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Abstract

Background: During the coronavirus disease 2019 (COVID‐19) pandemic, it has

become a pressing need to be able to diagnose aspirin hypersensitivity in patients

with asthma without the need to use oral aspirin challenge (OAC) testing. OAC is

time consuming and is associated with the risk of severe hypersensitive reactions. In

this study, we sought to investigate whether machine learning (ML) based on some

clinical and laboratory procedures performed during the pandemic might be used

for discriminating between patients with aspirin hypersensitivity and those with

aspirin‐tolerant asthma.

Methods: We used a prospective database of 135 patients with non‐steroidal anti‐
inflammatory drug (NSAID)–exacerbated respiratory disease (NERD) and 81

NSAID‐tolerant (NTA) patients with asthma who underwent OAC. Clinical charac-

teristics, inflammatory phenotypes based on sputum cells, as well as eicosanoid

levels in induced sputum supernatant and urine were extracted for the purpose of

applying ML techniques.

Results: The overall best ML model, neural network (NN), trained on a set of best

features, achieved a sensitivity of 95% and a specificity of 76% for diagnosing

NERD. The 3 promising models (i.e., multiple logistic regression, support vector

machine, and NN) trained on a set of easy‐to‐obtain features including only clinical

characteristics and laboratory data achieved a sensitivity of 97% and a specificity

of 67%.

Conclusions: ML techniques are becoming a promising tool for discriminating be-

tween patients with NERD and NTA. The models are easy to use, safe, and achieve

very good results, which is particularly important during the COVID‐19 pandemic.
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1 | BACKGROUND

Asthma is a heterogeneous disease with various phenotypes. Asthma

with aspirin hypersensitivity is a specific phenotype accompanied by

chronic rhinosinusitis with nasal polyposis (CRSwNP) and charac-

terized by a severe course. Recently, it has been termed “nonste-

roidal anti‐inflammatory drug (NSAID)‐exacerbated respiratory

disease (NERD)”.1 Several decades ago, it was observed that hyper-

sensitivity to NSAIDs manifests with asthma accompanied by

CRSwNP. This is how aspirin‐intolerant asthma was distinguished. It

was later renamed as aspirin‐exacerbated respiratory disease, which

pointed to the underlying inflammatory process affecting the upper

and lower airways.1

The pathogenesis of NERD is associated with several abnor-

malities related to the cyclooxygenase (COX) and lipoxygenase

pathways of arachidonic acid metabolism in the upper and lower

airway mucosa. A reduced expression of COX2 mRNA leading to a

lower generation of PGE2 by nasal polyps,2 nasal polyp epithelial

cells,2 and bronchial fibroblasts was reported.2 This, together with a

reduced expression of prostaglandin EP2 receptors, could result in

impaired anti‐inflammatory response.3,4 An increased generation of

cysteinyl leukotrienes as well as overexpression of enzymes involved

in leukotriene production (5‐lipoxygenase and leukotriene C4 syn-

thase), together with an increased expression of leukotriene type 1

receptors in the nasal mucosa of patients with NERD, may result in

local hyperresponsiveness to leukotrienes.1

With a sensitivity of 89% and a specificity of 93%, oral aspirin

challenge (OAC) remains the gold standard for diagnosing aspirin

hypersensitivity.5 Recently, the coronavirus disease 2019 (COVID‐
19) pandemic has strongly limited OAC use, because aerosol‐
producing medical procedures have been forbidden. Moreover,

OAC is time consuming, requires experienced personnel, may cause

severe systemic reaction, and cannot be performed in patients with

impaired lung function (forced expiratory volume in the first second

[FEV1] < 70%) or previous anaphylactic shock caused by NSAIDs.

Inhaled or intranasal aspirin challenge tests can be performed instead

of OAC, but they are limited by a need for specialist equipment and

well‐trained staff.5 Thus, there is now a pressing need to develop

simple tools for a differential diagnosis of aspirin‐tolerant and

aspirin‐sensitive asthma based on clinical parameters and medical

history data rather than OAC testing.

