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Abstract: Background: The integrated approach to electrical cardioversion (EC) in atrial fibrillation
(AF) is complex; candidates can resolve spontaneously while waiting for EC, and post-cardioversion
recurrence is high. Thus, it is especially interesting to avoid the programming of EC in patients
who would restore sinus rhythm (SR) spontaneously or present early recurrence. We have analyzed
the whole elective EC of the AF process using machine-learning (ML) in order to enable a more
realistic and detailed simulation of the patient flow for decision making purposes. Methods: The
dataset consisted of electronic health records (EHRs) from 429 consecutive AF patients referred for
EC. For analysis of the patient outcome, we considered five pathways according to restoring and
maintaining SR: (i) spontaneous SR restoration, (ii) pharmacologic-cardioversion, (iii) direct-current
cardioversion, (iv) 6-month AF recurrence, and (v) 6-month rhythm control. We applied ML classifiers
for predicting outcomes at each pathway and compared them with the CHA2DS2-VASc and HATCH
scores. Results: With the exception of pathway (iii), all ML models achieved improvements in
comparison with CHA2DS2-VASc or HATCH scores (p < 0.01). Compared to the most competitive
score, the area under the ROC curve (AUC-ROC) was: 0.80 vs. 0.66 for predicting (i); 0.71 vs. 0.55
for (ii); 0.64 vs. 0.52 for (iv); and 0.66 vs. 0.51 for (v). For a threshold considered optimal, the
empirical net reclassification index was: +7.8%, +47.2%, +28.2%, and +34.3% in favor of our ML
models for predicting outcomes for pathways (i), (ii), (iv), and (v), respectively. As an example
tool of generalizability of ML models, we deployed our algorithms in an open-source calculator,
where the model would personalize predictions. Conclusions: An ML model improves the accuracy
of restoring and maintaining SR predictions over current discriminators. The proposed approach
enables a detailed simulation of the patient flow through personalized predictions.

Keywords: machine-learning; electrical cardioversion; atrial fibrillation; rhythm control; pharmaco-
logic cardioversion
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1. Introduction

Restoring and maintaining sinus rhythm (SR) is an integral part of the atrial fibrillation
(AF) process. Electrical cardioversion (EC) quickly and effectively converts AF to SR
and can be performed safely for patients with AF of ≥48 h or unknown duration when
anticoagulation with vitamin-K antagonists, a factor Xa inhibitor, or a direct thrombin
inhibitor is used for at least 3 weeks before and at least 4 weeks after EC [1–3].

Although EC restores SR in around 80% of patients, the rate of recurrence is high—around
60% in the coming months [4–10]—even under antiarrhythmic drugs [11–16]. Furthermore,
it has been described that up to 60% of patients with recent-onset AF and candidates for
rhythm control resolve spontaneously even while waiting for scheduled EC [17]. Thus, the
integrated approach to elective EC is complex, and it is especially interesting to identify
potential predictors of recurrence post-cardioversion, in order to avoid unnecessary drugs
or procedures that could involve risks and costs in addition to avoiding the programming
of EC or the use of drugs in patients who would restore the SR spontaneously. For this
purpose, traditional clinical models have been previously proposed [18–24], although their
use and utility in clinical practice is unclear due to the complexity of AF management.

Interest in machine-learning (ML) in electrophysiology is increasing in order to en-
hance automatic clinical workflows and increase efficiency [25]. Although ML is starting to
be widely applied in arrhythmia [26], examples regarding the whole process workflow for
a clinician to make better decisions are scarce [27]. In this study, we used ML to move the
EC of AF process management a notch ahead. AF patients go through different pathways:
from the diagnosis of the AF and prescription of anticoagulation and antiarrhythmic drugs
to the post-cardioversion medical follow-up. We analyzed the whole elective EC of the AF
process using ML algorithms, in order to enable a more realistic and detailed simulation of
the patient flow for decision making purposes. This study followed the TRIPOD guidelines
for reporting the development and validation of prognostic models [28], see Appendix A.

2. Materials and Methods

Figure 1 summarizes the phases we followed to build our ML models: preparation of
the model, model training, and model evaluation. The models were developed in Python
and the implementation of the classification algorithms was performed using the open
code libraries scikit-learn and xgboost [29].

2.1. Preparation of the Model
2.1.1. Task Definition and Clinical Pathways of Patients

The aim of our study was to automatically enhance the process of scheduled EC in
AF by incorporating ML in all pathways of the process to predict success. In pursuing
a rhythm-control strategy, patients scheduled for planned EC followed a process that
is summarized in Figure 2, where the different outcomes at each pathway have been
highlighted. Importantly, management options in hemodynamically stable patients with
AF >48 h in our hospital do not follow the strategy of treatment guided by transesophageal
echocardiography findings [1,2].

Given the outcomes at each pathway, we aimed to build an ML model for each circum-
stance: (i) spontaneous SR restoration, predicting the conversion to SR in the pre-scheduled
EC period for non-antiarrhythmics-treated patients; (ii) pharmacologic cardioversion, pre-
dicting the conversion to SR in the pre-scheduled EC period for antiarrhythmics-treated
patients; (iii) direct-current cardioversion, predicting the efficacy of direct-current shock
application; (iv) AF recurrence, predicting the AF recurrence at the 6-month follow-up for
those patients who underwent SR restoration spontaneously, by pharmacologic or direct-
current cardioversion; and (v) rhythm control, predicting the overall 6-month follow-up
maintenance in SR from the moment EC was scheduled.
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2.1.2. Study Population

From April 2014 to January 2019, a registry of 429 consecutive patients scheduled for
planned EC in the tertiary referral university hospital of Salamanca were included in the
analysis. EC in our center relies on the application of direct-current biphasic waveform
shock, with a fixed energy of 150 J with a progressive energy level of 200 J, via two antero-
posterior (parasternal and left infrascapular) electrodes. Patients undergo the procedure in
our Cardiology Day Hospital by trained personnel, usually under propofol sedation, and
remain under observation for at least 3 h before discharge, where an ECG is performed to
check the heart rhythm [30]. For all the patients, a visit to the outpatient clinic was sched-
uled at 6-months, where a second ECG was also performed. Implantable loop recorders or
Holter ECGs were not used either before or after the scheduled cardioversion.

2.1.3. Data Collection and Preparation

The ML models were trained and validated with the use of the patient charts stored in
electronic health records (EHRs). Input data (features) consisted of patient demographics,
cardiovascular risk factors, cardiovascular history, comorbidities, clinical and biochemical
variables, atrial fibrillation classification, echocardiographic findings, medical treatment,
and direct-current shock variables. As for the corresponding outcomes, we labeled the
presence of SR in 4 of the analyzed pathways (spontaneous restoration of SR, pharmacologic
cardioversion, direct-current cardioversion, and 6-month rhythm control) and the presence
of AF for the 6-month AF recurrence. All EHRs were reviewed by a single investigator who
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classified the type of AF according to the current guidelines in paroxysmal AF, persistent
AF, and long-standing persistent AF [1,2].

