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ABSTRACT

MicroArray Gene expression and Network
Evaluation Toolkit (MAGNET) is a web-based appli-
cation that provides tools to generate and score
both protein–protein interaction networks and
coexpression networks. MAGNET integrates
user-provided experimental measurements with
high-throughput proteomic datasets, generating
weighted gene–gene and protein–protein interaction
networks. MAGNET allows users to weight edges of
protein–protein interaction networks using a logistic
regression model integrating tissue-specific gene
expression data, sub-cellular localization data, co-
clustering of interacting proteins and the number of
observations of the interaction. This provides a way
to quantitatively measure the plausibility of inter-
actions in protein–protein interaction networks
given protein/gene expression measurements.
Secondly, MAGNET generates filtered coexpression
networks, where genes are represented as nodes,
and their correlations are represented with edges.
Overall, MAGNET provides researchers with a new
framework with which to analyze and generate
gene–gene and protein–protein interaction net-
works, based on both the user’s own data and
publicly available –omics datasets. The freely avail-
able service and documentation can be accessed at
http://gurkan.case.edu/software or http://magnet
.case.edu.

INTRODUCTION

A large amount of protein–protein interactions (PPIs) and
gene expression data has become recently available from
high-throughput techniques, such as yeast two-hybrid
arrays, microarray gene expression arrays and whole tran-
scriptome shotgun sequencing. Known PPIs are often col-
lected into publicly available databases such as IntAct (1),

BioGrid (2) and human protein reference database
(HPRD) (3). It is natural to model both protein–protein
and gene–gene interactions as a graph, where nodes cor-
respond to genes/proteins, and edges correspond to inter-
actions. Modeling protein/gene interactions as a network
allows researchers to use a systems perspective in studying
the relationships between different genes/proteins and
allows for a host of new analysis techniques. These tech-
niques include generating coexpression networks from
mRNA gene expression data (4), PPI networks (5), gene
regulatory networks (6), signaling pathways (7), probabil-
istic networks (8), and predicting reference networks by
integrating datasets (9).

Earlier, methods integrating heterogeneous types of
high-throughput biological data were presented for gene
function prediction (10), biological network discovery (11)
and comparative interaction network analysis (12).
Species-specific data mining and integration tools/portals
also have been developed for Arabidopsis thaliana (13),
Drosophila melanogaster (14), and Saccharomyces cere-
visiae (15). However, the interactomes generated in
recent years using high-throughput data have limited spe-
cificity, and the noisy and incomplete nature of the data
undermines the results in many promising studies (16). We
present an easy-to-use online toolbox, the MicroArray
Gene expression and Network Evaluation Toolkit
(MAGNET) that provides a solution to this problem.
MAGNET integrates publicly available –omics data and
user-provided gene/protein expression data into a logistic
regression model to provide a weighted PPI, correspond-
ing with the probability that it is a true interaction (17). In
addition to weighting PPI networks, MAGNET can
generate coexpression networks of user-defined sets of
genes using corresponding mRNA expression data,
where the associated weights correspond to the
Pearson’s or Spearman’s Correlation Coefficients.

MAGNET’s web interface was developed to accept in-
dividual experiments from the largest public repository for
high-throughput gene expression data, Gene Expression
Omnibus (GEO) (18). Users can download files from
GEO and directly submit them to MAGNET. Although
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GEO is easily accessible, it is often cumbersome to read,
filter and analyze these files as most exceed the capabilities
of modern spreadsheet software. When weighting PPI
networks, the user simply must specify the types of
publicly available data to incorporate into the logistic re-
gression model (localization, literature references,
co-clustering), and the toolbox retrieves the data from
its own database. This allows researchers to harness the
power of a diverse group of public databases without
having to deal with each of the different formats and
standards (Figure 1). Overall, MAGNET provides value
by easily processing and visualizing system-wide datasets
to the end of generating or prioritizing interactions for
further evaluation.

MAGNET WEB SERVER

Scoring protein–protein interaction networks

MAGNET assigns weights to known PPIs by integrating
sub-cellular localization data, co-clustering coefficient,
number of literature observations and user-provided
mRNA-level co-expression data (17). Each of these four
variables, ~X ¼ ðx1,x2,x3,x4Þ, is incorporated into a logistic
regression model, where the probability of a true inter-
action between two proteins i and j given the variables
~Xij is PrðIij ¼ truej ~XijÞ ¼

1
1+expð��0��4

i¼1
xi�iÞ

(17,19). Using a

‘golden’ dataset of experimentally verified interactions as

a positive training set (20), and randomly selected
(non-golden) interactions as negative training set (500
each), the model is trained to the specific experiment. By
re-training MAGNET for every job that is submitted,
MAGNET can find the optimal coefficients for each of
the variables depending on its usefulness in determining
the plausibility of the given interaction. MAGNET
repeats the training step for a user-defined number of it-
erations and then takes an average over the resulting
variable weights to determine the final set of constants
(�0,:::,�4). For example, in some cases localization data
were more useful and hence given a higher weight,
whereas in others the localization data were not as bene-
ficial. MAGNET uses this trained logistic model to score
the PPI network, generating a weighted network.
Therefore, each edge is associated with a probability
showing how likely it is that the interaction exists, given
the values of the four variables. It is important to note
that the model is trained for every job that is submitted,
which results in a model that is trained specifically to
score interactions based on the user-provided microarray
data.
The first of the four variables, sub-cellular localization,