Currently, there are no reliable in vitro diagnostic tests for

routine use in patients with NERD. Recently, artificial intelligence has

emerged as an increasingly useful tool in different medical fields. It

was reported to facilitate the diagnosis of respiratory diseases, such

as chronic obstructive pulmonary disease and NERD.6,7 We previ-

ously described the possible role of the artificial neural network (NN)

in diagnosing NERD using as many data as possible, including induced

sputum (IS) and spirometry parameters.7

In this study, we aimed to investigate the usefulness of machine

learning (ML) techniques in discriminating between patients with

aspirin‐sensitive and those with aspirin‐tolerant asthma. The goal

was to use easily obtainable data from medical history as well as

clinical and laboratory data, while omitting procedures that were not

allowed during the COVID‐19 pandemic (due to the risk of virus

transmission), such as aspirin challenge, IS testing, and spirometry.

2 | METHODS

2.1 | Study group

In this study, we used a prospective database of 135 patients with

NERD and 81 patients with NSAID‐tolerant asthma (NTA), who were

recruited from among patients with asthma treated at the Andrzej

Szczeklik Department of Internal Medicine, Jagiellonian University

Medical College, Krakow, Poland.

Of the 135 patients, 71% reported previous adverse reactions

after NSAID use. However, in the remaining 29% of patients, the

precise history of NSAID use could not be determined. Some patients

were ineligible for long‐term NSAID use due to CRSwNP and the risk

of NSAID hypersensitivity.

Hypersensitivity to NSAIDs was confirmed by OAC according to

the European Academy of Allergy and Clinical Immunology guide-

lines.5 Asthma severity was assessed based on the 2021 Global

Initiative for Asthma report8 and the presence of CRSwNP confirmed

by ear, nose, and throat examination and sinus computed tomography.

The clinical characteristics of patients were collected between

2014 and 2021 (Table 1). Patients were participants of our previous

studies on aspirin hypersensitivity (see Acknowledgments). Biological

samples including blood, IS, and urine were obtained at the following

time points: (a) 1 day before bronchial aspirin challenge9; (b) 1.5 h

before diagnostic OAC10; (c) 1 day before OAC performed because of

aspirin desensitization11; and (d) 1 day before OAC (unpublished

data). Asthma control was assessed using the Asthma Control Test

(ACT). Subjects remained clinically stable, and the FEV1 was ≥70% of

predicted value on the day of aspirin challenge. None of the partic-

ipants experienced any asthma exacerbation or respiratory tract

infection during the 6 weeks preceding the study. Moreover, none of

the patients with asthma had been treated with leukotriene modifiers

6 weeks prior to the study or with other medications except inhaled

corticosteroids (ICSs), small doses of oral corticosteroids (OCSs;

≤10 mg of prednisolone or equivalent), and long‐acting β2‐agonists.

Patients with a history of biologic treatment were also excluded. The

primary outcome was the diagnosis of NERD. For the purpose of this

study, we considered patient's clinical data (sex, age at asthma onset,

body mass index, ACT score, asthma severity, ICS and OCS treat-

ment, presence of CRSwNP, history of sinonasal surgery), FEV1 value,

and the results of skin prick tests to aeroallergens. Laboratory tests

included blood eosinophil count, total serum immunoglobulin E levels,

inflammatory phenotypes based on different cut‐off levels of cell

percentage, concentrations of prostaglandins PGD2 and PGE2 as well

as leukotrienes LTE4 and LTD4 in IS supernatant (ISS), and urinary

LTE4 levels.