We preprocessed our EHR raw data as a set of features to be usable by ML classifiers
and a set of labels to classify the different outcomes for each of the patients. For this
purpose, multicategory variables were one-hot encoded in binary variables. Missing data
were imputed using the average of the rest of the dataset for continuous variables and the
median for categorical variables. Weight and height were imputed according to gender
specific averages, and if only weight was missing, BMI was imputed first, then weight
was obtained from BMI and height. The value of tricuspid regurgitant jet velocity was
imputed using the average of likewise severity of tricuspid regurgitation patients in the
dataset. The dataset was divided then into a training dataset consisting of 316 patients
that attended before 1 January 2018 and a testing dataset consisting of 113 patients that
attended afterwards.
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Figure 2. Patients scheduled for planned electrical cardioversion flow diagram where the different
outcomes at each pathway are highlighted. The different machine-learning models were then built
for each of these 5 different circumstances: (i) spontaneous sinus rhythm restoration (conversion to
sinus rhythm in the pre-scheduled electrical cardioversion period for non-antiarrhythmics-treated
patients); (ii) pharmacologic cardioversion (conversion to sinus rhythm in the pre-scheduled elec-
trical cardioversion period for antiarrhythmics-treated patients); (iii) direct-current cardioversion
(conversion to sinus rhythm after direct-current shock application); (iv) atrial fibrillation recurrence
(atrial fibrillation recurrence at 6-month follow-up for those patients who underwent sinus rhythm
restoration spontaneously, by pharmacologic or direct-current cardioversion); and (v) rhythm control
(maintenance in sinus rhythm at 6-month follow-up).
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2.2. Training the Model
2.2.1. Machine Learning Classifiers

The goal of the training phase was to produce a working ML model that accepted data
from any new patient (formatted in the same way as our processed dataset) and classified it.
We applied and compared the performance of the following state-of-the-art ML classifiers:
logistic regression with a regularization term, random forest, extremely randomized trees,
and boosted trees [26].

2.2.2. Hyperparameter Tuning

Model hyperparameters are the properties that govern the behavior of the classification
algorithm, i.e., the number of branches in a boosted trees algorithm. Tuning these parame-
ters may improve the performance of the ML models and was consequently conducted in
our pipeline.

To determine the best performing hyperparameters without using the testing dataset,
a stratified cross-validation scheme was used. We performed a 10-fold cross-validation
methodology to randomly split the training dataset into 10 equally sized parts (folds),
with equal distribution of positive and negative cases. Nine folds were used to train the
algorithms with different combinations of hyperparameters, and the remaining one was
used as a test dataset for evaluating the models. We used these predictions to choose the
best hyperparameters for each classification algorithm (Table 1).

Table 1. Hyperparameters tested during the tuning step. This table contains the different com-
binations of feature selection strategies and hyperparameters tested for each of the classification
algorithms during training.

Algorithm Feature Selection Hyperparameters

Boosted Trees
No selection

Univariate selection
RF feature importance

Number of trees: 25, 100, or 1000
Depth of the trees: 3, 5, or 7

Learning rate: 0.1 or 0.05
L1 regularization term weights: 0 or 1

L2 regularization term weight. 1

Random Forest
No selection

Univariate selection
Feature importance (random forest)

Number of trees: 100 or 1000
Number of features considered at each branch split: 1

or auto (square root of total features)
Split criterion: Gini impurity or information gain.

Max depth of trees: 1, 2, 5, or unbounded

Extremely Randomized Trees
No selection

Univariate selection
RF feature importance

Number of trees: 100 or 1000
Number of features considered at each branch split: 1

or auto (square root of total features)
Split criterion: Gini impurity or information gain.

Max depth of trees: 1, 2, 5, or unbounded

Logistic Regression
No selection

Univariate selection
RF feature importance

Regularization term: L1 or L2

2.3. Evaluating the Model
2.3.1. Evaluation Scheme

The models were evaluated on the test dataset. Additionally, internal validation
was performed using the training dataset only. This internal validation consisted of a
stratified 10-fold cross-validation with 10 repetitions. Since the training of the model also
contained a hyperparameter tuning step with its own cross-validation scheme, this resulted
in nested cross-validations [31]. The information from this internal validation was used
to transform the models into hard classifiers to be used in clinical practice by choosing a
probability cutoff threshold that translated continuous probability predictions into distinct
clinical decisions.
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In both the internal and external validation, the receiver-operating-characteristic (ROC)
and the Precision-Recall (PR) curve analysis were used to assess the predictive capacity of
the ML models at each clinical pathway [32]. The classification performance of the model
at a particular cutoff threshold was evaluated according to its sensitivity (recall), specificity,
positive predictive value (precision), and negative predictive value. Confidence intervals
were calculated for both the external validation results [33] and the internal validation
results. The latter ones were calculated using a t-statistic based on the fold results, corrected
for the correlation between fold samples [34,35].

2.3.2. Comparison with Standard Successful Cardioversion Risk Scores

We further compared the performance of the developed ML algorithms to existing pre-
dictive multivariate logistic regression models: CHA2DS2-VASc [23] and HATCH [36,37]
scores. For this comparison, we evaluated the existing scores directly on our dataset, es-
sentially performing an external validation of the prediction rules. In order not to give
the ML models an unfair advantage, we further refitted the scores with beta coefficients
in our study population for the different pathways’ outcomes. In addition, we estimated
the Net Reclassification Index (NRI) of the ML models with respect to the existing scores,
calculated at the optimum cutoff threshold for the score [38]. This index was the difference
of the sum of sensitivity and specificity between two classifiers.

2.3.3. Feature Analysis

The differences in data variables between event and non-event patient groups in each
AF pathway were compared using χ2 or Fisher tests for categorical variables and Student’s
t-test or ANOVA for continuous variables.

We further computed feature importance for the models by measuring how the area
under the ROC curve (AUC ROC) decreased when a feature was not available through the
method known as permutation importance or mean decrease accuracy (MDA) [39]. The
method consisted of replacing each feature in the test dataset with random noise-feature
column and measuring the performance for the ML model. The weight of the feature with
positive impact in the predictive model was scaled to 1. This method was chosen because
it is classification algorithm-agnostic and offers an intuitive idea of what happens when
some part of the data of a given subject is missing and is substituted by a random value
distributed according to the rest of the population.

2.3.4. Open-Source Software

The developed code used to train and evaluate the models can be consulted as
open-source at https://github.com/IA-Cardiologia-husa/Cardioversion, (accessed on
7 April 2022) [40]. We deployed our ML classifiers in an online open-source calculator
that can be run on any Google Drive account, as an example tool for prospective external
validation of ML models from a small imbalanced sample size. The calculator chained all
ML models to provide personalized outcome predictions.

