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Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable

seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures

for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com

using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and

two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to

participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal)

for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their

classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored

and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants

submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification

curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they

submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance

forecasting, but did show a mean 6.54 � 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using

open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from

multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in

canine and human epilepsy.
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Introduction
The apparently random nature of seizures is a significant

factor affecting the quality of life for patients with epilepsy

(Fisher, 2000; Schulze-Bonhage and Kuhn, 2008). Despite

taking daily medications many patients with epilepsy con-

tinue to have seizures (Kwan et al., 2010; Kwan and

Brodie, 2010). Accurate seizure forecasting could transform

epilepsy care, allowing patients to modify activities to avoid

risk and take antiepileptic drugs only when needed to stop

seizures before they develop. However, to achieve clinically

relevant seizure forecasting, better methods are needed for

identifying periods when seizures are likely to occur (Cook

et al., 2013). Significant evidence has emerged supporting

the idea that seizures arise from an identifiable preictal

brain state (Stacey et al., 2011; Cook et al., 2013).

Clinical studies describe patients self-reporting seizure-

prone states prior to seizure at a rate greater than chance

(Haut et al., 2007), and changes in cerebral blood flow,

oxygenation, and cortical excitability have been reported

prior to seizures (Baumgartner et al., 1998; Adelson et

al., 1999; Aarabi et al., 2008; Badawy et al., 2009).

While many early seizure forecasting studies using EEG

features suffered from inadequate statistical analysis, par-

ticularly with regards to adequate sampling of the interictal

period (Mormann et al., 2007; Andrzejak et al., 2009),

recent studies have demonstrated in a rigorous statistical

framework (Snyder et al., 2008) that human and canine

seizure forecasting is possible (Cook et al., 2013;

Howbert et al., 2014; Teixeira et al., 2014; Brinkmann et

al., 2015). A major challenge for seizure forecasting re-

search has been the lack of long duration recordings with

adequate interictal data and number of seizures for rigor-

ous statistical testing (Mormann et al., 2007; Andrzejak et

al., 2009). The majority of early studies were limited to

relatively short human intracranial EEG (iEEG) recordings

obtained as part of epilepsy surgery evaluations. These clin-

ical iEEG studies from the epilepsy monitoring units rarely

extend beyond 10 days and are enriched with seizures be-

cause the antiepileptic drugs are tapered to expedite the

evaluation (Duncan et al., 1989). These clinical records

rarely yield an adequate number of seizures separated by

clear interictal periods for rigorous statistical testing, and

thus are limited in their usefulness to develop predictors of

patients’ habitual seizures (Marciani et al., 1985; Duncan et

al., 1989). Longer-duration iEEG recordings have been

analysed from epileptic animal models where an artificial

epileptic focus is created (Bower and Buckmaster, 2008;

Fujita et al., 2014), but the usefulness of these models to

develop algorithms for forecasting naturally occurring focal

epilepsy remains unclear (Loscher, 2011).

Recent studies have applied machine learning techniques

to seizure forecasting with promising results (Mirowski et

al., 2009; Park et al., 2011; Howbert et al., 2014). While

many apply rigorous statistics to their results (Snyder et al.,

2008), the scarcity of long duration recordings with ad-

equate seizures remains an obstacle, as does the inability

to directly compare algorithm performance from different

research groups using common data. Recently an implan-

table seizure advisory system developed by NeuroVista Inc.

made possible wireless telemetry of 16 channels of iEEG

(sampling at 400 Hz) to a patient advisory device capable

of running a real-time seizure forecasting algorithm (Davis

et al., 2011; Cook et al., 2013). Initially the device was

validated in canines with naturally-occurring epilepsy

(Davis et al., 2011; Coles et al., 2013; Howbert et al.,

2014). Naturally-occurring canine epilepsy is an excellent

platform for human epilepsy device development (Leppik et

al., 2011; Patterson, 2014) as dogs can be large enough to

accommodate human devices, and their epilepsy is similar

clinically (Potschka et al., 2013; Packer et al., 2014) and

neurophysiologically (Berendt et al., 1999; Berendt and

Dam, 2003; Pellegrino and Sica, 2004) to human epilepsy.