Each of the studies providing data for the current research was

approved by Jagiellonian University Ethics Committee, and written
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TAB L E 1 Characteristics of the study groups

Feature NERD (n = 135) NTA (n = 81) p‐value

Age (years) 47.0 � 11.9 47.5 � 14.2 0.809

Sex (female/male) 97/38 43/38 0.005

BMI (kg/m2) 27.0 � 5.1 26.7 � 4.4 0.608

Asthma onset (years) 34.5 � 12.7 33.4 � 17.2 0.621

Asthma duration (years) 12.7 � 8.9 14.2 � 11.8 0.387

Asthma control (good/mid/bad) 89/28/18 65/10/6 0.088

Asthma severity (mild/moderate/severe) 19/17/99 29/9/43 0.001

Past sinonasal surgeries (yes/no) 122/13 40/41 <0.001

CRSwNP (yes/no) 135/0 43/38 <0.001

ICS (yes/no) 122/13 62/19 0.009

OCS (yes/no) 8/127 7/74 0.432

Prick tests (positive/negative) 49/86 52/29 <0.001

ACT score (points) 20.8 � 4.4 22.0 � 3.9 0.014

Baseline FEV₁ (%) 89.9 � 15.5 95.2 � 16.0 0.019

Dose of ICS (µg/d fluticasone eq) 664.5 � 457.3 537.1 � 508.2 0.010

Blood eosinophils (mm³) 415.6 � 306.2 377.7 � 335.6 0.092

Total serum IgE (IU/ml) 188.0 � 250.2 332.4 � 954.6 0.485

IS neutrophils (%) 39.8 � 22.1 46.9 � 22.4 0.024

IS eosinophils (%) 9.7 � 13.8 4.0 � 8.6 <0.001

ISS PGD₂ 65.7 � 76.2 57.7 � 169.9 0.006

ISS PGE₂ 87.3 � 100.5 85.1 � 100.6 0.406

ISS LTD₄ 108.1 � 353.3 66.4 � 102.0 0.248

ISS LTE₄ 114.7 � 166.5 49.0 � 87.1 <0.001

Urinary LTE₄ (pg/mg creatinine) 2743.1 � 5796.7 8023.7 � 64,517.3 <0.001

IS phenotype neutrophilic (yes/no)a 19/116 20/61 0.050

IS phenotype eosinophilic (yes/no)a 61/74 17/64 <0.001

IS phenotype paucigranulocytic (yes/no)a 47/88 40/41 0.035

IS phenotype mixed (yes/no)a 8/127 4/77 1.000

IS phenotype neutrophilic (yes/no)b 14/121 17/64 0.031

IS phenotype eosinophilic (yes/no)b 70/65 24/57 0.001

IS phenotype paucigranulocytic (yes/no)b 37/98 33/48 0.043

IS phenotype mixed (yes/no)b 14/121 7/74 0.678

IS phenotype eosinophilic (yes/no)c 63/72 18/63 <0.001

IS phenotype noneosinophilic (yes/no)c 66/69 60/21 <0.001

IS phenotype mixed (yes/no)c 6/129 3/78 1.000

Note: Data are presented as mean � SD or number of patients.

Abbreviations: ACT, Asthma Control Test; BMI, body mass index; CRSwNP, chronic rhinosinusitis with nasal polyposis; FEV₁, forced expiratory volume

in the first second; ICS, inhaled corticosteroids; IgE, immunoglobulin E; IS, inducted sputum; ISS, induced sputum supernatant; LTD₄, leukotriene D₄;
LTE₄, leukotriene E₄; NERD, nonsteroidal anti‐inflammatory drug–exacerbated respiratory disease; NTA, nonsteroidal anti‐inflammatory drug–tolerant

asthma; OCS, oral corticosteroids; PGD₂, prostaglandin D₂; PGE₂, prostaglandin E₂.
a, b, c There are several accepted thresholds when defining IS phenotypes.
aThreshold of 3% for eosinophiles and 60% for neutrophiles, 4 phenotypes.
bThreshold of 2% for eosinophiles and 60% for neutrophiles, 4 phenotypes.
cThreshold of 3% for eosinophiles and 64% for neutrophiles, 3 phenotypes.

GAWLEWICZ‐MROCZKA ET AL. - 3 of 11



informed consent was obtained from all study participants. The study

was conducted in accordance with the Declaration of Helsinki.

