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Abstract

Background

Schistosomiasis is a neglected tropical parasitic and chronic disease affecting hundreds of

millions of people. Adult schistosomes reside in the blood stream of the definitive mamma-

lian host. These helminth parasites possess two epithelial surfaces, the tegument and the

gastrodermis, both of which interact with the host during immune evasion and in nutrient

uptake.

Methods

Female ARC Swiss mice (4–6 weeks old) were infected percutaneously with Schistosoma

japonicum cercariae freshly shed from Oncomelania hupensis quadrasi snails (Philippines

strain). Fluorescent in situ hybridisation (FISH) was performed by using fresh adult S. japo-

nicum perfused from those infected mice. Adult S. japonicum worms were processed to iso-

late the tegument from the carcass containing the gastrodermis; blood and bile were

collected individually from infected and uninfected mice. Total DNA extracted from all those

samples were used for microbiome profiling.

Results

FISH and microbiome profiling showed the presence of bacterial populations on two epithe-

lial surfaces of adult worms, suggesting they were distinct not only from the host blood but

also from each other. Whereas microbial diversity was reduced overall in the parasite epi-

thelial tissues when compared with that of host blood, specific bacterial taxa, including Anox-

ybacillus and Escherichia, were elevated on the tegument. Minimal differences were evident

in the microbiome of host blood during an active infection, compared with that of control

uninfected blood. However, sampling of bile from infected animals identified some
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differences compared with controls, including elevated levels of Limnohabitans, Clostridium

and Curvibacter.

Conclusions

Using FISH and microbial profiling, we were able to demonstrate, for the first time, that bac-

teria are presented on the epithelial surfaces of adult schistosomes. These schistosome sur-

face-associated bacteria, which are distinct from the host blood microenvironment, should

be considered as a new and important component of the host-schistosome interaction. The

importance of individual bacterial species in relation to schistosome parasitism needs fur-

ther elucidation.

Introduction

Helminth parasites cause significant chronic disease both in people and in animals of eco-

nomic importance. Schistosome flukes are blood-dwelling helminth parasites and major path-

ogens of humans, predominantly in tropical and sub-tropical countries. Currently ~200

million individuals worldwide are afflicted with schistosomiasis [1]. Schistosomes have evolved

to utilise host nutritional sources while at the same time avoiding host immunological

responses; these activities are two major cornerstones of parasitism. The schistosomes are

dioecious and cause significant hepatic immunopathology to their mammalian hosts as a result

of fibrotic granulomata produced as the host response to entrapped parasite eggs laid by the

paired adult worms [2]. The release of immunomodulatory molecules is one of the strategies

employed by schistosomes to aid in their continued parasitism of the mammalian host. Indeed,

reports of helminth parasite–host interactions, including GIT (gastro-intestinal trematodes),

and their impact on the mammalian host gut microbiome are increasing [3–5]. The human

gut microbial changes to S. japonicum have been recently reported [6], associated infection

with the higher abundance of certain taxa. Similarly studies using experimental animals

infected with S. japonicum have also reported gut dysbiosis [7, 8].

For adult schistosomes resident in host blood, immune evasion and the uptake of nutrients

are critical for parasite survival. Both functions arise primarily via specialised tissues—the syn-

cytial apical surface tegument and the blind gut lined with an active gastrodermis [9–11].

Characterising the host-parasite interface is an important research avenue for understanding

the fundamental biology of these pathogens, and in the identification of new intervention tar-

gets. The tegument is one of the cellular targets for the only currently available anti-schisto-

some drug, praziquantel; and it is also represents a key site for current vaccine design [12].

Both the tegument and gastrodermis have long been the focus of researchers, due to their criti-

cal importance in schistosome functional biology [13–16], but new facets are yet to be revealed.

For example, how do helminths interact with organisms co-inhabiting the host microenviron-

ment? Which in the case of adult schistosomes, is the mammalian blood stream.

While not directly interacting with adult GIT and blood fluke parasites, or their eggs, the

gallbladder is another host organ where the microbiome can be an indicator of host health and

physiological discord [17]. The human liver fluke Opisthorchis viverrini has been reported to

impact on gallbladder health [18], causing biliary lithiasis and potentially carcinogenic out-

comes. Although cholecystitis arising from schistosomiasis is a rare complication [19], it does

represent a case of concomitant helminthiasis and gallstone disease, presenting as intense

inflammation in the gallbladder of infected patients. There is a close association between the
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gut and the liver of mammalian hosts, both of which are directly damaged by an active schisto-

some infection [20, 21]. These observations suggest that changes in the contents of the gall-

bladder may arise during hepatic schistosomiasis.

Bacterial populations are considered ubiquitous in almost all biological settings. The pres-

ence or absence of a gastrointestinal helminth infection impacts on the host immune system,

leading to an altered host gut microbiome [5, 22]. This has been shown in experimental animal

systems, as well as in correlative clinical and interventional studies in endemic countries [22].

The free living nematode Caenorhabditis elegans has a diverse bacterial population within the

gut of the worm itself, different to the external environment [23]. However, little is known

about the occurrence, structure, and function of microbial populations resident within the tis-

sues and organs of parasitic helminths [4, 22]. The direct interaction between adult schisto-

somes and bacteria has not been explored to a great extent but the recent considerable

advances in complementary ‘omics’ technologies, provide a systems approach to investigate

schistosome epithelia. These methods can specifically identify the presence and potential

importance of bacterial populations associated with blood fluke parasites.

