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Soil bacterial diversity mediated by microscale
aqueous-phase processes across biomes
Samuel Bickel 1* & Dani Or 1,2

Soil bacterial diversity varies across biomes with potential impacts on soil ecological func-

tioning. Here, we incorporate key factors that affect soil bacterial abundance and diversity

across spatial scales into a mechanistic modeling framework considering soil type, carbon

inputs and climate towards predicting soil bacterial diversity. The soil aqueous-phase content

and connectivity exert strong influence on bacterial diversity for each soil type and rainfall

pattern. Biome-specific carbon inputs deduced from net primary productivity provide con-

straints on soil bacterial abundance independent from diversity. The proposed heuristic

model captures observed global trends of bacterial diversity in good agreement with

predictions by an individual-based mechanistic model. Bacterial diversity is highest at

intermediate water contents where the aqueous phase forms numerous disconnected habi-

tats and soil carrying capacity determines level of occupancy. The framework delineates

global soil bacterial diversity hotspots; located mainly in climatic transition zones that are

sensitive to potential climate and land use changes.
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Soil hosts unparalleled bacterial diversity, ranking highest
among all other compartments of the biosphere1–3. The
number of bacterial phylotypes ranges between 102 and 106

per gram of soil1,2,4, with high values similar to the diversity in all
of earths environments3. This immense richness is often attrib-
uted to soil’s intrinsically heterogeneous physical and chemical
micro-environments5–9. The complex structure of soil pores
offers numerous refugia for hosting diverse bacterial species9.
This wide range of microhabitats is particularly important for
maintaining the rare components of the soil microbiome. Low
abundance bacterial species play important roles in key biogeo-
chemical processes10,11 and serve as a “seed bank” for species
richness12. Microbial diversity is manifested both at the scale of
soil grains8 and at very large scales across climatic regions and
terrestrial biomes2,13,14. These observations often include varia-
tions in microbial biomass that responds to resource availability
and affects bacterial diversity at all scales15–17. For example, well-
established observations of microbial abundance variations with
soil depth18 could confound inferences of bacterial richness by
promoting the detection of low abundant species in resource-rich
environments.

Quantifying the roles of soil factors, such as soil texture, porosity
and hydration conditions in relation to climate and vegetation
cover, is an important step towards disentangling bacterial diversity
and abundance as suggested by recent empirical evidence17.
Soil chemical properties such as pH2,14,17,19 and organic carbon
content15–17 together with climatic attributes, such as aridity
index15, precipitation2,17 and temperature13, have been identified as
important explanatory variables. Yet, the rapid expansion of soil
bacterial diversity datasets has not been met with similar develop-
ment of predictive models for interpretation of the observed spatial
patterns20. Improved predictability of soil bacterial diversity could
be essential for understanding soil bacterial functioning; from
contributions to soil respiration11,21 to the resistance of bacterial
communities to invasion by pathogens22.

Such endeavors invariably require development of mechanistic
frameworks for systematic incorporation of the various factors that
affect soil bacterial diversity. In this study, we capitalize on recent
empirical2,8,13,15,17,23 and theoretical developments7,24,25 to gen-
eralize the role of soil aqueous microhabitat fragmentation and its
nearly universal role in mediating bacterial diversity across soil
types and climatic conditions. To characterize the average condi-
tions in soils and facilitate long-term predictions, we define a soil
climatic water content that combines rainfall patterns and volu-
metric soil water holding capacity into a well-defined attribute. This
measure considers the average duration between soil wetting events
important for diversity maintenance (see Methods). Under a wide
range of climatic conditions, soils remain unsaturated with the
bacterial aqueous habitats fragmented to varying degrees based on
soil type and rainfall dynamics (amount and frequency). A critical
hypothesis is that the microscale arrangement of water retained
in soil pores defines the size distribution and connectedness of
aqueous bacterial habitats that, in turn, affect diffusion rates of
substrates, the rates and spatial extents of cell motility25,26 and
opportunities for cell-to-cell interactions27. The objective of this
study was to formalize the influence of these abiotic factors in a
heuristic framework that enables quantitative representation of soil
bacterial abundance and diversity at scales ranging from grains to
watersheds and beyond.

The core of the model is the quantification of numbers and sizes
of aqueous bacterial habitats considering climatic water contents
and soil types. We use concepts of percolation theory to describe
the size distribution of aqueous patches24 that could support bac-
terial cells. Soil organic carbon input flux, derived from the net
primary productivity (NPP), and mean annual temperature (MAT)
are used to estimate a soil-carrying capacity that defines limits for

the abundance of bacterial cells (Fig. 1). For simplicity, we first
assume that each isolated aqueous patch is inhabited by a single
bacterial phylotype (hereafter referred to as “species”). This heur-
istically enables estimation of bacterial diversity based on the species
abundance distribution (SAD) deduced from the size and number
distribution of microscale aqueous habitats. The framework
expresses soil bacterial diversity at two interlinked spatial scales: at
the single aqueous habitat scale and at the soil sample scale that can
contain many isolated aqueous habitats.

Modeled trends of soil bacterial carrying capacity and diversity
are compared to empirical observations1,4,18 across terrestrial
biomes and suggest a peak in bacterial diversity at intermediate
climatic water contents. To evaluate predictions by this aqueous-
phase fragmentation-based heuristic model (HM), we employ a
detailed, spatially explicit individual-based model (SIM) that
mechanistically simulates bacterial communities growing on
hydrated soil surfaces7,25. The SIM enables systematic variations
of hydration conditions and tracks the growth and life history of
multiple species interacting on soil grain surfaces (see Methods).
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Fig. 1 Illustration of aqueous habitat fragmentation and carrying capacity
in relation to climatic water contents. In regions where rainfall is frequent,
the soil aqueous phase is largely connected and provides a common habitat
for cells of different bacterial species. In soils of drier regions, the aqueous
phase is increasingly fragmented and offers a large number of distinct
habitats. When the soil becomes sufficiently dry, almost all aqueous
habitats are physically isolated and might contain only a few species.
Additionally, the total number of cells that can be maintained (potential
carrying capacity) is reduced and smaller patches become uninhabited. The
specific carrying capacity in a biome is based on carbon input flux and
temperature that establish an upper bound on bacterial cell density (rarely
realized in any particular location due to other limiting factors). The
numbers below each panel indicate the number of cells per number of
habitats. Diversity is expected to drop in dry regions with low cell
abundance and in wet regions with high habitat connectivity.
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The simple HM does not differentiate between the roles of
legacy and environmental conditions in shaping soil bacterial
diversity. As evidenced from the choice of climatic averaging and
the implicit representation of species with no taxonomic attri-
bution, the focus lies on the role of aqueous habitats and their
average connectivity. Other factors at play such as soil chemistry
and the presence of larger organisms are not modeled. We refer
to “microbes” for aspects that apply to all microbial life in soil
(bacteria, fungi, protists and viruses), and specifically to bacteria
for modeling and quantification of diversity and abundance.
Summarizing, we propose a hydration-centered modeling fra-
mework that considers the interplay of climatic water content;
carbon input flux and temperature in shaping soil microhabitats
and thus bacterial diversity.