Canine epilepsy is treated with many of the same medica-

tions at dosages comparable to human epilepsy (Farnbach,

1984; Dowling, 1994), and canine epilepsy is refractory to

these medications at a comparable rate to human epilepsy

(Govendir et al., 2005; Munana et al., 2012; Kiviranta et

al., 2013). In a recent landmark clinical pilot study,

NeuroVista and a team of Australian researchers implanted

this device in 15 patients with drug-resistant epilepsy

(http://ClinicalTrials.gov, study NCT01043406), and

achieved seizure forecasting sensitivity of 65–100% in 11

patients during algorithm training, and eight patients pro-

spectively after 4 months. In addition, the seizure advisory

system was able to forecast low seizure likelihood periods

with498% negative predictive value in five patients tested

(Cook et al., 2013).

Despite these advances, improvements are needed in sen-

sitivity and specificity of seizure forecasting algorithms to
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attain clinically useful performance, and publicly available

chronic iEEG datasets are needed to directly compare algo-

rithms in a model relevant to human epilepsy. To stimulate

reproducible research and improve the state of the art in

seizure forecasting algorithms, the American Epilepsy

Society, Epilepsy Foundation of America, and National

Institutes of Health sponsored an open invitation competi-

tion on kaggle.com in 2014 using iEEG data from canines

and humans with epilepsy. Contestants were provided with

labelled interictal and preictal iEEG training data, and un-

labelled testing iEEG data from ambulatory recordings

taken with the NeuroVista seizure advisory system device

in five canines with naturally occurring epilepsy, and wide

bandwidth (5 kHz) presurgical iEEG recordings from two

patients with epilepsy. The contestants used a wide range of

supervised machine learning algorithms of their choice that

were trained on available labelled training data and at-

tempted to accurately label the unknown ‘testing data’

clips as preictal or interictal. Following the competition,

the top performing algorithms were further tested on

held-out, unseen data clips to assess the generalizability

and robustness of algorithms developed via the kaggle.com

forum.

Materials and methods

Subjects and data

Intracranial EEG data were recorded chronically from eight
canines with naturally occurring epilepsy using the
NeuroVista seizure advisory system implanted device described
previously (Davis et al., 2011; Coles et al., 2013). The dogs
were housed at the veterinary hospitals at the University of
Minnesota and University of Pennsylvania. Sixteen subdural
electrodes were implanted intracranially in each canine in a
bilaterally symmetrical arrangement (Fig. 1), with paired
four-contact strips oriented from anterior to posterior on
each hemisphere. The electrode wires were tunnelled caudally
through openings in the cranium, anchored, looped and passed
under the skin to the implanted telemetry unit medial to the
dog’s shoulder. Wires were connected to a recording device,
which was implanted under the latissimus dorsi muscle and
iEEG data were wirelessly telemetered to a receiver and storage
unit in a vest worn by the dog. Recorded data were stored on
removable flash media, which were periodically removed and
copied via the internet to a cloud storage platform for subse-
quent analysis. The implanted recording device was powered
by a rechargeable battery unit, which was charged daily by
monitoring personnel. Recorded iEEG from the 16 electrode
contacts was referenced to the group average. Of the eight
implanted canines, five produced high quality iEEG data and
had an adequate number of seizures recorded for analysis.
Two of the eight dogs had no seizures, and one dog had
two seizures following implantation surgery.

Epilepsy patients who underwent wide bandwidth (5 kHz
sampling) iEEG monitoring for drug-resistant epilepsy at
Mayo Clinic Rochester were reviewed. Subjects with poor
data quality or other technical issues were excluded from fur-
ther analysis, as were patients with fewer than four recorded
lead seizures, defined as seizures occurring without a preceding
seizure for a minimum of 4 h. Two patients were chosen with
long recordings of high quality iEEG data and maximum pos-
sible separation between lead seizures. The patients’ electrode
configurations and placement had been determined by clinical
considerations, and are illustrated in Fig. 2. Patient 1 was a
70-year-old female with intractable epilepsy who underwent
intracranial monitoring with 8-contact depth electrodes

Figure 1 Canine electrode locations and data segments.

(A) For the canine subjects, bilateral pairs of 4-contact strips were

implanted oriented along the anterior-posterior direction. Electrode

wires were tunnelled through the neck and connected to an im-

planted telemetry device secured beneath the latissimus dorsi

muscle. (B) An hour of data with a 5-min offset before each lead

seizure was extracted and split into 10-min segments for analysis.