3. Results
3.1. Characteristics and Flow of the Study Population

The characteristics of the study population are shown in Table 2. The EHRA clas-
sification of atrial fibrillation symptoms was not widely described in the EHRs, and it
was not provided. Figure 2 presents the movement of patients through the elective EC
of the AF process. The presence of SR on the ECG recorded at the end of the scheduled
EC visit occurred in 374 (87.2%) of the 429 patients included in the study: in 52 (20.6%)
of 252 non-antiarrhythmics-treated patients, conversion to SR occurred spontaneously in
the pre-scheduled EC period; in 35 (19.8%) of 177 antiarrhythmics-treated patients, phar-
macologic cardioversion occurred in the pre-scheduled EC period; and of the 342 patients
still in AF at the scheduled EC visit, 287 (83.9%) converted to SR after direct-current shock
application. Among the 374 patients in SR after the scheduled-EC visit, a recurrence of

https://github.com/IA-Cardiologia-husa/Cardioversion
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AF occurred in 145 (38.8%) patients on the ECG recorded at the 6-month visit. Thus, final
successful rhythm control at 6 months was achieved in 229 (53.4%) of the 429 patients
initially included in the study.

Table 2. Baseline characteristics of the study cohort. List of continuous and categorical data
input of the patients used for ML model development. Continuous variables are expressed as
mean ± standard deviation and categorical as n (%). Reference ranges for LVEF were considered
normal greater than 50%, mild dysfunction from 49 to 40%, moderate dysfunction from 39 to 30%,
and severe dysfunction less than 30%. Paroxysmal AF was defined as AF with episodes recurring
with variable frequency; persistent AF was defined as continuous AF that is sustained >7 days;
long-standing persistent AF was defined as continuous AF >12 months in duration. Reference ranges
for LA volume index were considered normal <35 mL/m2, mildly dilated from 35 to 41 mL/m2,
moderately dilated from 42 to 48 mL/m2, and severely dilated >48 mL/m2 [41].

Development Dataset
N = 316

Validation Dataset
N = 113

Missing Values Mean Missing Values Mean

Demographics
Age, years 2 62.1 ± 11.9 4 63.0 ± 12.2

Gender, male - 240 (75.9%) - 83 (73.5%)
Weight, kg 30 84.0 ± 17.1 19 85.2 ± 20.1
Height, cm 39 170.0 ± 8.9 28 170.6 ± 9.9

Body mass index, kg/m2 41 28.9 ± 5.0 28 29.0 ± 6.2
Cardiovascular risk factors

Hypertension - 172 (54.4%) - 62 (54.9%)
Dyslipidemia - 128 (40.5%) - 47 (41.6%)

Active smoking - 46 (14.6%) - 12 (10.6%)
Smoking history - 133 (42.1%) - 45 (39.8%)
Diabetes mellitus - 59 (18.7%) - 23 (20.4%)

Cardiovascular history
Heart failure - 100 (31.6%) - 24 (21.2%)

Coronary artery disease - 52 (16.5%) - 11 (9.7%)
Previous direct-current shock application attempt - 22 (7.0%) - 15 (13.3%)

Previous transient ischemic attack or stroke - 19 (6.0%) - 6 (5.3%)
History of oral anticoagulation treatment - 158 (50.0%) - 33 (29.2%)

Peripheral vascular disease - 16 (5.1%) - 9 (8.0%)
Rheumatic heart disease - 7 (2.2%) - 1 (0.9%)

Other comorbidities
Chronic obstructive pulmonary disease - 66 (20.9%) - 15 (13.3%)

Prior cancer - 28 (8.9%) - 10 (8.8%)
Prior bleeding - 11 (3.5%) - 3 (2.7%)

Venous thromboembolism - 10 (3.2%) - 1 (0.9%)
Impaired physical mobility - 8 (2.5%) - 6 (5.3%)

Clinical and biochemical variables
NYHA functional class >I - 106 (33.5%) - 39 (34.5%)
NYHA functional class >II - 35 (11.1%) - 10 (8.8%)
NYHA functional class >III - 9 (2.8%) - 0.0 ± 0.0

CHAD2DS2-VASc score - 2.2 ± 1.7 - 2.1 ± 1.6
HATCH score - 1.6 ± 1.5 - 1.4 ± 1.2

HASBLED score - 2.3 ± 1.1 - 2.1 ± 0.9
Anemia - 35 (11.1%) - 14 (12.4%)

Creatinine, mg/dL - 1.0 ± 0.4 1 1.0 ± 0.3
Glomerular filtration rate, mL/min/1.73 m2 - 75.6 ± 17.1 1 77.0 ± 17.0

Atrial fibrillation classification
Paroxysmal - 61 (19.3%) - 24 (21.2%)
Persistent - 250 (79.1%) - 89 (78.8%)

Long-standing persistent - 5 (1.6%) - 0 (0%)
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Table 2. Cont.

Development Dataset
N = 316

Validation Dataset
N = 113

Missing Values Mean Missing Values Mean

Echocardiographic findings
LV mass index, g/m2 42 102.3 ± 32.4 53 97.7 ± 28.4

LVEF < 50% - 73 (23.1%) - 26 (23.0%)
LVEF < 40% - 42 (13.3%) - 13 (11.5%)
LVEF < 30% - 21 (6.6%) - 6 (5.3%)

Tricuspid regurgitant jet velocity, cm/sec 149 257.7 ± 47.1 67 247.0 ± 50.9
At least moderate probability pulmonary hypertension - 43 (13.6%) - 9 (8.0%)

High probability pulmonary hypertension - 10 (3.2%) - 2 (1.8%)
LA volume index, mL/m2 37 43.6 ± 17.4 44 44.9 ± 16.7

LA volume index ≥ 35 mL/m2 - 182 (57.6%) - 51 (45.1%)
LA volume index ≥ 42 mL/m2 - 138 (43.7%) - 34 (30.1%)
LA volume index > 48 mL/m2 - 98 (31.0%) - 27 (23.9%)

Significant valvular heart disease - 68 (21.5%) - 21 (18.6%)
Mitral stenosis - 2 (0.6%) - 1 (0.9%)

Mitral regurgitation - 39 (12.3%) - 15 (13.3%)
Aortic stenosis - 2 (0.6%) - 3 (2.7%)

Aortic regurgitation - 9 (2.8%) - 4 (3.5%)
Tricuspid regurgitation - 23 (7.3%) - 5 (4.4%)

Mechanical prosthetic valve - 10 (3.2%) - 1 (0.9%)
Biological prosthetic valve - 9 (2.8%) - 5 (4.4%)

Oral anticoagulation
Time under anticoagulation, days - 30.9 ± 23.2 - 27.4 ± 17.2

K-vitamin antagonist - 102 (32.3%) 1 14 (12.5%)
Direct oral anticoagulants - 214 (67.7%) 1 98 (87.5%)