Investigation of modified microbiomes on and/or within helminth parasites is an embry-

onic area of research and has only been exploited for study of the medically important schisto-

somes in limited studies. A call to expand the understanding of microbiomes within and on

the surface of parasites has been made [4]. Our study is thus the first to consider this novel

aspect of biological interplay between schistosomes and bacteria of the host blood

microenvironment.

Methods

Ethics statement

All work was conducted in accordance with protocols approved by the QIMR Berghofer Medi-

cal Research Institute Animal Ethics Committee (P288).

Parasite isolation and tegument removal

Oncomelania hupensis quadrasi snails, harbouring a Philippines (Sorsogon, Luzon) strain of

Schistosoma japonicum, were maintained at QIMR Berghofer Medical Research Institute.

Female ARC Swiss mice (outbred 4–6 weeks old) were infected percutaneously with 60–70 cer-

cariae freshly shed from snails. All the mice were maintained with a clean condition in a nega-

tive pressure animal house. All the food, water, nesting material and cages used for mice were

sterilized and changed weekly. Mice were monitored by trained staff on a weekly basis for

signs of distress, and if present were euthanised.

All mice were used for sample collection. Adult worms (mixed sex) were perfused under

sterile conditions at 7 weeks after challenge, with warm (37˚C) RPMI 1640 (Invitrogen, Mel-

bourne, Australia) containing no antibiotics. All buffers and equipment used for the perfusion

were sterilized and the skin of mice was cleared with 75% ethanol before perfusion process.

After perfusion, the schistosome worms were placed into ice cold sterile PBS (purchased sterile

freshly opened), counted in a cell culture hood, retained as pairs, and stored in liquid nitrogen.

Tegument removal of freshly perfused adult parasites utilised application of the freeze-thaw-

vortex method [24] under sterile conditions, including all the buffers, tubes and tips were ster-

ilized and the process performed in a culture hood.

Each tegument or carcasses sample was isolated from the pooling of 120–150 pairs of adult

parasites, perfused from 10 infected mice. Fresh worms were frozen in liquid nitrogen followed

by thawing on ice and then quickly washing in 400μl of ice-cold TBS (10 mM Tris/HCl, 0.84%

NaCl, pH 7.4). The supernatant was removed, a fresh 400μl aliquot of Tris-HCl (10mM, pH
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7.4) was added and the tube left on ice for 5 minutes before a final vortex for 5 times with 1 sec-

ond bursts. The tegument was separated from the carcasses by centrifugation at 1000 x g for 30

min, with the former contained in the supernatant and the latter in the pellet. The tegument-

rich supernatant was transferred to another tube and centrifuged for 30 min at 12,000 x g, 4

˚C; the supernatant was then discarded, and the tegument-rich pellet re-suspended in 100 μl

TrisHCl (10 mM, pH 7.4). The carcass pellet was suspended in 100 μl TrisHCl and lightly

homogenized on ice. Total 8 tegument samples and 8 carcasses samples were obtained. Both

tegument and carcasses in 100 μl TrisHCl (10 mM pH 7.4) were used for total gDNA (schisto-

some and bacteria) extraction. This isolation procedure for tegument and carcasses was

repeated to obtain distinct biological replicates.

Collection of host fluids

ARC Swiss mouse hosts were scarified by CO2 and the skin was shaved and cleaned in 75%

ethanol before cardiac puncture was performed on each mouse under sterile conditions.

Approximately 500 μl of whole blood was obtained from each animal; no pooling of blood was

undertaken. Blood samples were collected individually from 10 mice infected with S. japoni-
cum and 10 uninfected mice (as control). The whole gallbladder from each mouse was isolated

under sterile conditions and washed 3 times in ice cold sterile PBS. Gallbladder samples were

collected individually from 10 mice infected with S. japonicum and 10 uninfected mice (as con-

trol). All samples were stored at -80 ˚C before gDNA extraction.

DNA isolation and microbiome profiling

Biological replicate repeats included the collection of blood from 10 infected and 10 uninfected

animals; bile from 8 infected and 10 uninfected animals; and tissue from pooled parasites for 6

tegument and 5 carcass preparations. Total DNA of all those samples were extracted by using

DNeasy Blood & Tissue Kits (QIAGEN, Hilden, Germany) following the manufacturer’s stan-

dard instructions. Mock extraction (no tissue) was used as a kitome control. DNA quality was

checked using a NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, USA).

For 16S rRNA amplicon sequencing of each sample 200 ng DNA was provided, with A260/280

�1.8 and A260/230�2.0. For tissues this involved dilutions to 20 μl total volume. The

enriched kitome control included a mock isolation of DNA, and the submission of an undi-

luted 20 μl aliquot.