(C) The expanded view illustrates a �35-s long seizure.
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placed from a posterior approach in each temporal lobe and

into the hippocampus. There were 71.3 h of iEEG data with
five annotated seizures, four of which were lead seizures.

Patient 2 was a 48-year-old female with intractable epilepsy

who had a 3 � 8-contact subdural electrode grid placed over
her left temporal lobe in addition to two 4-contact depth elec-

trodes in each of the right and left temporal lobes, two left
subtemporal 4-contact strip electrodes, and three left frontal 8-

contact strips. This patient was monitored for 158.5 h record-
ing 41 seizures, six of which met criteria for lead seizures. To

limit data size, only data from the 3 � 8 subdural grid were

used in the competition, as this grid covered both seizure onset
zone and non-pathological tissue. These research iEEG data

were acquired in parallel with the patient’s clinical recording
as described previously (Brinkmann et al., 2009).

All iEEG data records were reviewed and seizures annotated
by a board certified epileptologist (G.A.W.). Preictal data clips

were extracted from the 66 min prior to lead seizures in six
10-min data clips. The preictal data clips were spaced 10 s

apart in time, and offset by 5 min prior to the marked seizure
onset to prevent subtle early ictal activity from contaminating

the final preictal data clip. Interictal clips were selected simi-

larly in groups of six 10-min clips with 10-s spacing beginning
from randomly selected times a minimum of 1 week from any

seizure. Each extracted data segment was individually mean
centred. Data segments were stored as ordered structures

including sample data, data segment length, iEEG sampling
frequency, and channel names in uncompressed MATLAB

format data files. Training data files also included a sequence

number indicating the clip’s sequential position in the series of
six 10-min data clips. The temporal sequence of the training

and testing data was not made available to the contestants.
The full data record was divided approximately in half, with

labelled training interictal and preictal data clips taken from

the first portion and unlabelled testing data clips from the last
portion of the record. The division of testing and training data

was selected to make an adequate number of lead seizures
available for both training and testing (Table 1). Data clips

for each subject were stored in separate folders and bundled

into separate zip-compressed file archives which ranged be-

tween 2.6 GB and 14.83 GB. The total size of the data for

the seven subjects was 59.64 GB. Compressed file archives
were linked on the contest page at kaggle.com (https://www.

kaggle.com/c/seizure-prediction/data) and made available for

download by contestants. All data remain available for down-
load at ieeg.org and msel.mayo.edu/data.html.

The contest ran from 25 August to 17 November 2014.
Contestants were permitted to develop algorithms in any com-

puter language and using any features, classification and data

processing methods they chose, but classifications were
required to come directly from an algorithm—classification

by visual review was prohibited. Algorithms were also required

to use a uniform data processing method for all subjects, but

were permitted to modify data processing methods based on
data parameters, such as sampling frequency. Contestants up-

loaded preictal probability scores (a floating point number be-

tween 0 and 1 indicating the probability of each clip being
preictal) for the 3935 testing data clips in a comma separated

values file, and a real-time public leader board on kaggle.com

provided immediate feedback on classification accuracy. Public
leader board scores were computed on a randomly sampled

40% subset of the test data clips, but official winners were

determined based on the remaining 60% of the testing data

(Fig. 3). Classification scores were computed by Kaggle as the
area under the receiver operating characteristic (ROC) curve

created by applying varying threshold values to the probability

scores. Contestants were permitted five submissions per day at
the beginning of the contest, and 10 submissions per day for

the final 2 weeks. Prizes were awarded for first ($15 000),

second ($7000), and third ($3000) place finishers as deter-
mined by the private leader board scores. Winning teams

were required to submit their algorithms under an open

source license to be made publicly available on via the IEEG
portal (ieeg.org) and the Mayo Systems Electrophysiology Lab