Dabigatran - 23 (7.3%) - 11 (9.7%)
Rivaroxaban - 93 (29.4%) - 17 (15.0%)

Apixaban - 79 (25.0%) - 49 (43.4%)
Edoxaban - 19 (6.0%) - 20 (17.7%)

Low-weight-molecular heparin - 0 (0%) - 2 (1.8%)
Antiarrhythmic drugs

Antiarrhythmics before scheduled EC - 132 (41.8%) - 45 (39.8%)
Amiodarone before scheduled EC - 98 (31.0%) - 34 (30.1%)

Flecainide before scheduled EC - 30 (9.5%) - 11 (9.7%)
Dronedarone before scheduled EC - 4 (1.3%) - 0 (0%)

Antiarrhythmics after scheduled EC - 198 (62.7%) - 65 (57.5%)
Amiodarone after scheduled EC - 147 (46.5%) - 38 (33.6%)

Flecainide after scheduled EC - 45 (14.2%) - 27 (23.9%)
Dronedarone after scheduled EC - 6 (1.9%) - 0 (0%)

Concomitant medications
Nonsteroidal anti-inflammatory drug - 5 (1.6%) - 0 (0%)

Aspirin - 39 (12.3%) - 7 (6.2%)
Dual antiplatelet therapy - 4 (1.3%) - 1 (0.9%)

Beta-blocker - 243 (76.9%) - 88 (77.9%)
ACE inhibitors/angiotensin II receptor blocker - 155 (49.1%) - 40 (35.4%)

Sacubitril-Valsartan - 2 (0.6%) - 1 (0.9%)
Calcium antagonist - 50 (15.8%) - 11 (9.7%)

Aldosterone receptor antagonist 1 31 (9.8%) - 10 (8.8%)
Digoxin - 20 (6.3%) - 1 (0.9%)

Direct-current procedure
Number of shocks 76 1.4 ± 0.7 30 1.3 ± 0.6

Applied maximal energy, J 105 176.2 ± 102.6 42 165.6 ± 36.5

ACE = angiotensin converting enzyme; EC = electric cardioversion; LA = left atrial; LVEF = left ventricle ejection
fraction.
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3.2. Comparison of Prediction Models for Each Pathway

The prediction accuracy of the different models under consideration evaluated at each
clinical pathway is shown in Tables 3 and 4 for the cross-validation with training data
and the evaluation with testing data, respectively. We used both the CHA2DS2-VASc and
HATCH risk scores as baseline models for performance evaluation. With the exception of
the direct-current cardioversion pathway, all the standard ML models achieved statistically
significant improvements compared to the baseline CHA2DS2-VASc or HATCH scores
(p < 0.01).

The best overall ML classifier algorithm in the internal validation was extremely
randomized trees with an AUC ROC of 0.81 for spontaneous SR restoration, 0.68 for
pharmacological cardioversion, 0.47 for direct-current cardioversion, 0.67 for 6-month AF
recurrence, and 0.69 for overall 6-month rhythm control, and it was chosen as the classifier
algorithm to be used with the test set and the online open-source calculator.

In order to better assess the clinical significance of these results, we compared the
classification performance in the 113 patients test set of the ML model with the CHA2DS2-
VASc and HATCH risk scores, operating at an optimal threshold that was selected based
on the ROC and PR curves.

For the spontaneous restoration of SR or pharmacologic cardioversion, the ML model
classified 35 patients as likely to return to SR before the scheduled direct-current shock ap-
plication (Figure 3A). Of those, 16 returned to SR before the direct-current shock application
(46% precision); meanwhile, of the 78 remaining patients, 68 stayed in AF (87% negative
predictive value). For the direct-current cardioversion (Figure 3B), the ML model classified
83 patients as likely to be in SR after the electric shock, and 4 with likely to remain in AF;
73/83 of the likely to be in the SR group returned to SR (88% precision), and so did 2/4 of
the likely to remain in the AF group (50% negative predictive value). For the recurrence of
AF (Figure 3C), out of the 101 patients that returned to SR, the ML model grouped them
as 30 likely to have a recurrence within 6 months and 71 not likely to have a recurrence.
From the likely to have a recurrence group, 16/30 did (53% precision); meanwhile, from
the not likely to have a recurrence group, 47/71 stayed in SR (66% negative predictive
value). Finally, for the overall success of rhythm control at 6 months (Figure 3D), the
ML categorized the 113 patients into 69 patients likely to be successful and 44 patients
not likely to be successful. In the likely to be successful group, 45/69 were in SR (65%
precision); meanwhile in the not likely to be successful group, 28/44 were in AF (64%
negative predictive value).

Compared to the most competitive existing score (Table 5), the ML model classified
correctly three more patients in the positive class and six less in the negative class for
predicting spontaneous SR restoration, for an NRI of +5.9% in favor of the ML model; it
classified correctly 2 less patients in the positive class and 22 more patients in the negative
class for predicting pharmacologic cardioversion, for an NRI of +38.8% in favor of the ML
model; it classified correctly 12 more patients in the positive class and 2 less in the negative
class for predicting direct-current cardioversion, for an NRI of −0.6% favoring the HATCH
score; it predicted correctly two patients more in the positive class and six patients more in
the negative class for predicting 6-month AF recurrence, for an NRI of +14.8% in favor of
the ML model; and finally, it predicted four more patients in the positive class and eight
more in the negative class for predicting the overall 6-month rhythm control, for an NRI of
+22.1% in favor of the ML model.
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Table 3. Performance of all prediction models at each clinical pathway in the cross-validation of the
training data, measured in terms of the area under the ROC curve (AUC ROC) and area under the
precision-recall curve (AUC PR). Both the CHA2DS2-VASc and HATCH risk scores were used as
baseline models for the performance evaluation of each machine-learning developed model.