Microbiomes were generated by 16S rRNA amplicon sequencing (rrs) at the AGRF (Austra-

lian Genome Research Facility, Brisbane, Australia) using standard protocols. Concentration

of samples were confirmed by PicoGreen fluorometry (Invitrogen, Melbourne, Australia) by

AGRF before use. The rrs V3 and V4 hypervariable regions were amplified using primers 341F

and 806R (10mM); Forward sequence: 5’-CCTAYGGGRBGCASCAG-3’, Reverse sequence:

5’-GGACTACNNGGGTATCTAAT-3’. AmpliTaq gold 360 MasterMix (Life Technologies,

Carlsbad, USA) was used for the first PCR assay and cycling conditions were as follows: initia-

lisation at 98˚C for 30 seconds followed by 30 cycles of 94˚C for 10 seconds; 60˚C for 10 sec-

onds and 72˚C for 30 seconds; followed by a final extension of 72˚C for 5 minutes. The PCR

reaction volume was 25μl. Thermocycling was completed with an Applied Biosystem 384 Ver-

iti and using Platinum SuperFi mastermix (Life Technologies, Mulgrave, Australia) for the pri-

mary PCR. The first stage PCR was cleaned using magnetic beads, and samples were visualised

on 2% Sybr Egel (Thermo-Fisher). A secondary PCR to index the amplicons was performed

with PrimeSTAR Max (Takara, Japan). The resulting amplicons were cleaned again using

magnetic beads, quantified by fluorometry (Promega Quantifluor) and normalised. The equi-

molar pool was cleaned a final time using magnetic beads to concentrate the pool and then
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measured using a High-Sensitivity D1000 Tape on an Agilent 2200 TapeStation. The pool was

diluted to 5nM and molarity was confirmed again using a Qubit High Sensitivity dsDNA assay

(ThermoFisher). This was followed by sequencing on an Illumina MiSeq (San Diego, CA,

USA) with a V3, 600 cycle kit (2 x 300 base pairs paired-end).

Paired-ends reads were assembled by aligning the forward and reverse reads using PEAR

(version 0.9.5) [25]. Primers were identified & trimmed. Trimmed sequences were processed

using Quantitative Insights into Microbial Ecology (QIIME 1.8) [26] USEARCH (version

7.1.1090) [27, 28] and UPARSE [29] software. Using USEARCH sequences were quality fil-

tered, full length duplicate sequences were removed and sorted by abundance. Singletons or

unique reads in the data set were discarded. Sequences were clustered followed by chimera fil-

tered using “rdp_gold” database as the reference. To obtain the number of reads in each Oper-

ational Taxonomic Unit (OTU), reads were mapped back to OTUs with a minimum identity

of 97%. Using QIIME taxonomy was assigned using Greengenes database [30] (version 13_8,

Aug 2013, 97% sequence similarity cut-off) and rarefied to a sequence depth of 28,700. Rare

OTUs with<5 assigned amplicon sequences or <0.0001 fraction of total sequence reads were

excluded and OTU reference sequences were aligned using pynast. The trimmed multiple

alignments were then used to infer a phylogenetic tree using fasttree, which was then used as

the input for UniFrac to estimate microbial beta diversity.

Data analysis

The presence of the negative kitome control allowed the use of the decontam package [31] in R

to identify OTUs that should be filtered using the ‘prevalence’ method with a threshold of

50%. All OTUs identified as possible contaminants from this analysis were removed using the

BIOM toolkit [32]. This filtered dataset was used for all subsequent analyses.

Calypso (version 8.54) [33] was used for mining the rrs microbiome dataset and for data

visualisation.

Rarefied and filtered OTU tables were uploaded to Calypso and square root (SQR) trans-

formed with TSS (total sum normalisation). Samples with less than 1,500 reads were removed.

Microbial species diversity was characterised using the Simpson, Chao1, Shannon and Rich-

ness diversity indices. Correlations with continuous variables (such as tissue type or tissue and

infection status) were calculated using ANOVA. Significant taxa were identified by ANOVA.

Fold Change classifications for taxa follows with “#NAME?” = Sample A has no abundance

detected; “Inf” = Sample B has no abundance detected; and “NaN” = Both Samples have no

abundance detected. The later classification for a taxa is include despite no abundance in the

samples selected, due to its presence (abundance) in other samples. With statistical significance

considered at p-value�0.05, while not significant is indicated by NS.

Multivariate data visualization and multivariate statistical testing were used to indicate the

presence of multifaceted associations between microbial communities. Both supervised

Redundancy Analysis (RDA) and Canonical Correspondence Analysis (CCA) and unsuper-

vised Principal Coordinates Analysis (PCoA) methods were used at the OUT level unless

noted. Both Calypso and biome files before and after normalisation of the kitome are available

(see below).

Fluorescent in situ hybridisation (FISH)

Adult S. japonicum were fixed in 4% (w/v) paraformaldehyde for 24 hours and then embedded

in paraffin blocks. Sections (4 μm) were prepared as described [34] and probed with a univer-

sal bacterial label. This consisted of the 16S rRNA gene CalFluor double-labelled probe Eubac-

teria EUB338 (5’Calfluor590-GCTGCCTCCCGTAGGAGT-3’, Sigma-Aldrich, St. Louis,
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USA), and was specific for the domain Bacteria [34]. A nonsense probe, Non-EUB338 [35],

which has a nucleotide sequence complementary to the nucleotide sequence of EUB338 and

was synthesised by IDT (Integrated DNA Technologies), was used as a control for nonspecific

staining. The use of no probe was also performed as a negative control. Hybridization was per-

formed by incubating rehydrated samples with PBTA-HB 1:1 (PBTA: phosphate buffered

saline with 0.05% BSA and 0.2% Triton X-100, 0.02% sodium azide; HB:hybridisation buffer:

Tris-HCl 0.02 M, Sodium Chloride 0.09 M, SDS 0.01%, Formamide 35%, Denhardt’s solution

15%) for 20 min followed by only hybridisation buffer (500 μl/tube), sonication in an ultra-

sonic bath for 20 s, and the addition of probes and corresponding helpers (final 100 pmol

each). A no probes control was also included. Samples were incubated at 45˚C in total darkness

for 20 h, then washed for 1 h with hybridisation buffer at room temperature, followed by a

brief wash in PBTA. Samples were mounted with PBS:glycerol mounting medium. The tissue

sections were visualized under fluorescence using a Zeiss780NLO confocal microscope (Zeiss,

Oberkochen, Germany).