Results
Estimation of soil bacterial carrying capacity. We evaluated
theoretical estimates of soil bacterial carrying capacity using
previously published measurements of soil microbial carbon18.
The HM assumes that a certain proportion of the annual NPP-
derived organic carbon input is allocated to bacteria (24% of NPP
for bacterial respiration28,29). We found that varying the range of
expected values (14–30% of NPP28) had little impact on estimates
of carrying capacity. A constant value of this respiratory fraction
was therefore considered based on mechanistic model simula-
tions28. We employ a basic estimate of bacterial cell maintenance
rate of 1.5 gC gCcell

−1 y−1 (≈10−4 gC gCcell
−1 h−1) and adjust it

according to the local mean annual temperature (MAT)30 to
account for different climatic regions. Combining local annual
NPP and adjusted cell maintenance rate, we derive estimates of
soil bacterial carrying capacity as upper bounds for soil bacterial
cell density (Fig. 2a). Despite the many simplifying assumptions,
we obtain reasonable estimates of potential soil bacterial carrying
capacity that are comparable with observations of realized bac-
terial cell density across a range of environmental conditions.
Model estimates of soil-carrying capacity for three values of MAT
are depicted in Fig. 2a (representing the median of three groups:
≤0 °C, 0−15 °C and >15 °C with −2, 9 and 19 °C, respectively).
Observed cell densities tend to be higher for colder regions as
considered by the HM. We note that soil bacterial cell density is
expected to vary with soil depth due to the distribution of organic
carbon flux from the soil surface and distribution by plant
roots18. Soil bacterial carrying capacity decreases steeply with
depth and was represented parametrically by a lognormal dis-
tribution (μ= 0.18, σ= 1.00) (Fig. 2b). The lognormal distribu-
tion provided a better global representation of the average topsoil
carrying capacity (upper 10 cm, Supplementary Fig. 1) over the
previously reported exponential model18. It is important to keep
in mind that the estimated soil-carrying capacity was defined
independently from bacterial diversity and values were calculated
globally based on NPP, MAT and soil depth.

Modeling bacterial diversity considering climate and soil. The
simple HM was developed in two conceptual steps. We first
assumed only a single species per aqueous habitat. This approach,
although useful as a heuristic, exhibited some limitations for
large aqueous habitats under wet conditions (see comparison of
species abundance distributions below). We thus adapted the
model to allow multiple species in large habitats by assigning the
number of species Nsp proportional to the length scale of a habitat
of size s (Nsp ~ s1/d, d= 2 or 3= dimensionality). Hence, the HM
links species richness to the soil aqueous-phase fragmentation via
percolation theory and accommodates the possibility of multiple
species per habitat. For most unsaturated conditions the refined
formulation does not alter the prediction since small habitats are

likely to host only a single species. In the following we refer to the
multispecies HM if not stated otherwise. We have used median
values of global soil-carrying capacity to describe trends in soil
bacterial diversity across soil types and climatic regions. Compar-
isons of model estimates with empirical observations of bacterial
richness obtained from the studies of Thompson et al. (EMP)1 and
Delgado-Baquerizo et al. (DEL)4 are depicted in Fig. 3 along with
the mechanistic predictions by the SIM. We have expressed mean
soil hydration status via the climatic water content that is a proxy
for average soil wetness and habitat connectivity. Soil and climatic
variables were compiled from different sources (Supplementary
Table 1) with matched geographical coordinates and soil depths for
the samples. We present soil bacterial richness (total number of
types) and note that taxonomic assignment was absent for the
phylotypes detected in EMP. Bacterial richness was binned by
water contents because some hydration conditions were over-
represented (bin width: 0.05). Since richness in the EMP data was
measured at different soil depths, they were also grouped to top
and subsoil (<25 cm and ≥25 cm). Exact number of samples per
group are reported in Supplementary Table 2. The EMP data
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Fig. 2 Soil bacterial abundance varies in relation to carbon input,
temperature and soil depth. a Bacterial cell density at soil-carrying
capacity as a function of net primary productivity (NPP) with model
estimates sensitive to mean annual temperature (MAT) (solid lines).
Estimates are compared with measured data of microbial biomass18

converted to bacterial cell density and are grouped by temperature
(MAT≤ 0 °C, 0 °C >MAT≤ 15 °C, MAT > 15 °C). Each group’s median is
reported in the figure legend in blue, green and orange, respectively. The
distributions of cell densities are indicated for each temperature group as
the central 50 and 95% range. b Variations of bacterial cell density with soil
depth. The lognormal fit provides bounds on cell density (carrying capacity)
for intermediate MAT (solid line) and for the central 95% of NPP (shaded
area). Observed estimates of cell density are reported for their average
sampling depth. Most samples were taken above 10 cm as shown in the
boxplot. Source data are provided as a Source Data file.
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display a tendency of lower values of richness in the subsoil
(Fig. 3a). In the DEL dataset, measurements were taken at the same
soil depth, and soil pH is reported instead (Fig. 3b). We observe a
strong tendency of lower soil pH in climatically wetter soils. The
results depict an average decrease in bacterial richness where the
soil becomes saturated as also predicted by the HM for median
soil-carrying capacity (Fig. 3a, b). The modeled sensitivity to soil-
carrying capacity is shown for a scenario of reduced cell densities
(e.g. less carbon input to deeper soil layers; Fig. 3a dashed line). We
emphasize that parameters were not fitted to observed diversity
data, but rather are based on mean values for soil properties
(porosity θs= 0.49 and 0.47; sample length L= 5 and 6mm; tex-
tural length δ= 0.07 and 0.1 mm; for EMP and DEL, respectively).
Additionally, we used a fixed value for the critical water content
(θc ≈ 0.15) and a threshold for the number of cells Ncell needed to

model occupancy of potential habitats (Ncell > 4000). Lastly, we
compared the aqueous-phase fragmentation-based HM to
numerical simulations of the SIM. We simulated the spatially
explicit growth and movement of individual cells in a diverse
bacterial community on heterogeneous soil pore surfaces. Quali-
tatively, both HM and SIM predict similar trends of variations in
bacterial richness with soil hydration conditions as estimated from
the EMP and DEL datasets (Fig. 3a, b). In addition to removing
single cells (singletons) from the simulated communities, the
modeled species counts were rarefied to 5000 and 1000 for com-
parison with EMP and DEL, respectively. To compare with the
DEL dataset, simulated bacterial richness is reported only for
the 512 most abundant species and describes the observed invar-
iance of richness towards low climatic water contents (Fig. 3b). The
discrepancy in water contents where richness peaks (between HM
and SIM) is attributed to the dimensionality of the models (three
for HM, two for SIM) and is well captured by the percolation-
based HM in two dimensions (Supplementary Fig. 2).