Pathway Predictions Model AUC-ROC AUC-ROC Change AUC-PR AUC-PR Change

Spontaneous
SR restoration

1840 CHA2DS2-VASc 0.62
(0.50–0.73)

Baseline
model −7% 0.33

(0.23–0.44)
Baseline
model −2%

HATCH 0.69
(0.58–0.80) +7% Baseline

model
0.35

(0.25–0.45) +2% Baseline
model

Regularized logistic
regression

0.81
(0.71–0.92) +19% +12% 0.68

(0.53–0.82) +35% +33%

Random forest 0.82
(0.72–0.92) +20% +13% 0.67

(0.53–0.81) +34% +32%

Extremely
randomized trees

0.81
(0.71–0.92) +19% +12% 0.68

(0.54–0.83) +35% +33%

Boosted trees 0.80
(0.70–0.91) +18% +11% 0.68

(0.53–0.82) +35% +33%

Pharmacologic
cardioversion

1320 CHA2DS2–VASc 0.53
(0.39–0.67)

Baseline
model −2% 0.29

(0.20–0.37)
Baseline
model +2%

HATCH 0.55
(0.43–0.67) +2% Baseline

model
0.27

(0.21–0.33) −2% Baseline
model

Regularized logistic
regression

0.74
(0.60–0.87) +21% +19% 0.64

(0.47–0.80) +35% +37%

Random forest 0.67
(0.49–0.85) +14% +12% 0.60

(0.42–0.77) +31% +33%

Extremely
randomized trees

0.68
(0.51–0.84) +15% +13% 0.58

(0.41–0.75) +29% +31%

Boosted trees 0.68
(0.53–0.84) +15% +13% 0.61

(0.45–0.78) +32% +34%

Direct-current
cardioversion

2550 CHA2DS2-VASc 0.52
(0.42–0.62)

Baseline
model –6% 0.85

(0.81–0.89)
Baseline
model −1%

HATCH 0.58
(0.47–0.68) +6% Baseline

model
0.86

(0.82–0.90) +1% Baseline
model

Regularized logistic
regression

0.51
(0.40–0.62) −1% −7% 0.85

(0.80–0.89) 0% −1%

Random forest 0.48
(0.38–0.59) −4% −10% 0.85

(0.80–0.89) 0% −1%

Extremely
randomized trees

0.47
(0.35–0.58) −5% −11% 0.84

(0.79–0.88) −1% −2%

Boosted trees 0.46
(0.38–0.55) −6% −12% 0.84

(0.80–0.87) −1% −2%

6-month AF
recurrence

2730 CHA2DS2-VASc 0.54
(0.47–0.61)

Baseline
model −4% 0.40

(0.35–0.46)
Baseline
model +2%

HATCH 0.58
(0.50–0.65) +4% Baseline

model
0.38

(0.33–0.43) −2% Baseline
model

Regularized logistic
regression

0.63
(0.55–0.71) +9% +5% 0.55

(0.47–0.63) +15% +17%

Random forest 0.67
(0.59–0.75) +13% +9% 0.61

(0.52–0.70) +21% +23%

Extremely
randomized trees

0.68
(0.61–0.75) +14% +10% 0.61

(0.52–0.70) +21% +23%

Boosted trees 0.63
(0.55–0.71) +9% +5% 0.57

(0.48–0.65) +17% +19%

6-month
rhythm control

3160 CHA2DS2-VASc 0.55
(0.48–0.62)

Baseline
model −4% 0.58

(0.52–0.63)
Baseline
model −2%

HATCH 0.59
(0.52–0.69) +4% Baseline

model
0.60

(0.54–0.66) +2% Baseline
model

Regularized logistic
regression

0.63
(0.57–0.70) +8% +4% 0.69

(0.63–0.74) +11% +9%

Random forest 0.68
(0.62–0.74) +13% +9% 0.71

(0.65–0.77) +13% +11%

Extremely
randomized trees

0.69
(0.62–0.75) +14% +10% 0.72

(0.65–0.78) +14% +12%

Boosted trees 0.57
(0.51–0.64) +2% −2% 0.63

(0.58–0.68) +5% +3%

Number of predictions = Number of samples × 10 repetition.
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Table 4. Performance of all prediction models at each clinical pathway in the evaluation with testing
data. Both the CHA2DS2-VASc and HATCH risk scores were used as baseline models for the
performance evaluation of each machine-learning developed model.

Pathway Predictions Model AUC-ROC AUC-ROC Change AUC-PR AUC-PR Change

Spontaneous
SR restoration

68 CHA2DS2-VASc 0.57
(0.59–0.65)

Baseline
model −9% 0.31

(0.24–0.39)
Baseline
model −7%

HATCH 0.66
(0.59–0.73) +9% Baseline

model
0.38

(0.30–0.47) +7% Baseline
model

Regularized logistic
regression

0.80
(0.75–0.86) +23% +14% 0.52

(0.44–0.60) +21% +14%

Random forest 0.72
(0.66–0.79) +15% +6% 0.48

(0.39–0.56) +17% +10%

Extremely
randomized trees

0.79
(0.73–0.84) +22% +13% 0.57

(0.49–0.64) +26% +19%

Boosted trees 0.77
(0.71–0.83) +20% +11% 0.56

(0.48–0.64) +25% +18%

Pharmacologic
cardioversion

45 CHA2DS2-VASc 0.45
(0.34–0.56)

Baseline
model −10% 0.18

(0.09–0.27)
Baseline
model −5%

HATCH 0.55
(0.45–0.66) +10% Baseline

model
0.23

(0.13–0.33) +5% Baseline
model

Regularized logistic
regression

0.62
(0.52–0.72) +17% +7% 0.43

(0.32–0.54) +25% +20%

Random forest 0.66
(0.57–0.76) +21% +11% 0.40

(0.29–0.51) +22% +17%

Extremely
randomized trees

0.71
(0.63–0.80) +26% +16% 0.42

(0.31–0.53) +24% +19%

Boosted trees 0.57
(0.46–0.67) +12% +2% 0.30

(0.19–0.40) +12% +7%

Direct-current
cardioversion

87 CHA2DS2-VASc 0.57
(0.48–0.66)

Baseline
model +2% 0.88

(0.81–0.94)
Baseline
model +1%

HATCH 0.55
(0.46–0.65) –2% Baseline

model
0.87

(0.81–0.94) –1% Baseline
model

Regularized logistic
regression

0.53
(0.44–0.62) –4% –2% 0.87

(0.81–0.94) –1% 0%

Random forest 0.41
(0.32–0.49) –16% –14% 0.85

(0.77–0.92) –3% –2%

Extremely
randomized trees

0.48
(0.39–0.57) –9% –7% 0.88

(0.81–0.94) 0% +1%

Boosted trees 0.58
(0.48–0.67) +1% +3% 0.91

(0.86–0.97) +3% +4%

6-month AF
recurrence

101 CHA2DS2-VASc 0.52
(0.46–0.58)

Baseline
model +1% 0.41

(0.35–0.47)
Baseline
model +1%

HATCH 0.51
(0.45–0.56) –1% Baseline

model
0.40

(0.34–0.46) –1% Baseline
model

Regularized logistic
regression

0.64
(0.59–0.70) +12% +13% 0.49

(0.43–0.55) +8% +9%

Random forest 0.61
(0.55–0.67) +9% +10% 0.50

(0.44–0.56) +9% +10%

Extremely
randomized trees

0.62
(0.56–0.68) +10% +11% 0.53

(0.47–0.59) +12% +13%

Boosted trees 0.57
(0.51–0.63) +5% +6% 0.48

(0.42–0.54) +7% +8%

6-month
rhythm control

113 CHA2DS2-VASc 0.50
(0.45–0.56)

Baseline
model –1% 0.54

(0.48–0.59)
Baseline
model 0%

HATCH 0.51
(0.46–0.56) +1% Baseline

model
0.54

(0.49–0.60) 0% Baseline
model

Regularized logistic
regression

0.66
(0.61–0.71) +16% +15% 0.68

(0.63–0.73) +14% +14%

Random forest 0.60
(0.54–0.65) +10% +9% 0.62

(0.56–0.67) +8% +8%

Extremely
randomized trees

0.60
(0.55–0.65) +10% +9% 0.61

(0.56–0.67) +7% +7%

Boosted trees 0.58
(0.53–0.63) +8% +7% 0.63

(0.58–0.68) +9% +9%

Number of predictions = Number of samples × 10 repetition.
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reclassification index were provided when utilizing the developed machine-learning model. The 
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Pathway/Model TP FP TN FN R S P NPV Net Reclassification Index 
Spontaneous SR restoration          
Extremely randomized trees 12 16 35 5 70.6% 68.6% 42.9% 87.5% +5.9% 