Availability of data and materials

The annotation metadata file and bacterial profiles in Calypso v3 format csv (comma-sepa-

rated values) and biome files (before and after kitome normalisation), are available as (S1

Table and S1–S4 Files). S3 and S4 Files �.biome cannot be opened by standard Microsoft soft-

ware. S1 and S2 Files represent a conversion of these biome files by Calypso into a format that

can be easily reviewed in Excel.

Results

In situ analysis of the parasites

A mouse model of S. japonicum was used to compare microbial populations within host blood

and bile during an active parasite infection, and those of adult worms isolated from host

blood. To demonstrate that the two parasite epithelial surfaces, the tegument and gastroder-

mis, both harboured bacterial populations, we used a generic FISH probe, EUB338, specific for

the Superkingdom Bacteria, using sections from whole intact adult worms (Fig 1). Strong

labelling was noted both on the tegument (white arrow) and gastrodermis (yellow arrow) of

adult female S. japonicum, whereas the EUB338 signal was only observed on the gastrodermis

(yellow arrow) of male parasites. Lighter labelling was evident within the parasite tissues

Fig 1. Generic Fluorescent in situ hybridisation (FISH) of adult S. japonicum for bacteria. A. No probe negative control. B. and C. Positive (red)

labelling of the female parasite tegument (white arrows) and gastrodermis (yellow arrows) using probe Eubacteria EUB338 (Calfluor590). D. Positive

(red) labelling of the male parasite gastrodermis (yellow arrows) using EUB338 probe. E. Non-EUB338 negative control. Cell nuclei are stained blue by

DAPI.

https://doi.org/10.1371/journal.pone.0263188.g001
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potentially indicating the presence of bacteria or that the probe may have bound non-specifi-

cally, but to a much lesser degree, to the parasite.

Sample size and overall microbiome comparison of all tissues

For the molecular analysis, adult parasites were perfused from mice under sterile conditions,

washed and the tegument (apical epithelial surface) removed by a non-detergent freeze/thaw/

vortex method, used routinely by our and other groups [36, 37], with the remaining carcass

separated from the tegument by centrifugation. Thus, two sub-regions of the adult parasite

could be examined separately: (i) the surface tegument and (ii) the carcass containing the gas-

trodermis. Both the tegument and gastrodermis are in direct contact with host blood in which

the adult parasites reside.

We performed bacterial profiling using deep amplicon sequencing of the bacterial 16S

rRNA gene. Host samples that were retained with sufficient reads included blood from 10

infected mice (M blood-I), blood from 10 uninfected mice (M blood-U), bile from 8 infected

mice (M bile-I) and bile from 10 uninfected mice (M bile-U). Parasite samples retained for

analysis included tegument from 6 pooled parasite preparations (Sj-Tegument) and carcasses

from 5 pooled parasite preparations (Sj-Carcass). Samples were not analysed further if gDNA

isolations did not provide material of appropriate standard. An enriched kitome negative con-

trol from a mock DNA isolation was also included and a similar volume of material was used

for 16S rRNA profiling. The impact of subtracting the prominent OTUs (Operational taxo-

nomic unit) present in the kitome from all other samples, is presented in S1 Fig. The resulting

removal of major kitome OTUs allows for the more effective identification of taxa associated

with individual tissues. Subsequently, the online bioinformatics analysis tool Calypso [33] was

used to characterise the microbial communities across the different tissue sources examined.

Quantitative diversity of tissue and control samples is presented in Fig 2 as a non-clustered

bar-chart, with an overview of samples grouped by tissue and infection types. Separation

between host and parasite tissues continues up to, but not including, the phylum level of

microbe profiling (S2 Fig).

Fig 2. Major bacterial genera associated with parasite tissues or host fluids presented as a non-clustered bar-chart. This graph shows a clear tissue

demarcation, particularly between host (left) and parasite (right). The y-axis presents the abundance of each taxa and the x-axis shows the individual

samples profiled. Grouping by tissue source is colour-coded at the top.

https://doi.org/10.1371/journal.pone.0263188.g002
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The relationships between host and parasite samples are demonstrated by RDA, CCA and

PCoA (Bray-Curtis) Multivariate Analyses and are presented in Fig 3. We noted the kitome

was distinct from the other samples in all comparisons (CCA p-value = 0.001). Samples from

mouse blood and bile, as well as the parasite sources were profiled further for microbiome com-

parisons. Multivariate data visualization and multivariate statistical testing were used to show

multifaceted associations between microbial communities associated with the tissue sources

examined. Multiple approaches for determining microbial diversity (Fig 3B) were employed to

compare the tissues examined. Shannon index, richness, Simpson index and Chao 1 were used,

and all indicated statistically significant differences between the host and parasite tissues.