Species abundance distribution varies with hydration status.
We quantified variations in bacterial species abundance distribu-
tion (SAD) with soil attributes and climatic water contents in
comparison with empirical estimates from the EMP and DEL
datasets (Supplementary Fig. 3). Here we used soil properties and
carrying capacity specific for each geographical location and soil
depth. The results show good alignment of the single-species model
predictions with observed relative SADs and resulted in Pearson
correlation values of 0.84 (n= 230) and 0.76 (n= 218) for the
EMP and DEL datasets, respectively (Supplementary Fig. 3a, b).
Nevertheless, the single-species HM erroneously predicts a higher
proportion of the most abundant species than observed. We
attribute this systematic overestimation to the stringent assumption
of one single species per aqueous (micro-) habitat. This dis-
crepancy suggests that the single species per aqueous habitat
assumption may not hold for very large aqueous habitats in wet
soil that could host multiple species. To rectify this limitation, we
considered a scenario where the number of species Nsp is assumed
proportional to the size s of an aqueous habitat (Nsp ~ s1/3). This
relaxed occupancy assumption improved Pearson correlations to
values of 0.88 (n= 230) and 0.84 (n= 218) for the EMP and DEL
datasets, respectively (Supplementary Fig. 3c, d). Predictions by the
HM for ranked SADs compare qualitatively with observations that
were grouped by average hydration conditions (Supplementary
Fig. 4). An increase in dominance of the most abundant bacterial
species is visible in the ranked SADs of both datasets under suf-
ficiently wet conditions (Supplementary Fig. 4b, c).

Global patterns of soil bacterial habitat diversity. Motivated by
the general agreement with observations of bacterial richness and
the SADs produced by the HM, we used highly resolved global
datasets for soil properties, NPP and precipitation as inputs to
estimate global patterns of soil bacterial habitat richness (Fig. 4a).
Recall that a central element of the model is the link between the
number of distinct aqueous habitats per soil volume and soil bac-
terial richness. Additionally, we considered the sizes of aqueous
habitats to yield spatially resolved distributions of the Shannon
index of bacterial diversity patterns (Fig. 4b). We note that the
modeled soil bacterial diversity follows constraints imposed by local
soil-carrying capacity where high bacterial cell numbers are asso-
ciated with locally high NPP and low cell maintenance require-
ments. Both diversity indices exhibit spatial patterns with distinct
regions of increased diversity associated with climatic transition
zones (e.g., the Sahel). This pattern is more pronounced when
considering the Shannon index and suggests that soil bacterial
community evenness, indicative of how equally habitats are
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Fig. 3 Observed and predicted variations in soil bacterial diversity with
climatic water content. a, b Estimates of bacterial richness from two
studies are binned by climatic water contents (bin width: 0.05) and the
median and interquartile range are reported (circles and bars, respectively).
The exact number of samples per group is listed in Supplementary Table 2.
Individual data points are shown for bins containing less than ten samples
(small circles). The solid black lines correspond to predictions by the
fragmentation-based heuristic model (HM) for median carrying capacity
specific to each dataset. The square symbols, thin solid line and shading
(mean, rolling mean ± SD, n= 12) depict simulated bacterial richness using
the spatially explicit individual-based model (SIM) for different water
contents. a Bacterial richness from the Earth Microbiome Project
(Thompson et al.—EMP)1 was reported for different soil depths and thus
grouped accordingly (<25 and ≥25 cm, top- and subsoil, respectively). The
dashed line represents a model scenario with reduced carrying capacity by
considering only the subsoil. b Soil bacterial richness from a recent study
(Delgado-Baquerizo et al.—DEL)4. Colors indicate reported soil pH, which
has been shown to be affected by climate36. For comparison with the DEL
dataset, only the top 512 species were considered in the SIM. Source data
are provided as a Source Data file.
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partitioned, is sensitive to soil wetness. Such an association is also
observed empirically where evenness decreases with increasing cli-
matic water contents (Pearson r=−0.17 and −0.43 for EMP and
DEL, respectively; Supplementary Fig. 5a).

Disentangling soil bacterial abundance and diversity. To
address the challenge of disentangling bacterial abundance and
diversity, we compared bacterial community evenness with cli-
matic water content and carrying capacity (Fig. 5). Evenness
decreases gradually with climatic water content and with
increasing soil-carrying capacity (Fig. 5, Supplementary Fig. 5b).
The results are consistent with the tendency of wetter conditions
being associated with an increase in cell densities and was con-
firmed (with no prior assumptions) using detailed mechanistic
modeling (SIM) for small spatial and short temporal scales
(Supplementary Fig. 6). In the aqueous-phase fragmentation-
based HM, predicted bacterial cell densities are independent of
climatic water contents. This could result in unrealistic values
relative to empirical observations. We therefore used pairs of
values for carrying capacity and climatic water contents to con-
strain the HM for evenness prediction (Fig. 5). Considering the
relation between climatic water content and soil-carrying capacity
highlights the sensitivity of HM predictions to bacterial cell
density as also observed in the mechanistic simulation results of
the SIM. The dependency of cell density on climatic water con-
tent in the SIM results in a persistent decrease of evenness with
increasing water content (Supplementary Fig. 7). When con-
sidering paired values of water content and cell densities obtained

from the SIM, the simpler HM captures the simulated trends
reasonably well (Supplementary Fig. 7). Although beyond the
scope of this study, we observed that pre-processing measure-
ments of relative species abundance may affect diversity metrics
such as richness and evenness, which alters the apparent ten-
dencies (Supplementary Fig. 8).

Discussion
The heuristic nature of the aqueous-phase fragmentation-based
model (HM) precludes comparison of bacterial richness and
abundance on a per sample basis, as climatic assumptions and
associated large-scale variables are not likely to apply at a particular
sampling location and time. Nonetheless, the proposed HM cap-
tures the salient features of global trends in bacterial richness related
to climate, biome and soil type. Our estimate of soil bacterial cell
density represents an upper bound on soil bacterial abundance
(carrying capacity) and shows general agreement with measure-
ments of soil bacterial biomass carbon18. It tracks the temperature
dependency of reaction rates30 and provides an independent mea-
sure of maximal cell density that is sensitive to climate and organic
carbon input by vegetation. Bacterial diversity increases towards
lower values of climatic water contents (i.e., with increased arid-
ity15), as long as soil bacterial life is not limited by low organic
carbon input. Assuming a constant soil bacterial carrying capacity,
we can attribute much of the variations in bacterial richness to the
microscale behavior of soil hydration conditions (Fig. 3). Surpris-
ingly, the trends of bacterial richness for both surveys EMP1 and
DEL4 were very similar despite their different objectives and pro-
cessing protocols of the genetic information, namely the use of
amplicon sequence variants in EMP and operational taxonomic
units in DEL (Fig. 3a, b). We note that the values of bacterial
richness in the DEL dataset saturate towards lower values of cli-
matic soil hydration (Fig. 3b). This is likely due to the truncation of
species richness used in that study which focuses on the most
abundant soil bacteria4. These, highly abundant species, might be
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the last to disappear under reduced carrying capacity and therefore
do not show a decline towards dry conditions. The data available at
low climatic water contents are sparse and do not provide support
for the predicted steep decline of bacterial diversity as soil becomes
dry that was previously reported with increased aridity at large
scales15. However, a significant decrease in bacterial richness was
also observed in a recent statistical meta-analysis for climatic
scales31 and could be confirmed using the SIM (Fig. 3b). Addi-
tionally, it has been reported that bacterial diversity declines sharply
with moisture in dry soils of Antarctica23 and decreases with soil
relative humidity along transects of the Atacama desert32. Micro-
cosm experiments revealed an increase in richness with moisture
that peaks at intermediate water contents that promote rare bac-
terial species33. Similarly, bacterial richness was highest at inter-
mediate climatic water contents where isolated aqueous habitats are
numerous and sufficiently well supplied by diffusion to realize the
soil-carrying capacity (Fig. 3). This observation is supported by the
mechanistic simulation results of the SIM, which explicitly con-
siders the dynamics and spatial structure of the bacterial commu-
nity (Fig. 3). The generality of the aqueous-phase fragmentation-
based approach permits comparison of systems with different
dimensionality and can account for the shift of maximal richness
towards higher water contents when comparing the HM with the
two-dimensional simulation of bacterial life on hydrated surfaces by
the SIM (Supplementary Fig. 2).