is based upon the reasonable assumption that two
interacting proteins are more likely to interact if they
are co-localized to the same cellular component. The lo-
calization information is obtained from Gene Ontology
cellular component annotations (21). A positive value
(+1) is assigned if the proteins share at least one sub-
compartment, whereas a negative value (�1) is assigned
if they do not. While most of the proteins have this infor-
mation, if there is no annotation found, they are scored
with zero (0) to avoid unnecessarily penalizing these inter-
actions. The second variable, the co-clustering coefficient,
measures the connectedness of the neighbors of two given
proteins, which has been shown to suggest a higher prob-
ability of interaction (22). The third variable measures the
number of times that a given interaction has been reported
across the PPI databases. The fourth variable is the cor-
relation coefficient (Pearson’s or Spearman’s) between the
expression values of the two genes corresponding to
the given proteins. These correlations are calculated
based on the user-provided expression data, whereas the
former three variables are integrated into MAGNET.
Expression data is the exception because expression of
an interacting pair may vary greatly depending on the
samples chosen.
By integrating the first three variables from public

databases with the fourth variable from tissue-specific-
gene/protein expression measurements, MAGNET
effectively allows researchers to harness the power of
these datasets while still obtaining results specific to their
experiment. Suthram et al. (23) have evaluated various
models used to assess the quality of interaction confidence
assignment schemes. It was reported that a similar
logistic regression model (without co-localization)
performs better than others in correlating functional as-
signments of proteins. Hence, MAGNET utilizes a logistic
regression model, since our focus is on assessing the
validity of functional relationships of protein pairs in a
given system.

Figure 1. MAGNET processes are shown. The user is asked to supply
gene expression datasets and gene list(s) as necessary. The integrated
databases are shown at top, and the final output for each process is
shown in boxes below. The networks can be viewed as both tables and
interactive graphs drawn with a web-based network viewer.
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Web Server
To submit a job to score a PPI network, the user must
upload normalized expression data and the platform def-
inition files (available from GEO) describing the genes
targeted in that platform. The user can also select the
variables used in the logistic regression model (Figure 2).
After submitting the expression data, the user can filter the
samples by the ‘sample_characteristic_ch’ fields in the
GSE file (Step 2). This allows the user to include or
exclude specific samples without having to manually edit
the files. Finally, the user is presented with the console
output and can then proceed to the Results page, where
the resulting PPI network can be viewed as a network with
a web-based network viewer, an edge list table, or down-
loaded as Cytoscape readable files for further analysis.

Generating coexpression networks

Method
Analysis of coexpression relationships between genes/
proteins provides insights into their interactions and
functions. MAGNET can quickly and easily generate
coexpression networks for a given set of genes where
genes are represented by nodes, and edges connect genes
whose coexpression correlation (Pearson’s or Spearman’s)
is above a certain cut-off value (Figure 3). Although
similar tools are available, they require specific platforms
(e.g. R or Matlab) and do not provide easy access to visu-
alization tools (4,24). This module works independently of
the PPI module, and it generates networks that quantify
the pair-wise correlation of the genes in a given network,

i.e., high correlation values reflecting coexpression and
negative correlations reflecting differential expression.

Web Server
The form to generate a coexpression network is similar to
that of the PPI network module, except that the user can
also specify cut-offs to filter the edges in the resulting
coexpression network. After job submission, the user is pre-
sented with the console output and can then proceed to a
Results page similar to that of the PPI network module.

SOFTWARE DOCUMENTATION

MAGNET provides both an online manual and a full
tutorial. In this manual, the workflow of MAGNET is
explained step-by-step. Additional pictures and screen-
shots can guide the user who wants to understand the
details and to tune the parameters available for
MAGNET users. For testing purposes only, MAGNET
provides an exemplary expression data file that can easily
be used by selecting sample data during the first step of the
wizard in each module. By doing so, users find a quick
way to examine MAGNET’s features. The data provided
are publicly available from GEO (GSE 19338 [19]) and
represent gene expression profiling experiments run from
villus and crypt layers of murine intestine. The series
includes profiles from wild-type mice and mice that have
mutations in adenomatous polyposis coli (APC) and p21
genes. These data were normalized using robust multi-
array (RMA) normalization and uploaded with detailed
annotations for future filtering steps. We use a gene set of
11 genes as an example to test the two processes, although

Figure 2. Workflow for Module 1: Weighting protein–protein interaction networks. In step 1, the user specifies the organism taxonomy, adjusts the
variables included in the logistic regression model, and uploads the gene expression data in GEO-compatible format. In step 2, the user can filter the
samples based on the sample characteristics and annotation. After processing, the weighted PPI network is available in Cytoscape-compatible format,
an interactive web-based network viewer for visualization and as a browser table with links to external source databases.
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MAGNET does not limit the number of genes in a given
job.

CONCLUSION

MAGNET allows users to both score PPI networks by
integrating four different diverse data types and to
generate coexpression networks given expression
profiles. All modules are developed for expression data
formatted in the GEO SOFT format, but the site contains
templates for non-GEO data as well. The site is optimized
to work with large datasets with ease, preventing the user
from having to deal with cumbersome arrays prior to
analysis. The tool is freely available to researchers and
can be accessed with any up-to-date web browser
available.
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