Comparison of microbiomes associated with host blood and bile

The host blood and bile samples were subjected to additional analysis to further characterise

the impact of infection on the microbiome of these fluids. RDA (Fig 4A) and CCA did not

indicate any statistical difference between the two fluids including the presence or absence of

S. japonicum infection. However, additional RDA comparisons of blood and bile collectively

(Fig 4B p-value = 0.022), and infection status of bile only (Fig 4C p-value = 0.033), were both

statistically significantly diverged, although the blood microbiome based on infection status

was not (Fig 4D, NS).

ANOVA indicated many taxa differed between bile and blood (Fig 4E), which is unsurpris-

ing due to the differences in these fluid types. Complete lists of species, genera and phyla tested

by ANOVA are presented in S2 Table. The most biologically relevant comparison in terms of

the impact parasites have on the host microbiome was performed on specific fluids and their

infection status. In the analysis of blood only based on infection status, a single species (Escher-
ichia coli) was elevated in blood from infected mice (Fig 4E, p-value = 0.049) compared with

blood from uninfected animals.

Fig 3. Analysis of all control, mouse and parasite samples, using OTUs. A. Multivariate analysis using RDA, CCA and PCoA, respectively. CCA

demonstrated statistical differences (p-value = 0.001), between the kitome and other samples. B. All four diversity analysis methods indicated statistical

differences between the samples.

https://doi.org/10.1371/journal.pone.0263188.g003
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In addition to the changes observed in the blood samples with infection status, microbiome

diversity between bile from infected and uninfected mice was statistically different in one of

the four metrics used (Richness p-value = 0.039, Fig 5A). Multiple differences were evident at

the species and genus levels (Fig 5B), with a general increase in taxa abundance associated with

bile from infected animals. Examples of genera with increased abundant in the bile of infected

animals included Curvibacter (p-value = 0.013, 12 fold); Fluviicola (p-value = 0.022, 3.4 fold);

Clostridium (p-value = 0.026, 28 fold); and Limnohabitans p-value = 0.031, 29 fold). Complete

lists analysed by ANOVA are presented in S3 Table. There were limited examples of decreased

bacterial species present in bile from infected mice and none were statistically significant.

Comparison of microbiomes associated with parasite tissues and host blood

The microbiomes of S. japonicum tissue sources, and blood from infected and uninfected mice

were determined. Differences between these microbiomes were clear as is shown in Fig 6A

and 6B. CCA between the four tissue types (p-value = 0.007); and the RDA comparison

between parasite and host blood both combined (p-value = 0.007) were statistically different.

These differences were also reflected in diversity metrics (Fig 6C) and specific examples at the

species, genus and phylum taxa levels (Fig 6D) were apparent. Examples of taxa elevated either

in host blood or parasite tissues are presented. Genera enriched either on the tegument and/or

the carcass included Escherichia (p-value = 4.50E-16); Unclassified.Neisseriaceae (p-value =
0.0034); Anoxybacillus (p-value = 0.027); Unclassified.Saprospiraceae (p-value = 0.036); Prevo-
tella (p-value = 0.0054); and Oribacterium (p-value = 0.0096). Examples of phyla presenting

decreased abundance on the parasite epithelial layers when compared to the surrounding

blood (infected and uninfected) included Unclassified (p-value = 0.000039); and Actinobac-

teria (p-value = 0.0059). Complete ANOVA lists are available in S4 Table. All four diversity

metrics indicated statistically robust differences, with a consistent trend that S. japonicum tis-

sues had less bacterial diversity compared with the host blood in which they reside.

The comparison of parasite tissues and host blood revealed signature microbiomes for one

or more tissue/fluid type. S3 Fig presents further examples of species with elevated levels either

in the host blood, or both parasite tissues, or specifically in the parasite tegument or carcass.

Examples of tegument enriched taxa included Escherichia_coli (p-value = 4.5E-16), Unclassi-

fied.Neisseriaceae (p-value = 0.0034), and Unclassified.Saprospiraceae (p-value = 0.036).

Fig 4. Analysis of blood and bile samples. RDA Multivariate Analysis of A. blood and bile by infection status, B. blood and bile samples collectively (p-
value = 0.022), C. bile only by infection status (p-value = 0.033) and D. blood only by infection status. A statistical difference was noted only between

blood and bile samples when considered collectively without infection status, and for bile from infected and uninfected hosts. E. Examples of species

with differential abundance between blood and bile samples. The complete list of species with ANOVA is presented in S2 Table.

https://doi.org/10.1371/journal.pone.0263188.g004
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Comparison of microbiomes of the parasite tegument and carcass

(gastrodermis)

The tegument and carcass (gastrodermis) microbiomes were considered separately. While the

two parasite tissues presented as two groups by multivariate analysis (Fig 7A, RDA, p-value =

0.03), bacterial diversity was similar across all four metrics presenting with non-significant dif-

ferences. Grouped ANOVA (Fig 7B) reflected at the species, genus and phylum levels, exam-

ples of elevated taxa associated with both the carcass and the tegument. Complete ANOVA

lists are available in S5 Table. Genera observed were generally considered unclassified,

increased on the tegument was Unclassified.ZB2 p-value = 0.0069, while more taxa were ele-

vated in the parasite carcass Unclassified p-value = 0.00044; Unclassified. Bacteroidales p-value
= 0.0078; and Prevotella p-value = 0.039.