Increasing the organic carbon input and thus soil bacterial
abundance seems to support higher diversity of soil micro-
organisms15. This is in line with the observation of decreasing
bacterial richness with soil depth (Fig. 3a) that is often attributed
to diminishing carbon inputs with depth (Fig. 2b). However,
considering the various interacting factors at play, the general
picture might be more complicated. An increase in soil-carrying
capacity may not necessarily translate to increased bacterial
diversity as evidenced by declining community evenness (Fig. 5,
Supplementary Fig. 5). This could be due to dominance of a few
species that may cluster near nutrient hotspots34, or loss of oli-
gotrophic species that would be outcompeted in well-connected
and dense communities9. We observe sensitivity of bacterial
evenness to climatic water contents (Fig. 5), also in relation to the
soil-carrying capacity (Supplementary Fig. 5). However, care
should be taken regarding the interpretation of bacterial richness
and evenness, since biases introduced by data processing and
sampling could depend on the shape of the underlying SAD
(Supplementary Fig. 8). Mechanistic models, such as HM and
SIM, are valuable tools to investigate such dependencies as illu-
strated by considering only the most abundant species (Fig. 3b) or
increasing sampling effort and removing species present at low
abundance (Supplementary Fig. 8a, b, respectively). Nonetheless,
an inherent tradeoff between availability of nutrients and pro-
tection by spatial isolation appears to play an important role in
the establishment and maintenance of high soil bacterial
diversity17,31,34. In other words, the relation between bacterial
abundance and diversity is only positive when the aqueous phase
is fragmented and spatial isolation suppresses the dominance of
few species. As aqueous microhabitats become connected fol-
lowing soil rewetting by rainfall or irrigation, competition and
other trophic interactions between bacterial cells are likely to
reduce soil bacterial diversity (Fig. 3a, b) by reducing the com-
munities evenness (Fig. 5). Many other factors such as pH1,2,14,19,
nutrient composition5, carbon sources distribution6,34, stoichio-
metric constraints14,18 and metabolic dependencies35 shape soil
bacterial abundance and diversity and could contribute to the
discrepancy between our HM and empirical observations. Our
study suggests that some of those factors might be associated with
climatic hydration conditions. Interestingly, we find that soil
samples exhibiting high bacterial diversity at intermediate

climatic water contents coincide with near neutral pH values. In
contrast, samples at low and high climatic water contents show
high (basic) and low (acidic) pH tendencies, respectively (Fig. 3b).
This is supported by studies that relate soil pH with differences in
soil water balance at climatological timescales36. We consequently
expect soil pH to result from differences between precipitation
and evapotranspiration as described by climatic water contents
(Supplementary Fig. 9). Teasing apart such confounding asso-
ciations requires detailed statistical analysis and experimental
validation, which are best conducted in dedicated studies.

Using a single parameter set, largely based on standard per-
colation theory combined with data on soil properties, our HM
predicts SADs that closely resemble empirical observations
(Supplementary Figs. 3, 4). Nevertheless, the increased aqueous-
phase connectedness in climatically wet soils may also promote
interactions that are suppressed under spatial isolation of dry
conditions23. Processes that support bacterial species coexistence
across small distances are not captured by the present model and
would result in persistent underestimation of bacterial diversity
(unless provisions are introduced as done for very large aqueous
habitats—see Supplementary Figs. 2, 3). Another inherent lim-
itation of the analyses presented here is the focus on soil bacteria
ignoring the interplay with other soil microorganisms that
comprise Earth’s microbiome20. For example, fungi could play an
important role in modifying soil bacterial habitats2 and are cur-
rently only considered in the partitioning of microbial carbon.

The framework presented in this study captures the salient
spatial trends in soil bacterial diversity at climatic timescales and
provides insights into effects of habitat fragmentation on the
prevalence of bacterial interactions in natural soil. This is parti-
cularly important for the interpretation of species co-occurrence
and interspecific interactions35. Such interactions between dif-
ferent species become possible only for conditions supported by
the soil aqueous-phase connectedness23. This promotes diversity
by enabling macroscopic coexistence5,7,24 in soil bacterial com-
munities competing for space and a common resource.

A unique aspect of the HM is the ability to bridge scales from
soil pores to biomes where information at both scales is pre-
served. Further investigations are required to test some of the
model implications at different scales. For example, elucidating
the dependency of cell microscale distribution on soil type and
hydration conditions could provide insights into the processes
shaping bacterial interactions in soil. Additionally taking into
account factors affecting the partitioning of carbon at the eco-
system scale could refine model estimates of bacterial abundance
beyond potential carrying capacity. Nonetheless, modeling cli-
mate and soil-specific bacterial diversity offers a useful reference
for comparing effects of climatic shifts (e.g. in temperature,
precipitation) or land use change (e.g. in intensity of agricultural
management or restoration to natural ecosystems) on soil bac-
terial communities that could guide future exploration of the soil
bacterial micro- and macro geography.

Methods
In the following, we provide a detailed overview of the methods used in the study
and list key assumptions. Although the HM uses a yearly timescale for climatic
averaging, the framework could be applied to finer and more resolved datasets. The
global predictions of soil bacterial diversity were based on a 0.1° × 0.1° grid to
harmonize raster layers. For a description of data sources, see Supplementary
Table 1. Variables added to the datasets of point measurements are taken at the
native, highest spatial resolution of the respective property. Where necessary and
not explicitly stated, missing values were imputed using the mean value of the
corresponding variable.