CHA2DS2-VASc ≤ 1  9 20 31 8 52.9% 60.8% 31% 79.5% −19.6% 
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Figure 3. Illustration of envisioned clinical utilization of the machine-learning predictions along
the elective electrical cardioversion (EC) process. For the predictions, it was used an independent
dataset (from that used for the generation of the machine-learning models) of 113 patients. Patients
in sinus rhythm (SR) are represented in yellow and patients in atrial fibrillation (AF) in red. Patients
predicted by the machine-learning model to undergo or be in SR are included in a blue background.
Panel (A) represents predictions (blue background) to undergo spontaneous restoration of SR or
pharmacological cardioversion (CV) and ground truth findings for each patient (yellow or red).
Panel (B) represents predictions (blue background) of efficacy of direct-current shock application
and ground truth findings for each dataset patient (yellow or red). Panel (C) represents predictions
(blue background) of AF recurrence at 6 months after SR restoration and ground truth findings for
each patient (yellow or red). Panel (D) represents predictions (blue background) of SR control at
6 months and ground truth findings for each patient (yellow or red).

Table 5. Classification analysis. The classification performance of the CHA2DS2-VASc and HATCH
risk scores and the best performance machine-learning model were calculated for each electric
cardioversion pathway. The net increase performance (number of patients and percentage) and net
reclassification index were provided when utilizing the developed machine-learning model. The
most competitive existing risk score, either CHA2DS2-VASc or HATCH, was used as the baseline
model for the performance evaluation of the machine-learning developed model at each pathway.

Pathway/Model TP FP TN FN R S P NPV Net Reclassification Index

Spontaneous SR restoration
Extremely randomized trees 12 16 35 5 70.6% 68.6% 42.9% 87.5% +5.9%

CHA2DS2-VASc ≤ 1 9 20 31 8 52.9% 60.8% 31% 79.5% −19.6%
HATCH ≤ 0 9 10 41 8 52.9% 80.4% 47.4% 83.7% Baseline model

Pharmacologic cardioversion
Extremely randomized trees 4 3 33 5 44.4% 91.7% 57.1% 86.8% +38.8%

CHA2DS2-VASc ≤ 2 6 25 11 3 66.7% 30.6% 19.4% 78.6% Baseline model
HATCH ≤ 2 8 36 0 1 88.9% 0% 18.2% 0% −8.4%

Direct-current cardioversion
Extremely randomized trees 73 10 2 2 97.3% 16.7% 88% 50% −0.6%

CHA2DS2-VASc ≤ 0 10 3 9 65 13.3% 75% 76.9% 12.1% −26.3%
HATCH ≤ 1 61 8 4 14 81.3% 33.3% 88.4% 22.2% Baseline model

6-month AF recurrence
Extremely randomized trees 16 14 47 24 40% 77% 53.3% 66.2% +14.8%

CHA2DS2-VASc >2 14 20 41 26 35% 67.2% 41.2% 61.2% Baseline model
HATCH >1 15 23 38 25 37.5% 62.3% 39.5% 60.3% −2.4%

6-month rhythm control
Extremely randomized trees 45 24 28 16 73.8% 53.8% 65.2% 63.6% +22.1%

CHA2DS2-VASc ≤ 2 41 32 20 20 67.2% 38.5% 56.2% 50% Baseline model
HATCH ≤ 1 38 31 21 23 62.3% 40.4% 55.1% 47.7% −2.8%
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3.3. Feature Importance

Table 6 shows the five most important variables, along with their importance scores,
ranked according to their contribution to the predictions of the ML model at each pathway.
Variables related to paroxysmal AF classification and left atrial dilatation appeared to be
more important for the predictions than traditional cardiovascular risk factors and age
included in the CHA2DS2-VASc or HATCH scores. Paroxysmal AF was on the list of top
predictors of three pathways: spontaneous SR restoration, pharmacologic cardioversion,
and 6-month rhythm control, while left atrial dilatation was among the most important
risk factors of four pathways: spontaneous SR restoration, direct-current cardioversion, AF
recurrence, and 6-month rhythm control.

Table 6. Feature importance. Variable ranking by their contribution to the predictions of the extremely
randomized tree model at each pathway. The score represents the relative importance of that variable
for the machine-learning model. The weight of the features is scaled from 0 to 1; thus, variables close
to 1 show a higher impact on the predictive model.

Pathway Variable Score

Spontaneous SR restoration Paroxysmal atrial fibrillation 1
History of oral anticoagulation treatment 0.316

LA volume index ≥ 42 mL/m2 0.257
ACE inhibitors/Angiotensin II receptor blockers 0.150

LVEF < 50% 0.065
Pharmacologic cardioversion Paroxysmal atrial fibrillation 1

Heart failure 0.111
Dyslipidemia 0.085

Glomerular filtration rate 0.066
Peripheral vascular disease 0.064

Direct-current cardioversion Chronic obstructive pulmonary disease 1
Long-standing persistent AF 0.693

Heart Failure 0.411
Beta blockers 0.297

LA volume index ≥ 35 mL/m2 0.277
6-month AF recurrence Spontaneous SR restoration 1

History of oral anticoagulation treatment 0.857
Hypertension 0.849

ACE inhibitors/angiotensin II receptor blockers 0.827
NYHA functional class >II 0.818

6-month rhythm control LA volume index ≥ 35 mL/m2 1
Paroxysmal atrial fibrillation 0.577

History of oral anticoagulation treatment 0.468
LA volume index ≥ 48 mL/m2 0.446

Smoking history 0.423

LA = left atrial; LVEF = left ventricular ejection fraction; SR = sinus rhythm.