Discussion

Direct interactions of bacteria with helminths

The presence and analysis of bacteria directly associated with blood-dwelling parasites have

attracted less attraction compared to that with soil-transmitted helminths. The carcinogenic

liver fluke Opisthorchis viverrini was cultured after in vivo isolation and its microbiome pro-

filed [38]. Aerobic conditions of cultured worms produced bacterial growth predominantly of

Fig 5. Analysis of bile by infection status. A. Diversity showed statistical differences using Richness metric (p-value = 0.039) only. B. Species and

genus were identified by grouped ANOVA with increased levels associated with bile from infected animals. The y-axis presents the abundance and the

x-axis shows specific taxa. � = p-value�0.05. Complete ANOVA lists are available in S3 Table.

https://doi.org/10.1371/journal.pone.0263188.g005
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Aggregatibacter and Lactobacillus. Liver tissue from normal and O. viverrini-infected animals

also identified bacterial populations including Acidaminococcus, Aggregatibacter, Bifidobacter-
ium, Clostridium, Escherichia, Fusobacterium, Lactobacillus, Megasphaera, Streptococcus and

Veillonella [38].

Other helminths have been shown to not only alter the host microbiome, but also to poten-

tially modify their own microbiota, based on in vivo animal studies of Trichuris muris [34];

Fig 6. Comparison of the microbiomes of parasite tissues and host blood from infected and uninfected mice. A. Multivariate analysis of blood from

infected and uninfected hosts, and tegument and carcass tissues from S. japonicum using RDA and CCA (p-value = 0.007) and PCoA (Bray-Curtis)

displays overall relationships of the blood samples and parasite tissues. B. Comparison by RDA of parasite tissues combined and blood tissue

collectively indicates statistically significant groupings (p-value = 0.007). C. All four diversity metrics indicated statistical differences between the blood

samples and parasite tissues, with less diversity evident with the S. japonicum tissues. D. Grouped ANOVA identified species, genera and phyla with

increased levels of bacteria associated with both the blood samples and parasite tissues. The y-axis presents the abundance and the x-axis shows specific

taxa. � = p-value�0.05, �� = p-value�0.01, ��� = p-value�0.001. Complete ANOVA lists are available in S4 Table.

https://doi.org/10.1371/journal.pone.0263188.g006
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White and colleagues demonstrated that T. muris differentiated its internal microbiome from

that of the host gut. The infection itself also altered the host gut microbiome by decreasing the

abundance of Bacteroidetes, while increasing Firmicutes, with an overall lowering of bacterial

diversity. Examination of the microbiome within the parasite itself identified similar levels of

previously reported phyla associated with the host, but surprisingly an increase in levels of Pro-
teobacteria, indicating a microbiome distinct to the host. The authors of this Trichuris study

[34] suggested that the potential presence of higher levels of O2 present in the parasite gut may

provide a better environment for the Proteobacteria as facultative anaerobes. In the blood

stream in which schistosomes reside, the absence of free O2 could drive these microbes

towards schistosome microenvironments such as the tegument or the gastrodermis. In S. japo-
nicum we also identified elevated levels of Proteobacteria on the parasite tegument, relative to

the blood of an infected host (p-value = 0.044). Bacteroidetes and Firmicutes were also shown

present in our study. While similar levels were evident in host blood, both with and without a

schistosome infection, Bacteroidetes and Firmicutes were also associated with the parasite sur-

face and gastrodermis, although at reduced levels compared with the surrounding blood. The

potential benefits of these and other taxa require further evaluation. Our FISH labelling pro-

vided evidence for an association between bacteria and adult schistosome epithelial tissues.

Notably, we found EUB labelling was detected both in the tegument and gastrodermis of

female worms, whereas it was only observed in the gastrodermis of males, suggesting females

Fig 7. Comparison of the tegument and carcass (gastrodermis) microbiomes of S. japonicum. A. Multivariate analysis of the parasite tissues by RDA

demonstrated statistical differences (p-value = 0.03). B. Grouped ANOVA identified species, genus and phylum with increased levels associated with the

parasite tegument compared with the carcass. The y-axis presents the abundance and the x-axis shows specific taxa. � = p-value�0.05, �� = p-
value�0.01. Complete ANOVA lists are available in S5 Table.

https://doi.org/10.1371/journal.pone.0263188.g007
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may utilize host blood and associated microbiome differently to meet the needs of egg produc-

tion. The observed labelling patterns were distinct to other reports using similar in situ hybrid-

ization methods to study schistosome-specific transcripts in sectioned adult worms [39, 40].

Expanding FISH to include more specific species or genera would be a significant first step to

further confirm their presence within the parasite.

Reviewed by Abruzzi and Fried [41], animal and human studies have shown altered levels

of bacteria, including Mycobacteria, Helicobacter and Staphylococcus, in host tissues such as

the lungs and liver during schistosome infection. In our study, only Staphylococcus was found

present in most samples, including the parasite tegument, although the levels were not statisti-

cally different compared with the surrounding blood, even when compared with blood sam-

ples from uninfected mice.

Why do helminths alter their microbiomes?

Helminths immunomodulate the host innate and adaptive immune systems for their benefit

[42]. Bacteria also utilise multiple strategies to modulate host immune responses [43], but it is

unknown if any interactions between bacteria and schistosomes provide advantages to the par-

asite at the host-parasite interface. In an active schistosome infection, parasite eggs perforate

the host intestinal wall leading to bacterial leakage [44], but the direct impact this has on the

host blood microbiome has not yet been explored to any great extent.