Soil bacterial carrying capacity derived from NPP. The flux of carbon into the
soil is taken from the MODIS NPP dataset37. We have used mean annual values
(2000–2015). Missing values (e.g. desert) were imputed with values obtained from
the Miami model38 using parameters fitted to the nonmissing values of MODIS
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NPP. Only an average fraction (ϵ= 0.24) of the total NPP entering the soil column
is available for bacterial respiration28,29. The vertical distribution of microbial
carbon in the soil column follows the distribution of plant roots18. This allowed us
to impose the depth z at which most of the carbon is released by integrating over
the sampled interval dz and calculating the fraction of NPP available for bacteria at
a particular depth (NPPb;z ¼ ϵ NPP

dsoil
Fz ¼ ϵ NPP

dsoil

R
f zð Þdz). The factor Fz denotes the

fraction of carbon available at a particular depth and is described by f(z) for the
entire depth of the soil profile considered (dsoil= 1 m). Assuming no net growth of
the bacterial community so that only energy requirements for maintenance
metabolism are satisfied permits computation of maximal bacterial cell density ρcell
(m−3). This soil-carrying capacity supported by the input flux of carbon is cal-
culated using Eq. (1).

ρcell z;Tð Þ ¼ NPPb;z

fTmMc
: ð1Þ

Using a constant mass of carbon per cell Mc and by fitting maintenance rate m,
we calculated the bacterial cell density ρcell. Temperature dependency was
implemented as a factor fT based on the Schoolfield model30 using mean annual
temperature (MAT) from the WorldClim dataset39.

Soil bacterial abundance dataset. Xu et al. (XU)18 compiled a dataset for the
abundance of soil carbon associated with microbial biomass. This was used here as
a reference for bacterial abundance for a range of geographical locations. We
considered the relation between the soils carbon to nitrogen (C:N) ratio and the
proportion of bacterial biomass to total microbial biomass40. Total microbial
biomass carbon contains mainly fungal and bacterial carbon (Cmic ≈ CF+ CB). A
piece wise linear function was used to describe the ratio of fungal to bacterial
carbon (RFB= CF / CB) with varying C:N ratio of the soil organic matter. This ratio
was taken as a constant below C:N= 18.4 (RFB= 5, see ref. 28) and increases with a
slope of 0.5 above said value40. From RFB the relative proportion of bacterial
biomass fB was calculated (fB= 1 / (RFB+ 1)). A carbon content per cell41 of Mc=
8.6 × 10−14 gC was used in all conversions of soil bacterial biomass and for the
estimation of soil-carrying capacity. To determine the decay of carbon input in the
soil profile (fz) we first averaged the bacterial biomass per soil depth. Averaging was
necessary to avoid putting more weight on more frequently sampled depths. Values
were integrated from the soil surface to the maximum depth of 2 m. This cumu-
lated bacterial biomass was normalized by its total sum to obtain the cumulative
fraction of biomass with soil depth. For parameter estimation, we fit the cumulative
lognormal distribution to the cumulative fraction of bacterial biomass yielding μ=
0.18 and σ= 1.00 for parametrization of Fz. We chose a lognormal distribution as it
gave a better fit to the vertical distribution of measured bacterial biomass than the
previously used exponential model (Supplementary Fig. 1). The global maintenance
rate was subsequently estimated by fitting Eq. (1) for the soil-carrying capacity to
measurements of soil bacterial biomass carbon18 using inputs of local NPPb,z and
MAT. The optimization yielded a maintenance rate of m= 1.5 gC gCcell

−1 y−1.

Soil bacterial diversity datasets. Two datasets of bacterial species/phylotype
abundances based on 16S rRNA sequencing were employed in this study. Data
from the Earth Microbiome Project as published by Thompson et al. (EMP)1 and
data collected by Delgado-Baquerizo et al. (DEL)4 were used to estimate bacterial
diversity. Diversity was calculated on the data “as provided” using the procedures
outlined below. Except some samples in the EMP dataset had to be removed due to
misclassification or unsuitable conditions. The following procedure was applied to
filter the EMP data based on metadata: Samples labeled as “Soil(non-saline)” were
selected if the environmental material was either “soil” or “bulk soil”. We then
removed samples containing the features “oil contaminated soil” or “extreme high
temperature habitat”. Tables of sampled abundances of phylotypes were then used
as published (90 bp qc filtered and rarified to 5000 for EMP (n= 2871) and the top
511 phylotypes after taxonomic assignment for DEL (n= 237)). Variables relevant
to soil and climate were added according to reported geographical coordinates and
soil depth resulting in 484 and 218 sites for EMP and DEL, respectively. The mass
of soil is taken from the extraction protocol used in the studies. For DEL, 0.25 g of
soil and for EMP an average of 0.175 g were chosen.

Estimating soil-specific “climatic” water content. A metric for the average
hydration conditions relies on estimation of a representative value of water content
based on rainfall patterns. We use a simplified approach where the periods in
which soil drains or dries following a rain event are calculated. We apply a
threshold to the precipitation time series to remove small wetting events that
immediately evaporate and estimate the time in between rain events. The average
duration between events is the characteristic dry down for given geographical
locations. During this time, water mass is lost at a constant rate determined by
(mean daily) potential evapotranspiration (PET), resulting in an exponential
reduction of average water content within the considered soil profile (dsoil= 1 m).
We assume for simplicity that a daily temporal resolution is compatible with the
cessation of internal drainage of most soils. Hence, climatic soil water content does
not exceed field capacity (a stable water content after internal drainage becomes
negligible). For simplicity, we define the volumetric field capacity θFC (Vwater/Vsoil

in m3m−3) as half of the porosity θs (Vvoid/Vsoil in m3 m−3). The latter is obtained

using an empirical (pedo-transfer) function42 that relates commonly measured soil
properties (sand-, silt-, clay- contents and bulk density43) to soil porosity. The
MSWEP44 precipitation records of 37 years (1979–2016) are used to derive average
rainfall quantities per wetting−drying cycle. The spatial resolution of the pre-
cipitation data is roughly 11 km at the equator and the temporal resolution is given
at a sub-daily (3 hourly) timescale. The data are down sampled to daily resolution
as the dynamics of soil wetting and drying relevant for the bacterial habitat are
expected to be within this timescale. Further, the precipitation time series is sub-
jected to a threshold taken from estimates of PET45 based on temperature and
radiation39 to identify wetting events. The run lengths between wetting events are
measured and averaged across wetting cycles. The key result of the analysis is the
mean time interval between rainfall events τ (an ensemble average) for every
location. This quantity combined with daily PET (m d−1) were used to deduce the
climatic water contents θτ (Vwater/Vsoil in m3 m−3) according to Eq. (2).

θτ ¼ θFCe
�α<τ> with α ¼ PET

dsoilθFC
: ð2Þ

The significance of θτ is that it combines rainfall patterns, PET, and soil
properties over climatic timescales and provides a measure of the average hydration
conditions experienced by soil bacteria in a particular geographical location
(Supplementary Fig. 9).