2.2 | Data collection

IS was obtained from all study participants before the OAC test, as

described above.9–11 Samples were collected according to the Euro-

pean Respiratory Society recommendations.12 The material was

processed to obtain cytospin slides for a differential cell count and a

supernatant for eicosanoid evaluation. Data from the IS differential

cell count were divided into foue cell phenotypes using different cut‐
off values for eosinophils (2%13 and 3%11). Based on another publi-

cation, three cell phenotypes were distinguished.14

The levels of eicosanoids in ISS were measured by gas chroma-

tography/mass spectrometry for PGD2 and PGE2 and by high‐
performance liquid chromatography/tandem mass spectrometry for

LTE4 and LTD4. Analytical details were described elsewhere.9

Urinary LTE4 levels were assessed with an enzyme‐linked

immunosorbent assay (Cayman Chemical Co.). The results were

recalculated in picograms per milligram of creatinine.

2.3 | Methodology of machine learning

2.3.1 | Study design and workflow

Detailed characteristics of patients with a comparison between the

NERD and NTA groups are presented in Table 1. In the database,

information on urinary LTE₄ levels was missing for nine patients; on

LTE₄ and LTD₄ levels in ISS, for six patients; and on PGE₂ and PGD₂
levels in ISS, for two patients. Those values were imputed using the

K‐Nearest Neighbors method (with K set to 5). Continuous features

were normalized using the following formula:

normalized feature

¼
feature − mean of the feature

maximum of the feature − minimum of the feature
:

A flowchart of the consecutive steps, from obtaining the database

of patients to the final evaluation of the best models, is presented in

Figure S1 (part of the supplementary materials). We randomly split a

database of 216 patients into two parts: the “training + validation” set

with 156 patients (including 96 NERD patients) and the “test” set with

60 patients (including 39 NERD patients). We prepared three different

subsets of features. Basically, the “all features” set contained all the

possible features collected before the pandemic, including spirometry

and IS testing parameters. The “best” set contained the best possible

features that were chosen using the L‐1–based feature selection

technique. A logistic regression with the L‐1 penalty was created. The

L‐1 penalty has a property of making the model's coefficients sparse,

and unimportant features are assigned a coefficient value of 0. Such

features are considered unimportant and are eliminated. The “easy‐to‐
obtain” set contained easily obtainable features, which were manually

chosen by the authors. Those features were considered to be easily

accessible during the pandemic when other tests were unavailable. The

list of features for each set is presented in Table 2. We checked seven

types of algorithms: decision tree, random forest, eXtreme Gradient

Boosting (XGBoost), multiple logistic regression (MLR), support vector

machine (SVM), NN, and TabNet.15 The best hyperparameter settings

of those models were chosen with a 5‐fold cross‐validation, which is a

way to choose the best models. The training + validation set was

divided into five parts. The model was trained on the first four parts, and

the final part remained for evaluation. This process was repeated five

times, and each time a different one‐fifth part of the training + valida-

tion set was used for evaluation. The mean of five different evaluation

results was considered when choosing the best hyperparameter set-

tings for an algorithm. Next, the best model was retrained on the entire

training + validation set and assessed on the test set.

2.3.2 | Algorithms

Given input features of the patient, an ML algorithm was supposed to

predict an output label, which could be either NERD or NTA. There

are various algorithms that can perform such a classification task, and

they are controlled by different hyperparameters. Hyperparameters

are settings that can be manually influenced by a person. Parameters,

on the other hand, are learned by the algorithm itself. An example

hyperparameter could be the number of neurons in each layer of an

NN. Hyperparameter tuning is done with cross‐validation, and it al-

lows to pick the best settings for a model. Detailed descriptions of

the ML algorithms used in this study can be found in the supple-

mentary materials.

2.3.3 | Model evaluation and statistical analysis

We used accuracy (correctly classified examples/total number of

examples) as our evaluation metric for choosing the best hyper-

parameters for each of the seven algorithms. A model with the

highest accuracy was considered the best. Each type of an algorithm

in our study had its best hyperparameters chosen via 5‐fold cross‐
validation. Models with the highest validation score were reported.