Natural co-infections of schistosomes and Salmonella led in the 1980’s to in vitro experi-

ments demonstrating bacterial attachment to the S. mansoni surface tegument [45]. The signif-

icance of these interactions was never fully revealed, although a more recent study indicated

that S. typhimurium infection in mice reduces the number of adult schistosome worms [46].

One potential benefit for bacteria associating with the schistosome tegument has been

explored by Barnhill and colleagues [47]. They acknowledged the commonality of concurrent

infections between schistosomes and Salmonella commonly occurring in humans, which they

expanded on using in vitro assays. Using isolated adult S. mansoni they demonstrated that bac-

teria attached to the parasite surface were protected from antibiotic therapy. An interaction

between the bacteria and the schistosome appeared specific, since the presence of mammalian

cells or a free-living flatworm, did not provide protection from the antibiotics. The benefit that

a specific bacterial population may provide to the parasite has, however, not been considered.

The use of modified in vitro culture conditions could be key to addressing this question.

Of the few taxa elevated in the parasite carcass, one was Clostridium aminophilum (p-value
= 0.0079) normally associated with ruminants. Clostridium is a major pathogen of humans,

which can produce toxins, but can, as an obligate fermenter, produce compounds that may be

of benefit to the parasite. In the mammalian gut, microbiota are known to produce short chain

fatty acids that are essential for the maintenance of epithelial cells [48], particularly in apical

membrane fidelity [49]. The importance of membrane maintenance in schistosomes is central

to tegumental and gastrodermal functions [13, 50]. Studies examining the urinary metabolo-

mic features during experimental schistosomiasis mansoni found indicators of microbial

impact via increased levels of p-cresol glucuronide which has been reported to be produced by

species of Clostridium [51, 52]. This component is also produced by species of Lactobacillus
which we detected in all four tissues. In an earlier study [52] a S. mansoni-infected mouse dem-

onstrated that urine metabolites including p-cresol glucuronide were elevated. The authors

associated these altered metabolites with an altered host microbiome. Considering our new

findings, these schistosome-associated urine metabolites, including p-cresol, may result from

elevated levels of Clostridium and Lactobacillus directly associated with the adult schistosome

worms residing in the host blood. The potential of p-cresol in the blood by parasite-associated
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tegument bacteria, presenting in the urine, is supported by studies of rats where iv injections

of these metabolites were excreted via the glomerulus [53]. Increased levels of Lactobacillus
have been associated with other helminth models including Heligmosomoides polygyrus in the

ileum and duodenum of mice [54, 55]. We present in this study novel sites of residence of Lac-
tobacillus on the schistosome tegument and in the parasite gut.

Another notable carcass-associated taxon was Prevotella (p-value = 0.0054). Prevotella copri
has been reported in the blood of a single clinical case of heart failure [56]. Prevotella is consid-

ered a commensal but a recent finding links it to host inflammatory responses [57]. This type

of response from the host driven by the bacteria would be detrimental to the parasite but given

that this taxon was associated with the carcass or gastrodermis, rather than the exposed tegu-

ment, could make this less detrimental to the parasite. Prevotella copri produces succinate, and

has been shown to improve glucose homeostasis in humans in a mechanism thought to involve

microbe-host interaction and communication [58]. One possible mechanism explored in mice

suggested succinate acts as a glucose precursor which stimulates gluconeogenesis in the mam-

malian gut [59]. In addition to potential metabolic effects of Prevotella-produced succinate

within the schistosome gut, studies of gut protozoa indicate an interaction between the patho-

symbiotes producing succinate and host immunomodulation [60]. The authors suggested sim-

ilar mechanisms could be produced in succinate-producing bacteria, and the possibility of

schistosomes harbouring Prevotella could be a novel aspect associated with parasitism. Any

potential advantage, either metabolic or immunological, provided as a result of Prevotella
being present in the schistosome gut could be determined as an important future research

avenue.

Altered blood and bile microbiomes, and the impact of helminth infection

The presence of bacteria in the blood outside full sepsis is a contentious topic [61]. However,

more information is arising challenging the previously held dogma that blood is generally ster-

ile in a healthy individual [61, 62]. Many studies have reported the existence of circulating bac-

terial DNA but did not provide evidence for the presence of viable organisms. More recently,

molecular techniques, in conjunction with classical aerobic and anaerobic microbial culture

experiments, were able to characterise the human circulating microbiome [61, 62]. The impact

of blood feeding GIT will be clearer with the breach in intestinal fidelity potentially leading to

changes in the blood microbiome [63]. As discussed above, the breach of intestinal fidelity by

schistosomes will be driven by the eggs of the parasite. The presence of specific bacteria in the

blood as a result of an active schistosome infection is a new observation. The significance and

functionality of the observed increase or decrease of blood taxa will, however, require consid-

erable investigation. Future studies in mice and humans should explore the potential of

comorbidities of schistosomiasis and the presence of elevated levels of bacteria in host blood.

Some bacterial species on the schistosome parasite surface could represent an additional

immune-evasion mechanism. Streptococcus, Haemophilus influenzae, Escherichia coli K1, and

Neisseria meningitidi all possess structures which prevent antibody adherence and comple-

ment insertion on their surfaces [64]. Of these taxa, Escherichia coli (not K1) is present on the

tegument and carcass of the parasite (p-value = 4.5E-16). The secretions by Gram-negative

bacteria may be another defence mechanism that could benefit schistosomes. The presence of

the multi-laminated apical tegument membrane of adult schistosomes [13, 65, 66] could make

the parasites resistant to bacterial toxins, but may perforate host cells, particularly those associ-

ated with the immune response.