Estimation of aqueous habitat size distribution. We estimated the size dis-
tribution of distinct aqueous habitats based on soil properties and hydration
conditions (e.g., climatic water content). Soil water content was treated as the
aqueous-phase occupancy probability p (the probability of finding a water filled
pore or roughness element) that, in turn, enabled the application of standard
percolation theory to represent the characteristics of aqueous bacterial habitats
(sizes and numbers). We considered the soil as a three-dimensional lattice (two-
dimensional (2D) for comparison with the SIM) with a critical occupancy prob-
ability and universal exponents that determine the number of (aqueous) patches
and their sizes46. The critical percolation threshold pc was multiplied by the soil
void fraction (or saturated water content θs) to account for soil porosity47. The
critical water content is thus defined by Eq. (3) and could be expressed as critical
saturation Sc (4) to remove the dependency on θs.

θc ¼ θspc; ð3Þ

Sc ¼
θc
θs

¼ pc: ð4Þ

The size distribution of aqueous patches ns(p) was assumed to follow general
proportionalities of percolation theory (5–7)46:

ns pð Þ � s�τe
� s

sξ ; ð5Þ

sξ � pc � pj j�1
σ ; ð6Þ

P1 � p� pcð Þβ: ð7Þ
With the patch size s (number of sites/pores) for s≫ 1, Fisher exponent τ ≈ 2.18

(2D: τ= 187/91), cutoff exponent σ ≈ 0.45 (2D: σ= 36/91) and cutoff size sξ46. P∞

is the fraction of the domain occupied by a spanning (algebraically infinite) patch
with exponent β ≈ 0.41 (2D: β= 5/36). The patch sizes follow a power law
distribution at p= pc. Away from this critical point when the cutoff size sξ is
exceeded, patches shrink with decreasing water content (p < pc) or merge and grow
when approaching saturation (p > pc) as patches of size s > sξ become exponentially
scarce. Although the prediction is strictly valid only for p close to pc, we assume
such relations to hold for the range of conditions considered. The occupancy
probability p was thus substituted with climatic water content θτ and pc with a
critical water content θc ≈ 0.15 that correspond to a simple cubic lattice with
porosity θs ≈ 0.5 (triangular lattice in 2D; θc ≈ 0.25).

To account for different soil types, a characteristic length scale δ is estimated
based on the geometric mean diameter of soil particles48. This length scale is used
for normalization of the aqueous patch size distribution in the range of water
contents and patch sizes relevant for bacterial life. The soil type length scale δ and
the system size L were considered (soil domain or sample size); here we used the
mass of soil sampled msoil and bulk-density ρsoil specific to soil type (8). The total
number of candidate sites N0 in the sampled soil was then determined from simple
geometry considering the dimensionality d= 2 or 3 (9).

L ¼ msoil

ρsoil

� �1
d

; ð8Þ

N0 ¼
Ld

δd
ð9Þ

We approximated the behavior of the percolation transition using a bounded
logistic curve that provides a smooth function P̂1

P̂1 ¼ θ

1þ e�k θ�θcð Þ ; ð10Þ
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where k describes the “sharpness” of the transition (k= 16 for all calculations). The
total size of aqueous clusters or potential habitats Ns was normalized as follows:

N0
s ðθ;N0Þ ¼

θ � P̂1PN0
1 s ns θð Þ

; ð11Þ

Nsðθ; sÞ ¼ N0
s θ;N0ð Þs ns θð Þ: ð12Þ

Thus requiring, by pre-factor Ns
0, that the total volume of aqueous patches conserves

the volume of soil water at a given state of hydration. For practical reasons,
subsequent calculations of aqueous patches proceed by removing the largest patch
after normalization (this large patch biases the counting of habitats in a sample).

Calculation of bacterial species diversity. The distribution of aqueous patches
derived from percolation theory and their properties defined the degree of spatial
isolation and restricted the number of potential habitats. Both aspects were
expected to alter the bacterial diversity patterns observed in natural soils. The
estimated aqueous patch sizes and their prevalence defined the distribution of
bacterial habitats. Together with carrying capacity we can estimate the number of
cells within a single (habitat) size class s (13).

Ncell;s ¼ ρcell s δ
d ð13Þ

Aqueous patches with cell counts below a prescribed threshold (or limit of
detection, Ncell < 4000 for comparisons with empirical data) were removed from the
total number of potential habitats Ns. Conceptually this can be interpreted as the
discrete nature of bacterial cells that limits counts to integers greater than one.
Empirically, there exists a lower limit of detection and a minimal number of cells
from a single species (≫1) is needed to contribute to the measurement of bacterial
richness. Initially, we assumed that only a single species occupies a patch by
outcompeting possible coinhabitants. Hereby, the modeled species abundance
distribution (SAD) follows the distribution of aqueous habitats with abundances
bounded by carrying capacity within a defined volume of soil. Subsequently, we
introduced the possibility of multiple species occupying large aqueous patches (in
proportion to their size and dimension; Nsp ~ s1/d, d= 2 or 3) to correct for model
bias of over predicting the dominant species. The exponent (1/d) suggests that the
number of species per habitat grows with the average distance between any two
points selected randomly within a single habitat of size s. The limit of detection was
not used for the comparison of SADs as the total number of habitats was truncated
to the number of observed species.

Bacterial diversity was calculated in the general form49 for all SADs (modeled
and data):

qD ¼
XSR
i¼1

pqi

 !1=ð1�qÞ
ð14Þ

With relative species abundance pi and species richness SR. For q= 0 the equation
corresponds to the weighted harmonic mean and equals the actual number of types
(SR). The equation is not defined for q= 1 where the limiting form is described by
the well-known Shannon index H (15) and evenness E1,0 is calculated as defined by
Eq. (16)49.

limq!1
qD ¼ 1D ¼ exp Hð Þ ¼ exp �

XSR
i¼1

pilnðpiÞ
 !

ð15Þ

E1;0 ¼
1D
0D

: ð16Þ

Spatially explicit individual-based model (SIM). An individual-based approach
was previously developed to model growth of diverse bacterial species on hetero-
geneous soil surfaces7,25 and was adopted for the current study. The spatial domain
was represented by a hexagonal grid with periodic boundary conditions (length L=
1mm; area of a grid cell Ahex= 100 μm2; and porosity θs= 0.49). Grid cells consisted
of water holding elements with volumes drawn from a random uniform distribution
(unif) that have a maximal size equal to the spacing of the grid (dx= 1.1 × 10−5 m).
Thereby the modeled domain represents a slab of the soil pore space with a defined
volume (Vsoil= L2 dx). The bulk water content is prescribed to the domain as a
control parameter and spatially distributed relative to the sizes of grid elements while
conserving the total volume of water (Vwater= ∑ Vwater,x,y). Based on the local volume
of water, an average water film thickness h was calculated (hwater,x,y=Vwater,x,y/Ahex).
The heterogeneity of the water film thickness modified the mass transfer between grid
cells by changing the cross-sectional area that contributed to the diffusive flux. Dif-
fusion was solved using the implicit finite differences method with bacterial con-
sumption represented as a sink term. Diffusivity is taken for a small molecule that is
readily available for bacterial consumption (e.g. glucose) and does not vary spatially
(D= 6.7 × 10−10m2 s−1). The simulation period corresponded to 8 days at a 1-min
time step. Initial concentration of nutrients was constant in space and randomly
replenished to initial concentration over time to mimic a fluctuating environment.
The arrival of nutrient pulses was modeled as a Poisson process with an average rate
of one arrival every 4 h. The initial nutrient concentration was set to provide enough
carbon to sustain a fixed cell density (1017m−3, corresponding to high carrying