For the best models, we assessed the following additional metrics:

diagnostic accuracy (which takes into account the prevalence of

NERD in asthma population—7%),16 sensitivity, specificity, and the

area under the receiver operating characteristic curve (AUC) with

95% confidence intervals (CIs), which were provided in brackets. The

Shapley Additive exPlanations (SHAP) analysis was performed for the

best models to explain how they are predicting an output.

For statistical analysis, in the case of a continuous feature with

normal distribution, we used the Student's t‐test for mean compari-

son. If the distribution was skewed, the Mann‐Whitney U test was

used. For a categorical feature, we created a contingency table and

compared the data using the χ2 test if the size of every sample was at

least 5. Otherwise, the Fisher's exact test was used. A p‐value <0.05
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TAB L E 2 Features included in each
dataset

Features names
Dataset with all
features

Dataset with best
features

Dataset with easy‐to‐
obtain features

Age ✓ ✗ ✓

Asthma onset ✓ ✗ ✓

Asthma duration ✓ ✗ ✓

BMI ✓ ✗ ✓

ACT score ✓ ✗ ✓

Blood eosinophils ✓ ✗ ✗

Total serum IgE ✓ ✗ ✗

Baseline FEV₁ ✓ ✓ ✗

ICS dose ✓ ✗ ✓

IS neutrophils ✓ ✓ ✗

IS eosinophils ✓ ✗ ✗

ISS PGD₂ ✓ ✗ ✗

ISS PGE₂ ✓ ✗ ✗

ISS LTD₄ ✓ ✗ ✗

ISS LTE₄ ✓ ✗ ✗

Urinary LTE₄ ✓ ✗ ✗

Sex ✓ ✓ ✓

Previous sinonasal surgeries ✓ ✗ ✓

CRSwNP ✓ ✓ ✓

ICS ✓ ✓ ✓

OCS ✓ ✗ ✓

Skin prick tests ✓ ✓ ✓

Asthma control ✓ ✓ ✓

Asthma severity ✓ ✗ ✓

IS phenotype neutrophilica ✓ ✗ ✗

IS phenotype eosinophilica ✓ ✗ ✗

IS phenotype paucigranulocytica ✓ ✗ ✗

IS phenotype mixeda ✓ ✗ ✗

IS phenotype neutrophilicb ✓ ✓ ✗

IS phenotype eosinophilicb ✓ ✗ ✗

IS phenotype paucigranulocyticb ✓ ✗ ✗

IS phenotype mixedb ✓ ✗ ✗

IS phenotype eosinophilicc ✓ ✗ ✗

IS phenotype noneosinophilicc ✓ ✓ ✗

IS phenotype mixedc ✓ ✗ ✗

Abbreviations: ACT, Asthma Control Test; BMI, body mass index; CRSwNP, chronic rhinosinusitis

with nasal polyposis; FEV₁, forced expiratory volume in the first second; ICS, inhaled corticosteroid;

IgE, immunoglobulin E; IS, inducted sputum; ISS, induced sputum supernatant; LTD₄, leukotriene D₄;
LTE₄, leukotriene E₄; OCS, oral corticosteroids; PGD₂, prostaglandin D₂; PGE₂, prostaglandin E₂.
a, b, c There are several accepted thresholds when defining IS phenotypes.
a3% threshold for eosinophiles and 60% for neutrophiles, 4 phenotypes.
b2% threshold for eosinophiles and 60% for neutrophiles, 4 phenotypes.
c3% threshold for eosinophiles and 64% for neutrophiles, 3 phenotypes.
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was considered significant. All calculations, model training, and vi-

sualizations were done using Python 3.7.9 and the following libraries:

Pandas 1.1.5, NumPy 1.19.2, PyTorch 1.7.1, XGBoost 1.4.2, scikit‐
learn 0.24.1, Matplotlib 3.3.4, SciPy 1.5.2, pytorch_tabnet 3.1.1, and

shap 0.39.0. The processor used was Intel® Core™ i5‐10210U.