Schistosoma japonicum and S. mansoni both cause hepato-intestinal fibrotic schistosomia-

sis, although direct impact on the host gallbladder or bile duct by eggs is rare [21].
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Schistosomal cholecystitis is recognized as one of the rare gastrointestinal presentations of

schistosomiasis. However, it is not clear whether the schistosome eggs trapped in the gallblad-

der walls may directly induce this type of acute inflammation and alter the bile microbiome

[19]. Species that do have a more documented negative impact on the host gallbladder include

Fasciola hepatica, Opisthorchis viverrini, Clonorchis sinensis and Opisthorchis felineus, all of

which reside in the biliary system [67].

Bile has been analysed for the presence of microbial communities in animals [68, 69] and

humans [17]. Most studies report increases in bacterial levels associated with gall bladder dis-

ease. The presence of bacteria within bile has also been reported in humans without any

underlying co-pathology [17]. These include the bacterial Phyla Actinobacteria, Bacteroidetes,

Firmicutes and Proteobacteria. We found all four of these Phyla present in bile samples

although none were statistically altered as a result of schistosome infection.

The bile (also known as gall) content of patients infected with O. felineus were profiled for

changes in the microbiome [70]. Changes observed in infected patients included the presence

of Cellulosimicrobium, Microlunatus, Mycoplana and Phycicoccus, and elevated levels of Bacter-
oides, Klebsiella, Leptotrichia, Lactobacillus, Rothia, Selenomonas and Treponema. While none

of these were observed in our study, it is notable that many of the taxa we did find were simi-

larly increased in infected animals compared with controls, as well as some that were only evi-

dent during infection. Elevated levels of Limnohabitans (p-value = 0.031), Fluviicola (p-value =

0.022), Clostridium (p-value = 0.026) and Curvibacter (p-value = 0.013) genera were associated

with bile taken from infected mice. These observations further strengthen the importance of

the bile microbiome in helminth-infected mammals.

Future directions and conclusions

Despite the new data presented here, key questions still need to be clarified that additional

time course experiments of longer duration would help address. By sampling adult worms of

S. japonicum before and after egg laying, an approach used in another schistosome micro-

biome study focusing on the host faecal environment [7, 71], the importance of the host intes-

tine may be determined. The significance of the production of eggs, and the translocation

across the intestinal lumen is potentially critical for the introduction of new bacteria into host

blood and to the adult parasite. The application of single sex male only infections, where no

eggs are produced, will also help to clarify this issue, and would help indicate which bacterial

changes result from the host intestine becoming compromised [44] and what impact parasite

pairing (male and female parasite infections) has on the parasite microbiome. Similarly, exam-

ining the incoming infectious cercarial stage may provide a further life cycle approach to

understanding schistosome, bacteria and host interactions. In addition, it would be interesting

to investigate the difference in both blood and intestinal microbiota in the infected animals

after being treated with praziquantel or antibiotics. That may shed lights on the mechanism of

drug action.

Our results highlight an underappreciated aspect of schistosome biology. The adult parasite,

resident in the blood system of the definitive mammalian host, is active both in modulating

the host immune system, and in accessing essential nutrients. An additional feature may be

that the adult schistosome alters its interactions with the microbiome present in the blood. All

three of these key phenomena may interact to ensure effective parasitism. We demonstrate

that the microbiomes on the epithelial surfaces of adult schistosomes are distinct to that pres-

ent in the host blood microenvironment where they reside. The increased concentration of

some bacteria, as well as the absence of other bacterial taxa, on schistosome epithelial surfaces,

represents a newly described microbial niche. We also consider the differences between the
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schistosome gastrodermis and tegument microbiomes provide another strong indicator that

differences in functionalities exist between the two. As is frequently the case for a new area of

research, many questions remain due to the complex interaction between the schistosome, the

host and the microbial populations present. We anticipate that further exploration of this

important area will provide new pointers for developing anti-schistosomiasis interventions

exploiting the interactions between bacteria and schistosomes.
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status, Paired p- value (Tukey), and mean abundance for each Tissue and Infection condition.

(XLSX)

S4 Table. ANOVA of host blood in both infected and uninfected controls, and parasite

samples tegument and carcass. Separate tabs contain Species, Genus and Phylum level data.

Results include p- value based in Tissue and Infection status, False Discover Rate (FDR),

adjusted p- value based in Tissue and Infection status, Paired p- value (Tukey), and mean

abundance for each Tissue and Infection condition.
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S5 Table. ANOVA of parasite samples tegument and carcass only. Separate tabs contain

Species, Genus and Phylum level data. Results include p- value based in Tissue and Infection

status, False Discover Rate (FDR), adjusted p- value based in Tissue and Infection status,
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Paired p- value (Tukey), and mean abundance for each Tissue source.
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S1 Fig. Kitome normalisation of the data, presented as a non-clustered bar-chart. Major

OTUs present in individual samples before (Top) and after (Bottom) decontam processing of

data.

(TIF)

S2 Fig. Major species, genus, family and phylum present in parasite tissue samples and flu-

ids from infected and uninfected hosts. Host (left) and parasite (right) present variances

until the phylum level, where differences become less prominent.

(TIF)

S3 Fig. Examples of statistically significant bacterial species with elevated levels either in

the host blood, or in the parasite tegument and/or carcass.

(TIF)
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