capacity) and was distributed evenly among nutrient pulses. The mass of nutrients
locally available for bacterial consumption depended on the volume of water in a grid
cell. All simulated bacteria were represented as elongating cylindrical capsules that
consume a common carbon source dissolved in the aqueous phase. The diversity and
multiple species i were prescribed in the model by varying Monod parameters
(growth rate μmax,i, half saturation constant Ki—additionally maintenance rate mi :=
0.01 μmax,i). Species-specific parameters were randomly selected from uniform dis-
tributions of the Monod parameters (μmax ~ unif(10−4 h−1, 1.14 h−1), K ~ unif(6.8 g
m−3, 680 gm−3)). All other parameters were held constant (mass of the cell mcell=
9.5 × 10−13 g, mass at division mdiv= 2 mcell, yield Y= 0.5, cell radius rcell= 0.5 μm).
A single cell of each species was inoculated randomly on the domain at the beginning
of the simulation (species richness SR at t= 0, SRt0= 4096). Individual cells grew and
divided along their axis with a slight asymmetry in mass to avoid complete synchrony
(fm ~ unif(0, 0.05), mcell,1= fmmdiv and mcell,2= (1− fm)mdiv). All bacterial cells were
subject to active and passive motion and could move continuously in the domain.
Growth-induced shoving represents the passive motion and was implemented by
displacing cells relative to their nearest neighbors (only considering the capsule
geometry as n-spheres; no forces, e.g. capillary, friction, elastic, electrostatic, etc.).
Shoving was not resolved to full relaxation due to the size of the domain, number of
cells and the scale of interest (compromise between reduced computational demand
and precision of the resulting spatial distributions). However, we implemented a
simple rule to prevent local crowding: if the projected area of bacterial cells in a grid
cell exceeded the area of the grid cell (Ahex), bacterial cells were randomly picked and
moved to form a second layer (piling cells at the z-direction) from which they could
“drop” down again once space became available. Bacterial swimming motility was
permitted where the aqueous phase was connected and the water film thickness
exceeded cell diameter26. Cells aligned their motility trajectories along gradients of the
nutrient field, whereas their velocity was modified by the water film thickness26 and
nutrient concentration50. Additionally, each velocity component (vx, vy) is indepen-
dently multiplied with a random factor to allow for individual trajectories (fv ~ unif(0,
2)). Integrating along the projected trajectory of each cell enabled consideration of
varying water film thickness and prevented cells with high instantaneous velocity
from “jumping” across grid cells. At the end of the simulation, the total number of
cells and the number of cells per species were measured. To enable comparison of
richness estimates from varying sample sizes (e.g. with observed species richness or
simulations with different cell densities), total cell numbers were rarified to 5000 and
1000 counts, to compare with EMP and DEL, respectively. For comparison with the
DEL dataset only the top 512 most abundant species were considered. Singletons, i.e.
cells that were sampled only once when rarefying, were removed from the counts.
The rarefication procedure was averaged across 15 trials to increase robustness of the
diversity estimates. Only community evenness was also estimated without rarefication
and removal of singletons as it affected the apparent community structure (Supple-
mentary Fig. 8).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 2, 3 and 5 are provided as a Source Data file. All
generated data (by the SIM) are available from the corresponding author (samuel.
bickel@usys.ethz.ch) upon request.

Code availability
Custom computer code is accessible online (for the HM, https://gitlab.ethz.ch/bickels/
microgeo-ncomms, and SIM, https://gitlab.ethz.ch/bickels/microgeo-sim) and is archived
in a public repository (https://doi.org/10.5281/zenodo.3558542).

Received: 8 January 2019; Accepted: 10 December 2019;

References
1. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale

microbial diversity. Nature 551, 457–463 (2017).
2. Bahram, M. et al. Structure and function of the global topsoil microbiome.

Nature 560, 233–237 (2018).
3. Louca, S., Mazel, F., Doebeli, M. & Parfrey, L. W. A census-based estimate of

Earth’s bacterial and archaeal diversity. PLOS Biol. 17, e3000106 (2019).
4. Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in

soil. Science 359, 320–325 (2018).
5. Zhou, J. et al. Spatial and resource factors influencing high microbial diversity

in soil. Appl. Environ. Microbiol. 68, 326–334 (2002).
6. Franklin, R. B. & Mills, A. L. Importance of spatially structured

environmental heterogeneity in controlling microbial community
composition at small spatial scales in an agricultural field. Soil Biol.
Biochem. 41, 1833–1840 (2009).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13966-w

8 NATURE COMMUNICATIONS |          (2020) 11:116 | https://doi.org/10.1038/s41467-019-13966-w |www.nature.com/naturecommunications

https://gitlab.ethz.ch/bickels/microgeo-ncomms
https://gitlab.ethz.ch/bickels/microgeo-ncomms
https://gitlab.ethz.ch/bickels/microgeo-sim
https://doi.org/10.5281/zenodo.3558542
www.nature.com/naturecommunications


7. Wang, G. & Or, D. Hydration dynamics promote bacterial coexistence on
rough surfaces. ISME J. 7, 395–404 (2013).

8. Bach, E. M., Williams, R. J., Hargreaves, S. K., Yang, F. & Hofmockel, K. S.
Greatest soil microbial diversity found in micro-habitats. Soil Biol. Biochem.
118, 217–226 (2018).

9. Vos, M., Wolf, A. B., Jennings, S. J. & Kowalchuk, G. A. Micro-scale determinants
of bacterial diversity in soil. FEMS Microbiol. Rev. 37, 936–954 (2013).

10. Jousset, A. et al. Where less may be more: how the rare biosphere pulls
ecosystems strings. ISME J. 11, 853–862 (2017).

11. Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The
contribution of species richness and composition to bacterial services. Nature
436, 1157–1160 (2005).

12. Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary
implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

13. Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in
forest soils. Nat. Commun. 7, 12083 (2016).

14. Kaiser, K. et al. Driving forces of soil bacterial community structure, diversity,
and function in temperate grasslands and forests. Sci. Rep. 6, 33696 (2016).

15. Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and
abundance in global drylands. Proc. Natl. Acad. Sci. USA 112, 15684–15689
(2015).

16. Siciliano, S. D. et al. Soil fertility is associated with fungal and bacterial
richness, whereas pH is associated with community composition in polar soil
microbial communities. Soil Biol. Biochem. 78, 10–20 (2014).