3 | RESULTS

3.1 | Summary of the best results

The results of the best models trained on all the 3 datasets are

presented in Table 3. The AUC scores are presented in Figure 1. The

accuracies of each model with 95% CIs are presented in Figure 2.

The best overall model was the NN trained on the dataset with

the best features. It achieved an accuracy of 83.33% (6.54%–88.81%),

diagnostic accuracy of 72.99% (65.31%–79.78%), sensitivity of

90.62% (82.95%–95.62%), specificity of 71.67% (58.56%–82.55%),

and an AUC of 0.90 (0.84–0.95) on training data. Training results do

not reflect possible effectiveness in clinical practice. They are given

only as part of the overall report of a model. An accuracy of 80.14%,

diagnostic accuracy of 57.86%, sensitivity of 95.79%, specificity of

55.00%, and an AUC of 0.82 were achieved during validation. These

were the best validation results for the NN. After the validation

process was completed, the best model was retrained on the entire

training + validation dataset for final evaluation on the test set. The

following results were obtained on the test set: accuracy, 88.33%

(77.43%–95.18%); diagnostic accuracy, 77.50% (64.88%–87.27%);

sensitivity, 94.87% (82.68%–99.37%); specificity, 76.19% (52.83%–

91.78%); and AUC, 0.86 (0.74–0.95). Test set results can be used to

generalize the effectiveness of a model. The best NN consisted of two

hidden layers, with 12 neurons in the first layer and 129 neurons in

the second layer. Rectified linear unit activation function was used in

the hidden layers.

We obtained promising results for the three best models—MLR,

SVM, and NN—trained on easy‐to‐obtain features. The best MLR

model trained on this dataset achieved an accuracy of 79.49%

(72.29%–85.53%), diagnostic accuracy of 54.83% (46.67%–62.80%),

sensitivity of 96.88% (91.14%–99.35%), specificity of 51.67%

(38.39%–64.77%), and an AUC of 0.83 (0.76–0.90) on training data.

However, it should be noted that these results may not translate into

real practice. During validation, the accuracy was 78.83%; diagnostic

accuracy, 54.76%; sensitivity, 95.79%; specificity, 51.67%; and AUC,

0.78. It allowed us to retrain the model on the whole training + vali-

dation set and estimate its performance on the test set. The results

for the test set were as follows: accuracy, 86.67% (75.41%–94.06%);

diagnostic accuracy, 68.82% (55.55%–80.16%); sensitivity, 97.44%

(86.52%–99.94%); specificity, 66.67% (43.03%–85.41%); and AUC,

0.85 (0.73–0.95).

The best SVM model trained on the dataset with easy‐to‐obtain

features achieved an accuracy of 82.05% (75.11%–87.73%), diag-

nostic accuracy of 56.60% (48.44%–64.50%), sensitivity of 100.00%

(96.23%–100.00%), specificity of 53.33% (40.00%–66.33%), and an

AUC of 0.88 (0.82–0.94) on training data. During validation, the ac-

curacy, diagnostic accuracy, sensitivity, specificity, and AUC were

80.77%, 56.45%, 97.89%, 53.33%, and 0.75, respectively. After

retraining on the entire training + validation set, we obtained the

following test set results: accuracy, 86.67% (75.41%–94.06%); diag-

nostic accuracy, 68.82% (55.55%–80.16%); sensitivity, 97.44%

(86.52%–99.94%); specificity, 66.67% (43.03%–85.41%); and AUC,

0.82 (0.68–0.95). The Kernel type in this model was radial basis

function.

