al. 2018).

The mouse data show that the use of testcrosses to compare
nontester alleles identifies loci that are validated by the direct
tests in the vast majority of cases. Loci identified in direct crosses
are identified in test crosses but there are many more loci identi-
fied in the direct cross. This may be a false negative result for the

testcross approach, due to lower power and/or it may be due to
differences in differences in the number of allele-specific read
counts for one of the crosses that lowers the power for H3.
However, it may well be that there is a cis-trans interaction be-
tween the heterogametic sex chromosome and the autosomal
genes, and/or a parent of origin effect in the direct cross.

The parent of origin effect can be tested by comparing AI
between reciprocal crosses. We can examine whether this effect
explains some of the differences in identification of cis effects
in the testcross compared to identified in the direct cross. For
60–75% of the loci with a parent of origin effect there was evi-
dence for a cis effect in the direct cross as well, with the exception
of the CAST �WSB male where 46% of the parent of origin effects
had corresponding cis effects. This is logical, as at least one of the
reciprocal crosses must have a relatively large estimate of AI in
order to detect the parent of origin effect. The difference in the
CAST � WSB male may not be as surprising as at first glance.
This is a cross between genetically distant lines (Zou et al. 2014)
and may reflect divergence in gene expression between the sexes
in these incipient species due to sex antagonism. When focusing
on only those genes with a parent of origin effect and a cis effect
in the direct cross, the validation rate for the testcross is compa-
rable, and large (>90%) for all crosses.

The testcross approach is a useful strategy to maximize allele
comparison while minimizing sequencing efforts. Testcrosses
will not detect either parent of origin or cis-trans interactions
since the comparison between alleles is from a shared maternal/
paternal inheritance. The reciprocal effect is large in these data
indicating that either parent of origin and/or cis-trans interactions
are important in these data, consistent with the original data
analysis (Crowley et al. 2015). Other work has also implicated
trans-acting factors from the � influencing ASE on the autosomes
(Graze et al. 2014). The efficacy of the testcross is clear from these
data, also clear is the presence of cis-by-trans effects from the X,
mitochondrial or Y chromosome influencing expression variation
in autosomal genes in the mouse.

BayesASE has been used here to test for cis effects in individual
crosses, differences in cis effects between males and females of a
single cross, differences in cis between testcrosses, and parent of
origin/cis-trans interactions in reciprocal crosses. The BayesASE
framework lays out each step to testing AI transparently, and
enables researchers to perform analysis using their preferred ap-
proach (galaxy, Nextflow, or SBATCH queuing). We provide a set
of well-documented python scripts organized into modules and
available with examples as SLURM bash jobs, using Nextflow or
Galaxy. BayesASE its designed in a modular fashion. Users can

Figure 3 Percentage of genes showing AI, tested via the testcross
approach. The x-axis represents the two alleles being compared. CAST
and WSB are compared by testing H3 in the two crosses CAST � PWK
and WSB � PWK (to test Maternal contribution, red) or PWK � CAST and
PWK �WSB (to test Paternal contribution, blue). Results for female
offspring are shown as circles, and for male offspring are shown as
squares.

Table 2 Validation rates of testcrosses using testcrosses

Alleles
compared

Sex N
total

Validated
total

N
POO

Validated
POO

PWK CAST Female 691 68.89 510 91.96
PWK CAST Male 776 63.14 533 90.81
PWK WSB Female 938 72.6 721 92.93
PWK WSB Male 916 73.58 713 92.85
CAST WSB Female 879 74.63 699 92.56
CAST WSB Male 787 46.25 388 92.53

Number of genes showing different levels of expression using testcrosses
(N total). Percentage of genes showing different levels of expression using
testcrosses validated in direct comparison, in total (validated total). Number of
genes showing different levels of expression using testcrosses and having
parent of origin effect in the reciprocal crosses (N POO). Percentage of genes
showing different levels of expression using testcrosses and having parent of
origin effect, validated in direct comparison (validated POO).
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rely on the whole pipeline of analysis, select a specific step, or re-
place a specific step. The addition of usable accessible code
should make these more complex models and bioinformatics
steps more accessible to the community.

The Bayesian method to analyze ASE presented here (León-
Novelo et al. 2018) is completely general. In this study, we present
an application to a testcross however, the full pipeline and analy-
sis can also be applied to comparing the same genotypes in differ-
ent environmental conditions (Fear et al. 2016). The statistical
test presented of difference between conditions is complemented
by a test of allele imbalance within each condition. While there
are a number of such tests that have been developed, this partic-
ular approach addressed the impacts of bias, and expression level
variation. When ignored, both of these effects can increase type I
error (León-Novelo et al. 2014, 2018; Fear et al. 2016). The model
itself is general and can be applied to any technology producing
allele-specific read counts including ChIP-seq and Hi-C. By pro-
viding transparent code for the complete pipeline in three for-
mats we hope to facilitate the use of more sophisticated

statistical approaches by the broad scientific community.
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