17. George, P. B. L. et al. Divergent national-scale trends of microbial and animal
biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun.
10, 1107 (2019).

18. Xu, X., Thornton, P. E. & Post, W. M. A global analysis of soil microbial
biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol.
Biogeogr. 22, 737–749 (2013).

19. Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial
communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).

20. Blaser, M. J. et al. Toward a predictive understanding of Earth’s microbiomes
to address 21st century challenges. mBio 7, e00714-16 (2016).

21. Yu, X., Polz, M. F. & Alm, E. J. Interactions in self-assembled microbial
communities saturate with diversity. ISME J. https://doi.org/10.1038/s41396-
019-0356-5 (2019).

22. Elsas, J. Dvan et al. Microbial diversity determines the invasion of soil by a
bacterial pathogen. Proc. Natl. Acad. Sci. USA 109, 1159–1164 (2012).

23. Lee, K. C. et al. Stochastic and deterministic effects of a moisture gradient on
soil microbial communities in the McMurdo dry valleys of Antarctica. Front.
Microbiol. 9, 2619 (2018).

24. Wang, G. & Or, D. A hydration-based biophysical index for the onset of soil
microbial coexistence. Sci. Rep. 2, 881 (2012).

25. Kim, M. & Or, D. Individual-based model of microbial life on hydrated rough
soil surfaces. PLoS ONE 11, e0147394 (2016).

26. Wang, G. & Or, D. Aqueous films limit bacterial cell motility and colony
expansion on partially saturated rough surfaces: aqueous films limit bacterial
motion. Environ. Microbiol. 12, 1363–1373 (2010).

27. Tecon, R., Ebrahimi, A., Kleyer, H., Levi, S. E. & Or, D. Cell-to-cell bacterial
interactions promoted by drier conditions on soil surfaces. Proc. Natl. Acad.
Sci. USA 115, 9791–9796 (2018).

28. Fatichi, S., Manzoni, S., Or, D. & Paschalis, A. A mechanistic model of
microbially mediated soil biogeochemical processes—a reality check. Glob.
Biogeochem. Cycles. https://doi.org/10.1029/2018GB006077 (2019).

29. Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C.
Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).

30. Schoolfield, R. M., Sharpe, P. J. H. & Magnuson, C. E. Non-linear regression of
biological temperature-dependent rate models based on absolute reaction-rate
theory. J. Theoret. Biol. 88, 719–731 (1981).

31. Bickel, S., Chen, X., Papritz, A. & Or, D. A hierarchy of environmental
covariates control the global biogeography of soil bacterial richness. Sci. Rep.
9, 1–10 (2019).

32. Neilson, J. W. et al. Significant impacts of increasing aridity on the arid soil
microbiome. mSystems 2, e00195-16 (2017).

33. Banerjee, S. et al. Legacy effects of soil moisture on microbial community
structure and N2O emissions. Soil Biol. Biochem. 95, 40–50 (2016).

34. Nunan, N., Leloup, J., RuampsL. S., Pouteau, V. & Chenu, C. Effects of habitat
constraints on soil microbial community function. Sci. Rep. 7, 4280 (2017).

35. Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse
microbial communities. Proc. Natl. Acad. Sci. USA 112, 6449–6454 (2015).

36. Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global
scale. Nature 540, 567–569 (2016).

37. Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of
the MODIS terrestrial gross and net primary production global data set.
Remote Sensing Environ. 95, 164–176 (2005).

38. Lieth, H. in Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker,
R. H.) 237–263 (Springer Berlin Heidelberg, 1975).

39. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate
surfaces for global land areas: new climate surfaces for global land areas. Int. J.
Climatol. 37, 4302–4315 (2017).

40. Waring, B. G., Averill, C. & Hawkes, C. V. Differences in fungal and bacterial
physiology alter soil carbon and nitrogen cycling: insights from meta‐analysis
and theoretical models. Ecol. Lett. 16, 887–894 (2013).

41. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen
majority. Proc. Natl. Acad. Sci. USA 95, 6578–6583 (1998).

42. Tóth, B. et al. New generation of hydraulic pedotransfer functions for Europe:
New hydraulic pedotransfer functions for Europe. Eur. J. Soil Sci. 66, 226–238
(2015).

43. Hengl, T. et al. SoilGrids250m: Global gridded soil information based on
machine learning. PLoS ONE 12, e0169748 (2017).

44. Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology
and quantitative assessment. Bull. Amer. Meteor. Soc. 100, 473–500 (2019).

45. Jensen, M. E. & Haise, H. R. Estimating evapotranspiration from solar
radiation. Proc. Am. Soc. Civil Eng., J. Irrig. Drain. Div. 89, 15–41 (1963).

46. Stauffer, D. Scaling theory of percolation clusters. Phys. Rep. 54, 1–74 (1979).
47. Scher, H. & Zallen, R. Critical density in percolation processes. J. Chem. Phys.

53, 3759–3761 (1970).
48. Shirazi, M. A. & Boersma, L. A unifying quantitative analysis of soil texture.

Soil Sci. Soc. Am. J. 48, 142–147 (1984).
49. Hill, M. O. Diversity and evenness: a unifying notation and its consequences.

Ecology 54, 427–432 (1973).
50. Keller, E. & Segel, L. Model for chemotaxis. J. Theoret. Biol. 30, 225–234 (1971).

Acknowledgements
We gratefully acknowledge Oskar Hagen and Minsu Kim for helpful comments on early
drafts of the manuscript and critical reflection and discussion on the conceptual fra-
mework. This work was funded by the European Research Council (ERC) Advanced
Grant “SoilLife” (No 320499) and the MicroScapesX (SystemsX.ch) and carried out at
ETH Zürich.

Author contributions
D.O. and S.B. designed research; D.O. and S.B. performed research; S.B. wrote computer
code; S.B. performed experiments. D.O. and S.B. carried out the analysis of results and
wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-13966-w.

Correspondence and requests for materials should be addressed to S.B.

Peer review information Nature Communications thanks Claire Chenu, George
Kowalchuk and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13966-w ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:116 | https://doi.org/10.1038/s41467-019-13966-w |www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41396-019-0356-5
https://doi.org/10.1038/s41396-019-0356-5
https://doi.org/10.1029/2018GB006077
https://doi.org/10.1038/s41467-019-13966-w
https://doi.org/10.1038/s41467-019-13966-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes
	Results
	Estimation of soil bacterial carrying capacity
	Modeling bacterial diversity considering climate and soil
	Species abundance distribution varies with hydration status
	Global patterns of soil bacterial habitat diversity
	Disentangling soil bacterial abundance and diversity

	Discussion
	Methods
	Soil bacterial carrying capacity derived from NPP
	Soil bacterial abundance dataset
	Soil bacterial diversity datasets
	Estimating soil-specific “climatic” water content
	Estimation of aqueous habitat size distribution
	Calculation of bacterial species diversity
	Spatially explicit individual-based model (SIM)
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