The best NN model trained on the dataset with easy‐to‐obtain

features achieved an accuracy of 82.05% (75.11%–87.73%), diag-

nostic accuracy of 63.99% (55.92%–71.51%), sensitivity of 94.79%

(88.26%–98.29%), specificity of 61.67% (48.21%–73.93%), and an

AUC of 0.86 (0.79–0.92) on training data. The validation scores were

as follows: 80.77% for accuracy, 60.88% for diagnostic accuracy,

94.74% for sensitivity, 58.33% for specificity, and 0.77 for AUC. After

retraining on the entire training + validation set, we achieved an

accuracy of 86.67% (75.41%–94.06%), diagnostic accuracy of 68.82%

(55.55%–80.16%), sensitivity of 97.44% (86.52%–99.94%), specificity

of 66.67% (43.03%–85.41%), and an AUC of 0.84 (0.72–0.94) on the

test set. This NN consisted of three hidden layers, with 54 neurons in

the first layer, 118 neurons in the second layer, and 17 neurons in the

third layer. A rectified linear unit activation function was used in the

hidden layers.

3.2 | Explainability of the best models

“Explainability” is the concept of presenting the algorithm's predic-

tion process in a comprehensible way. The decision‐making process

of our best model can be visualized using a bee swarm plot with

SHAP (Figure 3A). In this plot, features are listed from the most

important at the top to the least important at the bottom. Red dots

indicate a large value of a particular feature; blue dots, a small value;

and violet dots, an intermediate value. Each patient is represented by

a single dot on a horizontal line of a particular feature. The next step

is to assess the distribution of dots: more to the left (in our case

predicting towards NTA) or to the right (in our case predicting to-

wards NERD) of the plot. The more a given dot (patient) was shifted

away from the 0.0 vertical line, the stronger was the impact of that

feature on that patient towards one of the classes. As an example,

Figure 3A shows a large group of red dots for the CRSwNP feature

on the right side of the plot. This means that the presence of

CRSwNP is pushing our NN towards a conclusion that patients with

this condition have NERD. A similar visualization was done for the

SVM trained on a set of easy‐to‐obtain features (Figure 3B).

4 | DISCUSSION

The COVID‐19 pandemic has greatly affected our daily practice.

The use of aerosol‐generating procedures such as OAC, spirometry,

and IS testing has been restricted due to the risk of virus
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transmission. As the pandemic was not likely to stop, the authors of

guidelines focused on how to safely perform some of these pro-

cedures,17 and an urgent need emerged to develop tools for the

diagnosis of aspirin hypersensitivity based on clinical data that are

easy to obtain during the pandemic. Recently, it was shown that an

informatics algorithm based on electronic health records datasets

including inflammatory biomarkers, could successfully identify, with

a high positive predictive value, both known and previously undi-

agnosed cases of NERD.18 ML techniques are increasingly used in

medicine, including in the fields of allergology and pulmonology.

Examples include personalized systems that predict asthma exac-

erbations19 or survivability estimators in lung cancer.20 Our previ-

ous study showed promising results for an artificial NN in terms of

discriminating between NERD and NTA.7 However, the features

input into the ML model comprised multiple data that were ob-

tained not only from medical history but also included clinical and

laboratory parameters (such as IS inflammatory biomarkers). In this

study, we investigated whether in the pandemic setting such a

diagnosis could be made only on the basis of easy‐to‐obtain clinical

features and data from medical history, excluding procedures

generating infectious aerosol.

While there are numerous ML techniques, it is difficult to predict

which algorithm will work best for a particular problem. Usually, al-

gorithms have to be compared before the best one is selected. In our

study, we attempted to create a classifier that would be able to

distinguish between patients with NERD and NTA using only clinical

and laboratory data. In our study, we decided to assess and compare

7 ML techniques for obtaining the best results. The NN trained on

(A) (B) (C)

F I GUR E 1 Receiver operating characteristic curves (ROC) with areas under the curve (AUC) for algorithms trained on the all features (A),
best features (B), and easy‐to‐obtain features (C). Abbreviations: DT, decision tree; MLR, multiple logistic regression; NN, neural network; RF,

random forest; SVM, support vector machine; XGBoost, eXtreme Gradient Boosting

F I GUR E 2 Accuracy with 95% confidence
interval. Abbreviations: DT, decision tree; MLR,
multiple logistic regression; NN, neural

network; RF, random forest; SVM, support
vector machine; XGBoost, eXtreme Gradient
Boosting
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the set of best features was shown to provide the best results. These

data appeared to be most useful in discriminating between NERD and

NTA. Surprisingly, however, the set contained inflammatory pheno-

types based on sputum induction, which is difficult to perform during

the pandemic.