3.4. Machine-Learning Models Deployment in a Calculator

We deployed our machine-learning algorithms in a calculator where you can input
the information of the 18 features that were found as main predictors for each clinical
pathway and see the individual prediction for the concrete outcome. These features are
weight, height, time of AF onset, LA volume, mitral regurgitation, LVEF, NYHA functional
class, tobacco smoking history, previous direct-current shock application attempt, previous
transient ischemic attack or stroke, history of heart failure, history of anticoagulation,
pulmonary disease including sleep apnea, impaired physical mobility, beta blockers, ACE
inhibitors/Angiotensin receptor blockers, and type of anticoagulation. For the prediction
of AF recurrence, additional features, such as the type of cardioversion (spontaneous,
pharmacologic, or direct current), antiarrhythmic prescription, and creatinine clearance,
were required. The calculator is available at https://colab.research.google.com/drive/
1TbHf9waHNQYHQJhu5M9iqnpO5AESGDO5, accessed on 7 April 2022.

https://colab.research.google.com/drive/1TbHf9waHNQYHQJhu5M9iqnpO5AESGDO5
https://colab.research.google.com/drive/1TbHf9waHNQYHQJhu5M9iqnpO5AESGDO5


J. Clin. Med. 2022, 11, 2636 14 of 19

4. Discussion

To our knowledge, this is the first ML analysis of the whole elective EC of the AF
process. In a consecutive and well-characterized cohort, we were able to concatenate
different ML algorithms to establish predictions at each different clinical pathway observed
throughout the EC process. Our ML prediction models were superior to the classical
existing scores, CHA2DS2-VASc and HATCH. Taking into account the difficulty of using
ML algorithms in clinical practice, we further integrated them into a simple open-source
calculator where predictions are easy to calculate and understand.

Other investigators have used the ML methodology to predict particular pathways
of the EC of the AF process, such as Oto et al. studying the successful cardioversion
workflow for patients who perform pharmacologic cardioversion after 48 h of flecainide
treatment [42] or Sterling et al. predicting successful cardioversion using ECG variables [21].
However, we would like to highlight that the analysis presented here is more integral than
the previous ones, that we have considered ML models with nonlinear interactions between
the variables, and that we have been more thorough with the feature selection phase to
avoid pitfalls in our evaluation phase.

In our study, the performance of the resulting ML models ranged from a very good
classification for the spontaneous restoration of SR and the pharmacological cardioversion
models; a reasonable classification for the AF recurrence and successful cardioversion
model; to a not statistically significantly better than random guessing classification for
the direct-current cardioversion model. Differences in performance between models with
different ML classification algorithms in each of the workflows were not statistically sig-
nificant, and we reported the best algorithm result among them. The results from the
development were consistent with the ones from the validation.

The classical existing predictive multivariate logistic regression scores, CHA2DS2-
VASc and HATCH, are currently considered the cornerstone for the management of AF.
Although the CHA2DS2-VASc score is the basis for the management of anticoagulation
therapy [1,2], some studies suggest that it has predictive value for AF recurrence after
cardioversion. In a pooled meta-analysis collecting data of 2889 patients, the CHA2DS2-
VASc score was an independent predictor of early recurrence of AF after pharmacologic
or EC [23]. In addition, the HATCH score, initially described to predict progression from
paroxysmal to persistent AF [36], has also been shown to be useful in predicting the
short-term success of EC [37]. The herein developed ML models have been consistently
better than the CHA2DS2-VASc and HATCH scores at predicting the different outcomes
in our cohort of patients. We must acknowledge that the existing scores are facing an
external validation, meanwhile ML models are evaluated internally, and the possible
selection bias or other existing biases in our dataset will play in favor of the ML models.
However, the results of both existing scores were poor and unlikely to be useful in clinical
practice; meanwhile, the results of the ML models were optimal in the independent dataset,
corresponding to 113 patients, where they were validated. An external validation should
be performed to confirm that these results that could be improved by using additional
datasets for the continuous development of the models. In particular, a bigger dataset
or the inclusion of different variables, such as ECG variables, might help in discovering
additional interactions between features with predictive properties. This is the main reason
why open-source of the developed algorithms can be accessed through this publication,
with the aim of improving their predictions with the addition of new patient cohorts and
new variables.

The clinical application of the ML prediction models is relevant. Using the developed
open-source calculator, we could make individual predictions for each AF patient for
whom EC is a therapy option and optimize the procedure (i.e., adding pre-cardioversion
antiarrhythmic drugs) in cases with a low likelihood of having a successful cardioversion,
or we would prioritize the waiting list for those patients for whom the EC is estimated
to be successful over time. The use of the developed open-source calculator is simple
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and can facilitate the implementation of other elective EC models where nursing plays a
predominant role [43].

Finally, this study has several limitations. The results of the ML models in the five
AF workflows have been uneven. In particular, we have not been able to predict success
of the application of direct current cardioversion. The results of the recurrence of AF, and
subsequently the long-term success of the cardioversion process, were also moderate. We
must acknowledge that we are working with a single-hospital dataset and that it would
have been desirable to have a different population to validate the ML models. Nevertheless,
we consider it enough to showcase the possibilities of applying ML techniques in a clinical
workflow and want to emphasize the effort made to offer a rigorous evaluation, performing
nested cross-validation steps for selecting features and hyperparameters to report an
accurate measure of the performance. A greater number of patients would have allowed
for the development of more precise models and to study in more detail the relationship
between variables and outcomes. However, the sample size and number of events were
enough to perform a proper evaluation of the ML and is reflected in that we were able to
ascertain statistically significant differences in performance between ML models and risk
scores (Figure 4). We encourage researchers with larger databases to use the provided code
as a basis to build more refined models.

Figure 4. The learning curve of the best model for each of the pathways, including hyperparameter
tuning. The results are shown as the area under the ROC curve with its confidence interval as
measured in the external validation set. Notice that the results of the models are not displayed until
a certain percentage of the training set is used. This is because the hyperparameter tuning step
performs a cross validation that requires a minimum of events to produce results.
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Appendix A

Table A1. TRIPOD Checklist: Prediction Model Development and Validation.

Section/Topic Item Checklist Item Page

Title and abstract

1 D;V Identify the study as developing and/or validating a multivariable prediction
model, the target population, and the outcome to be predicted. 1

Abstract 2 D;V Provide a summary of objectives, study design, setting, participants, sample size,
predictors, outcome, statistical analysis, results, and conclusions. 2

Introduction

Background and objectives

3a D;V
Explain the medical context (including whether diagnostic or prognostic) and
rationale for developing or validating the multivariable prediction model,
including references to existing models.

3

3b D;V Specify the objectives, including whether the study describes the development or
validation of the model or both. 3

Methods

Source of data
4a D;V

Describe the study design or source of data (e.g., randomized trial, cohort, or
registry data), separately for the development and validation data sets,
if applicable.