(MSEL.mayo.edu/data.html).
Following the competition, the top 10 finishing teams were

invited to run their algorithms on a held-out set of unseen data

clips to assess the robustness of the algorithms developed on

Figure 2 Human implanted electrode locations. Implanted electrodes are visible in X-ray CT images coregistered to the space of the

patient’s MRI for the two epilepsy patients whose data was used in this competition. (A) Patient 1 had bitemporal 8-contact penetrating depth

electrodes implanted along the axes of the left and right hippocampus. (B) Patient 2 had a 3 � 8 subdural electrode grid placed along the axis of

the left temporal lobe and frontal lobe strip electrodes. Spheres represent approximate electrode positions due to post-craniotomy brain surface

shift in the CT. Electrodes not used in these experiments have been omitted from this illustration.
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new data. An additional 5000 unlabelled data clips from four
of the five original dogs (Table 1) were provided to these con-
testants. These clips were from the same data records but rep-
resented new, unseen, iEEG data from the original dataset. For
this dataset a higher proportion of interictal to interictal data
(100:1) was selected in an attempt to more closely approxi-
mate the preictal:interictal ratio in patients having a few seiz-
ures per month. Participants again submitted probability
scores for the holdout data in a comma separated values
format, and results were scored as the area under the ROC
curve. Participants who used aggregations of multiple machine
learning techniques also submitted separate classifications for
each technique. Six of the top 10 teams (Table 2), including
the three winners, agreed to participate in the holdout data
experiment and provide detailed descriptions of their algo-
rithms. The team with the top overall score, area under the
curve (AUC) = 0.84, chose to forfeit the prize to avoid disclos-
ing source code and pursue an algorithm patent. This team did
not participate in the subsequent analysis of held-out data.

Data used in this competition as well as the source code for
the top performing algorithms are freely available on the
International IEEG Portal (http://ieeg.org), and the Mayo
Systems Electrophysiology Lab ftp site (http://msel.mayo.edu/
data.html).

Algorithms

Algorithms are described below and summarized in Table 3 in
order of performance on the private leader board. More de-
tailed information regarding the top finishers’ algorithms can
be found in the Supplementary material.

First place team

The first place team’s approach consisted of an ensemble of
three distinct algorithms:

Algorithm 1

Intracranial EEG data were sampled in sequential 1-min win-
dows, in which were calculated spectral entropy and
Shannon’s entropy (MacKay, 2003) at six frequency bands:
delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–
30 Hz), low-gamma (30–70 Hz) and high gamma (70–
180 Hz), and Shannon’s entropy in dyadic (between 0.00167
and 109 Hz spaced by factors of 2n) frequency bands. The
feature set also included the spectral edge at 50% power
below 40 Hz, spectral correlation between channels in dyadic
frequency bands, the time series correlation matrix and its

eigenvalues, fractal dimensions, Hjorth activity, mobility and
complexity parameters (Hjorth, 1970), and the statistical
skewness and kurtosis of the distribution of time series
values. These features were used to train a LassoGLM classi-
fier implemented in MATLAB (MathWorks Inc, Natick MA).

Algorithm 2

The iEEG data were analysed in 8-s windows with 7.75 s of
overlap. Sums of fast Fourier Transform (FFT) power over
bands spanning the fundamental frequency of the FFT, 1 Hz,
4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz, 128 Hz and Nyquist, yielding
nine bands per channel, time series correlation matrix, and
time series variance were computed for the feature set. A sup-
port vector machine (SVM) model (Vapnik and Vapnik, 1998)
with a linear kernel was trained with bootstrap aggregation
(Breiman, 1996) training on 10% of the data, and a kernel
principal component analysis (PCA) (Hotelling, 1933) decom-
position of the features was performed with basis truncation.
The algorithm was implemented in python using the scikit-
learn toolkit (http://scikit-learn.org/stable/modules/svm.html.)

Algorithm 3

This algorithm used the same 8-s overlapping iEEG windows
and features as Algorithm 2 above. Classification was accom-
plished using a random forest algorithm with 80 trees imple-
mented in MATLAB. For this model adjacent window scores
were interpolated by a factor of 8 using a cubic spline algo-
rithm before ensembling.

The three numerical models were median centred and an
ensemble of the three models was created using an empirically
determined weighted average: (1/4 � Random Forest + 1/
4 � Bagged SVM + 1/2 � LassoGLM). In the held-out data
experiment this team submitted classifications produced separ-
ately by each of these algorithms to assess their relative con-
tributions, as well as the final ensembled result.