The NN trained on the best features set required the following

input data: baseline FEV₁, percentage of IS neutrophils, sex, presence

of CRSwNP, ICS use, skin prick test results, level of asthma control,

and information about IS phenotypes. The algorithm obtained a

sensitivity of 95% and a specificity of 76%, as compared with a

sensitivity of 89% and a specificity of 93% for OAC. Thus, in terms of

sensitivity, our network outperforms aspirin challenge, but it has

worse specificity. The use of NN has the following advantages over

OAC: no risk of anaphylaxis, no need of well‐trained medical team or

hospitalization (which is particularly important during the pandemic),

and cost effectiveness.

The three promising models trained on easy‐to‐obtain features,

namely, MLR, SVM, and NN, required the following input data: age,

sex, body mass index, age at asthma onset, asthma duration, ACT

score along with asthma control and severity levels, history of sino-

nasal surgery, information on ICS and OCS use (with dosage), skin

prick test results, and the presence of CRSwNP. Interestingly, those

algorithms obtained a sensitivity of 97% and a specificity of 67%.

Their additional advantage is no need for laboratory testing. Despite

(A)

(B)

F I GUR E 3 SHAP for the best model on a dataset with best features (A) and easy‐to‐obtain features (B). Abbreviations: ACT, Asthma
Control Test; BMI, body mass index; CRSwNP, chronic rhinosinusitis with nasal polyposis; FEV₁, forced expiratory volume in the first second;

ICS, inhaled corticosteroids; IS, inducted sputum; NERD, nonsteroidal anti‐inflammatory drug–exacerbated respiratory disease; NTA,
nonsteroidal anti‐inflammatory drug–tolerant asthma; OCS, oral corticosteroids; SHAP, Shapley Additive exPlanations; SVM, support vector
machine. ‡, § There are several accepted thresholds when defining IS phenotypes. As there is no consensus which of the threshold is the best,

we included them all. ‡, threshold of 2% for eosinophiles and 60% for neutrophiles, 4 phenotypes. §, threshold of 3% for eosinophiles and 64%
for neutrophiles, 3 phenotypes
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their relatively low specificity, these models could serve as valuable

screening tools owing to easily accessible input data and high

sensitivity.

Our study has several limitations. The patient population was

homogenous—all patients were White and came from a single country.

Moreover, they all had stable disease and all of them had a FEV1 > 70%

of predicted value. There is some possibility that, in real practice,

patients with NTA may be classified as hypersensitive to aspirin by the

ML model. In doubtful cases, OAC should be performed, which means

that patients might need to wait until the use of OAC is safe.

5 | CONCLUSIONS

The COVID‐19 pandemic has greatly restrained our diagnostic possi-

bilities by placing limitations on the use of procedures linked to aerosol

release, such as lung function tests, IS testing, and spirometry‐based

provocation tests. To our knowledge, we are the first to compare

several ML techniques in terms of their ability to differentiate between

NERD and NTA, including models trained only on easy‐to‐obtain clin-

ical features. Our study revealed potentially the most efficient tech-

niques, including the NN, SVM, and MLR.

Although OAC remains the gold standard for the diagnosis of

aspirin hypersensitivity, the use of ML could facilitate patient care by

reducing delays in diagnosis and improving safety, especially during the

pandemic. ML techniques are easy to use, safe, and offer very good

results, thus becoming a very promising option in the diagnosis of

NERD. However, before these techniques become routinely used in

patients with asthma, our findings need to be externally validated on

populations worldwide, and, ideally, confirmed in large cohort studies.
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