2

4b D;V Specify the key study dates, including start of accrual; end of accrual; and, if
applicable, end of follow-up. 3

Participants

5a D;V Specify key elements of the study setting (e.g., primary care, secondary care,
general population) including number and location of centers. 3

5b D;V Describe eligibility criteria for participants. 3

5c D;V Give details of treatments received, if relevant. 4

Outcome
6a D;V Clearly define the outcome that is predicted by the prediction model, including

how and when assessed. 2, 3

6b D;V Report any actions to blind assessment of the outcome to be predicted. 3

Predictors
7a D;V Clearly define all predictors used in developing or validating the multivariable

prediction model, including how and when they were measured. Table 2

7b D;V Report any actions to blind assessment of predictors for the outcome and
other predictors. 4

Sample size 8 D;V Explain how the study size was arrived at. 4

Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single
imputation, multiple imputation) with details of any imputation method. 4

Statistical analysis methods

10a D Describe how predictors were handled in the analyses. 4

10b D Specify type of model, all model-building procedures (including any predictor
selection), and method for internal validation. 3, 4

10c V For validation, describe how the predictions were calculated. 4

10d D;V Specify all measures used to assess model performance and, if relevant, to
compare multiple models. 4

10e V Describe any model updating (e.g., recalibration) arising from the validation,
if done. NA

Risk groups 11 D;V Provide details on how risk groups were created, if done. 4

Development vs. validation 12 V For validation, identify any differences from the development data in setting,
eligibility criteria, outcome, and predictors. 4
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Table A1. Cont.

Section/Topic Item Checklist Item Page

Results

Participants

13a D;V
Describe the flow of participants through the study, including the number of
participants with and without the outcome and, if applicable, a summary of the
follow-up time. A diagram may be helpful.

Figure 2

13b D;V
Describe the characteristics of the participants (basic demographics, clinical
features, available predictors), including the number of participants with missing
data for predictors and the outcome.

Table 2

13c V For validation, show a comparison with the development data of the distribution
of important variables (demographics, predictors, and outcome).

Tables 2
and 6

Model development
14a D Specify the number of participants and outcome events in each analysis. Figure 2

14b D If done, report the unadjusted association between each candidate predictor
and outcome. NA

Model specification
15a D

Present the full prediction model to allow predictions for individuals (i.e., all
regression coefficients and model intercept or baseline survival at a given
time point).

6

15b D Explain how to use the prediction model. 6

Model performance 16 D;V Report performance measures (with CIs) for the prediction model. Tables 3–5

Model-updating 17 V If done, report the results from any model updating (i.e., model specification,
model performance). NA

Discussion

Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few
events per predictor, missing data). 14, 15

Interpretation
19a V For validation, discuss the results with reference to the performance of the

development data and any other validation data. 13, 14

19b D;V Give an overall interpretation of the results, considering objectives, limitations,
results from similar studies, and other relevant evidence. 13, 14

Implications 20 D;V Discuss the potential clinical use of the model and implications for
future research. 13,14

Other information

Supplementary information 21 D;V Provide information about the availability of supplementary resources, such as
study protocol, Web calculator, and data sets. 7, 14

Funding 22 D;V Give the source of funding and the role of the funders for the present study. 15
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B. Left atrial mechanical remodelling assessed as the velocity of left atrium appendage wall motion during atrial fibrillation is
associated with maintenance of sinus rhythm after electrical cardioversion in patients with persistent atrial fibrillation. PLoS ONE
2020, 15, e0228239. [CrossRef]

25. Singh, J.P. It Is Time for Us to Get Artificially Intelligent! JACC Clin. Electrophysiol. 2019, 5, 263–265. [CrossRef]
26. Dorado-Díaz, P.I.; Sampedro-Gómez, J.; Vicente-Palacios, V.; Sánchez, P.L. Applications of Artificial Intelligence in Cardiology.

The Future is Already Here. Rev. Esp. Cardiol. Engl. Ed. 2019, 72, 1065–1075. [CrossRef]
27. Moawad, G.N.; Elkhalil, J.; Klebanoff, J.S.; Rahman, S.; Habib, N.; Alkatout, I. Augmented Realities, Artificial Intelligence, and

Machine Learning: Clinical Implications and How Technology Is Shaping the Future of Medicine. J. Clin. Med. 2020, 9, 3811.
[CrossRef]

28. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a multivariable prediction model for Individual
Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Ann. Intern. Med. 2015, 162, 55-U103. [CrossRef]

29. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Phyton. J. Mach. Learn. Res. 2011, 12, 2825–2830.

http://doi.org/10.1186/1755-7682-2-39
http://doi.org/10.1093/eurheartj/ehu367
http://doi.org/10.1016/j.thromres.2017.06.026
http://www.ncbi.nlm.nih.gov/pubmed/28662483
http://doi.org/10.1056/NEJM200003303421302
http://www.ncbi.nlm.nih.gov/pubmed/10738049
http://doi.org/10.1002/14651858.CD005049.pub4
http://doi.org/10.1016/S0140-6736(12)60570-4
http://doi.org/10.1093/europace/euy310
http://doi.org/10.1371/journal.pone.0197352
http://doi.org/10.3390/jcm10051029
http://doi.org/10.1155/2011/545023
http://doi.org/10.1016/j.eupc.2005.04.007
http://doi.org/10.1016/j.ahj.2005.03.019
http://doi.org/10.2459/JCM.0000000000000139
http://doi.org/10.1155/2015/527815
http://www.ncbi.nlm.nih.gov/pubmed/26120354
http://doi.org/10.1016/j.amjcard.2016.11.026
http://www.ncbi.nlm.nih.gov/pubmed/28017305
http://doi.org/10.1002/clc.23147
http://www.ncbi.nlm.nih.gov/pubmed/30597581
http://doi.org/10.1371/journal.pone.0228239
http://doi.org/10.1016/j.jacep.2018.12.003
http://doi.org/10.1016/j.recesp.2019.05.016
http://doi.org/10.3390/jcm9123811
http://doi.org/10.7326/M14-0697


J. Clin. Med. 2022, 11, 2636 19 of 19

30. Gallego-Delgado, M.; Villacorta, E.; Valenzuela-Vicente, M.C.; Walias-Sánchez, Á.; Ávila, C.; Velasco-Cañedo, M.J.; Cano-Mozo,
M.T.; Martín-García, A.; García-Sánchez, M.J.; Sánchez, A.; et al. Start-up of a Cardiology Day Hospital: Activity, Quality Care
and Cost-effectiveness Analysis of the First Year of Operation. Rev. Esp. Cardiol. Engl. Ed. 2019, 72, 130–137. [CrossRef]

31. Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 8.
[CrossRef] [PubMed]

32. Davis, J.; Goadrich, M. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International
Conference on Machine Learning (ICML-06), Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240.

33. Hanley, J.A.; McNeil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology
1982, 143, 29–36. [CrossRef] [PubMed]

34. Nadeau, C.; Bengio, Y. Inference for the generalization error. Mach. Learn. 2003, 52, 239–281. [CrossRef]
35. Bouckaert, R. Choosing Between Two Learning Algorithms Based on Calibrated Tests. ICML 2003, 3, 51–58.
36. De Vos, C.B.; Pisters, R.; Nieuwlaat, R.; Prins, M.H.; Tieleman, R.G.; Coelen, R.J.; van den Heijkant, A.C.; Allessie, M.A.; Crijns,

H.J. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J. Am. Coll. Cardiol. 2010, 55,
725–731. [CrossRef]
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