Second place team

The second place algorithm downsampled the iEEG data to
100 Hz and analysed the data in 50-s non-overlapping win-
dows. The set of iEEG-derived features consisted of the loga-
rithm of the FFT magnitude in 18 equal frequency bands
between 1 and 50 Hz, the inter-channel covariance and eigen-
values of these frequency bands, and the interchannel covari-
ance and eigenvalues in the time domain. A SVM machine
learning algorithm with a radial basis function (RBF) kernel
(C = 10�6, gamma = 0.01) was trained and used to classify the
power-in-band features in each analysis window. A

Table 1 Data characteristics for the Kaggle.com seizure forecasting contest and held-out data experiment

Subject Sampling

rate (Hz)

Recorded

data (h)

Seizures Lead

seizures

Training

clips (% interictal)

Testing

clips (% interictal)

Held-out clips

(% interictal)

Dog 1 400 1920 22 8 504 (95.2) 502 (95.2) 2000 (99.7)

Dog 2 400 8208 47 40 542 (92.3) 1000 (91.0) 1000 (100)

Dog 3 400 5112 104 18 1512 (95.2) 907 (95.4) 1000 (100)

Dog 4 400 7152 29 27 901 (89.2) 990 (94.2) 1000 (95.8)

Dog 5 400 5616 19 8 480 (93.8) 191 (93.7) 0

Patient 1 5000 71.3 5 4 68 (73.5) 195 (93.9) 0

Patient 2 5000 158.5 41 6 60 (70.0) 150 (90.7) 0
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combination of the arithmetic and harmonic means of individ-
ual analysis windows with Platt scaling (Platt, 1999) was used
to aggregate analysis windows into a single probability score
for each segment. Algorithms were coded in python using the
scikit-learn toolkit.

Third place team

The third place team analysed the iEEG data in 60-s windows
with 30 s of overlap. A Hamming window was applied to the
data segments, and the FFT was divided into six frequency
bands: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
beta (12–30 Hz), low gamma (30–70 Hz) and high gamma
(70–180 Hz). PCA (Hotelling, 1933) and independent compo-
nent analysis (ICA) (Kruskal, 1969) were applied to the six
frequency bands across the sequence of 60-s windows.
Eigenvalues of the frequency domain interchannel correlation
matrix were computed from the original iEEG signal and the
derivative of the iEEG signal over the full 10-min segment
length. A Bayesian model combination of artificial neural net-
works with different depths and a k-nearest neighbour (k = 40)
classification algorithm was used to provide the final classifi-
cation of each segment. Algorithms were coded in R (http://

www.R-project.org) and used the APRIL-ANN machine learn-
ing toolkit (.https://github.com/pakozm/april-ann).

Fourth place team

The fourth place team used non-overlapping 75-s windows,
and the feature set included the upper right triangle (non-re-
dundant coefficients) of the time domain correlation matrix
with sorted eigenvalues, the upper right triangle of the fre-
quency domain correlation matrix with sorted eigenvalues,
the FFT magnitude with logarithmic scaling for frequency
bands up to 48 Hz (0.5, 2.25, 4, 5.5, 7, 9.5, 12, 21, 30, 39,
and 48 Hz), spectral entropies up to 24 Hz, as well as the
Higuchi fractal dimension (Higuchi, 1988), Petrosian fractal
dimension (Petrosian, 1995), and Hurst exponent (Feder,
1988). A genetic algorithm (population 30, 10 generations)
was used to select features within the Petrosian fractal dimen-
sion features, the Hurst exponent features, and the Higuchi
fractal dimension and spectral entropy features, using a 3-
fold cross validation in the training data. A SVM with RBF
kernel (gamma = 0.0079, C = 2.7) was used to classify the data
segments.

Fifth, sixth and seventh place teams

The fifth, sixth, and seventh place teams did not participate in
the held-out data experiment and did not provide additional
detail about their algorithms.

Eighth place team

The eighth place team downsampled the data to 200 Hz and
analysed each 10-min data clip in non-overlapping 1-min win-
dows. In each window the mean, maximum, and standard
deviation in both the time and frequency domains were calcu-
lated for each channel, and for the average of all channels. The
frequency with maximum amplitude in the FFT was identified
for each individual channel as well. The interchannel covari-
ance matrices were calculated in the time and frequency do-
mains, and the mean, three highest covariances, and standard
deviation were added to the set of features. The lower 20%
(up to 40 Hz for the dogs and 500 Hz for the humans) of the
frequency spectrum below the Nyquist limit of each channel
was divided into 24 equally spaced frequency bands, and the
average spectral power in each bands was included as well.
The GLMNet (Friedman et al., 2010) classifier (http://cran.r-

Figure 3 Leading scores during the competition. Plots of the leading score on the kaggle.com public (black line) and private (red line)

leader boards for the duration of the competition. The top score from the held-out data experiment is represented by the horizontal blue line.

Table 2 AUC scores for top ten Kaggle.com finalists in

the public and private leaderboards

Place Team name Public leader

board

Private leader

board

Entries

1 QMSDP 0.86 0.82 501

2 Birchwood 0.84 0.80 160

3 ESAI CEU-UCH 0.82 0.79 182

4 Michael Hills 0.86 0.79 427

5 KPZZ 0.82 0.79 196

6 Carlos Fernandez 0.84 0.79 299

7 Isaac 0.84 0.79 253

8 Wei Wu 0.82 0.79 140

9 Golondrina 0.82 0.78 171

10 Sky Kerzner 0.84 0.78 97

The public leader board score was computed on a randomly-chosen 40% subset of the

data, while the private leader board was computed on the remaining 60%.
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project.org/web/packages/glmnet/index.html) and a SVM (RBF
kernel, C = 100, gamma = 0.001) were trained globally across
all training data, as well as separately on individual subjects
using all features with a 2-fold cross validation with 10 shuf-
fles. The classifiers were ensembled by ranking data clip prob-
abilities from each model and computing a weighted average
of all the ranks. The mean of the 1-min data windows was
taken as the probability for each 10 min data clip. This algo-
rithm was implemented in R.

Ninth place team

The ninth place algorithm partitioned the raw iEEG data clips
into non-overlapping 1-min windows. The standard deviation
and average spectral power in delta (0.1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), beta (12–30 Hz), low gamma (30–70 Hz) and
high gamma (70–180 Hz) frequency bands (Howbert et al.,
2014) were computed for each channel. A convolutional
neural network (CNN) (LeCun et al., 1998) was used for clas-
sification, with convolutions done in the time domain. The
neural network consisted of two convolutional layers followed
by a temporal global pooling layer, a fully-connected layer,
and a logistic regression layer. During algorithm training, add-
itional data windows were generated by resampling data to
span consecutive data clips. The final clip probability was
determined by the average of the scores generated by 11
CNNs with variations in analysis window sizes, frequency
bands, and CNN architecture.

Tenth place team

The 10th place team did not participate in the held-out data
experiment.

Results
Public and private leader board results from the competi-

tion are plotted in Fig. 2, for the duration of the contest. In

total 505 teams comprising 654 individuals entered the

competition and submitted classifications. A total of

17 856 classifications of the test data were submitted.

Statistics for the top scoring teams are listed in Table 2.

For teams participating in the held-out data experiment, the

mean (max–min) public leader board score was 0.84 (0.86–

0.82), private leader board score was 0.79 (0.82–0.78), and

contestants made a mean (max–min) of 242.6 (501–140)

entries. The mean (max–min) AUC score on the held-out

data was 0.74 (0.79–0.59), representing a mean 6.85%

(standard deviation 2.45%) decline relative to the mean

private leader board score. AUC scores and algorithm sen-

sitivity at 75% specificity are reported in Table 3. Full

ROC curves for the contest algorithms on the held-out

data are included in the Supplementary material.

Discussion
Formulating the seizure forecasting problem as a contest on

kaggle.com proved a unique way to engage a large pool of

data scientists worldwide on an important problem. The

opportunity for a group of independent data scientists to

analyse a large, freely available dataset from humans and

canines with epilepsy yielded reproducible and directly com-

parable results from a range of seizure forecasting

approaches. There is now widespread recognition that

many published claims in biomedical research are not repro-

ducible. (Ioannidis, 2005; Landis et al., 2012; Button et al.,

2013) The consequences of the lack of reproducibility are

profound, and inefficient use of limited resources may slow

the development of therapies for patients. In the computa-

tional science and engineering communities in particular, re-

producible research requires open source data and

algorithms (Buckheit and Donoho, 1995; Donoho, 2010)

in addition to published methods and results. Early studies

in seizure forecasting were limited by both inadequate data-

sets and flawed statistical testing (Mormann et al., 2007;

Andrzejak et al., 2009), and lack of openly available data

and algorithms hindered investigators from challenging these

results. Making the data and algorithm source code from the

present study freely available (http://ieeg.org and http://msel.

mayo.edu/data.html), facilitates reproducibility and provides

a benchmark for future algorithm development.

This study demonstrates that seizures are not random

events and supports the feasibility of real-time seizure fore-

casting. All six algorithms in the held-out data experiment

achieved performance greater than a random chance pre-

dictor (P50.0001, z-score computed relative to AUC of

0.5), as was the top scoring algorithm on the private leader

board (P5 0.0001). On the private leader board 359 teams

scored above the upper 95% confidence limit AUC relative

to a random classifier (0.531, Hanley-McNeil method).

While no published study yet has used this full data set

as a benchmark, the results compare favourably to a

recent study (0.72 AUC) computing on the full continuous

data from the five canines (Brinkmann et al., 2015) .

At a time when skills in analytics and machine learning

command a high premium in the marketplace and research

labs face reduced funding, an online competition can rep-

resent a cost-effective method of achieving progress on dif-

ficult problems. Access to contestants with different

backgrounds and approaches can quickly and efficiently

evaluate a broad range of features and algorithms. There

are, however, some limitations to the online kaggle.com

competition format that should be noted. First, the ability

to submit multiple trials may contribute to overtraining on

the contest dataset. While determining winners by the pri-

vate leader board score computed on the majority of data

reduces this risk somewhat, it is critical in this type of

forum to provide as broad a sampling of data as possible

to ensure extensibility of solutions to the real-world prob-

lem. Here this issue was further mitigated by running a

post-contest analysis using withheld data not seen during

algorithm development. The fact that there was a modest

decline in forecasting performance suggests overtraining

was not a significant factor.

Second, the necessity of providing contestants with the

full set of testing data in an unlabelled form provides

both an advantage and a disadvantage to contestants.
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Having the testing set available gave contestants the oppor-

tunity to directly measure the full statistical range of future

data, aiding normalization of models in a way not possible

in prospective real-time seizure forecasting. In contrast,

timing information about the testing clips could not be

provided in this format, which prevented contestants from

deploying background normalization strategies commonly

used in time series analysis. A third limitation of the com-

petition format is that algorithms and source code are not

required to be fast, modular, or well documented, and sig-

nificant development effort may be required to make even

the best competition algorithm suitable for application on a

broader range of data.

Algorithms developed for the competition used a wide

range of time domain and frequency domain features, in

addition to more complex features. Most participants de-

veloped their approaches empirically, and with machine

learning approaches it is difficult to identify which features

contribute predictive value to the model and which features

are primarily ignored. All six algorithms used some form of

spectral power in discreet frequency bands, and five of the

six algorithms used time domain and/or frequency domain

interchannel correlations. Both power in band and bivariate

interchannel correlation have previously been shown to be

independently capable of forecasting (Park et al., 2011;

Howbert et al., 2014; Brinkmann et al., 2015). While six

different machine learning algorithms were used individu-

ally or as part of an ensemble in the held out data experi-

ment, it is interesting to note that SVM was the most

commonly used algorithm, appearing in four of the six

participating entries. Further investigation is needed how-

ever, to assess the relative predictive value of different fea-

ture classes, and the relative capabilities of different

machine learning algorithms in this context.

A large-scale online competition aimed at developing

novel algorithms for seizure forecasting was successfully

conducted using open access datasets from canines and

humans. The kaggle.com competition format enabled

direct comparison between different seizure forecasting al-

gorithms on a common dataset, and provides a benchmark

for future forecasting studies. Multiple groups using differ-

ent approaches succeeded in independently developing suc-

cessful algorithms for seizure forecasting, supporting the

hypothesis that seizures are not random but arise from an

observable preictal state. Open access to data, methods,

and algorithms creates a platform for reproducible seizure

forecasting research. Future studies are required to clarify

what percentage of patients with epilepsy have seizures that

can be forecast using iEEG, and the level of forecasting

performance needed for improving outcome and quality

of life.
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