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Abstract
Background: The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a 
protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the 
enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated 
by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA 
thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA 
dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP 
mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, 
its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic 
agent with very few side effects.

Results: We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the 
neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented 
dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was 
associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I 
activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in 
MPTP-intoxicated mice, but not in normal animals.

Conclusions: These finding demonstrate the feasibility of the enhancement of endogenous ketone body production 
and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other 
neurodegenerative disorders.

Background
A frequent feature of neurodegenerative diseases is the
impairment of glucose metabolism, the primary post-
embryonal cerebral energy source (review in [1]). How-
ever, the brain also has the ability to adapt its metabolism
and increase its reliance on lipids for energy production,
through the fatty acid β-oxidation pathway. The process
involves L-3-hydroxyacyl-CoA dehydrogenase (HAD)

(EC 1.1.1.35) activity which generates ketone bodies
(KBs) [2,3]. The end product, acetyl-CoA, feeds into the
TCA cycle to produce energy in the form of NADH and
FADH2. The KBs β-hydroxybutyrate (β-OHB) and ace-
toacetate (ACA) have a protective role in a broad spec-
trum of cerebral injuries and diseases and they preserve
neuronal cell integrity and stability in vitro [4-6]. The
experimental approaches used are intravenous infusion
of mice or rats with β-OHB [1,7] or administration of a
ketogenic diet. The utilization of β-OHB by the brain and
other tissues is contingent on its dehydrogenation to
ACA. Little is known, however, about what events in dis-
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eased animals, regarding changes in β-oxidation rate and
KB levels associated with cerebral disorders.

We therefore investigated changes in fatty acid β-oxida-
tion in the MPTP mouse model of Parkinson's disease
(PD). The disorders result from a multifactorial cascade
of deleterious factors [8] leading to a progressive degen-
eration of dopaminergic neurons of the substantia nigra
and resulting in motor troubles. A hallmark of the patho-
logical process is the decrease of mitochondrial function,
in particular the inhibition of electron transport system
complex I [9-12] associated with oxidative stress. Deple-
tion of GSH levels, observed in the substantia nigra of PD
patients, as well as in the MPTP model, is one of the earli-
est events leading to the inhibition of complex I and sub-
sequent mitochondrial dysfunction [13,14].

Experimental data published already in the 1980's indi-
cated that pantethine, a low-molecular-weight thiol
widely distributed in the living world, circumvents the
impairment of fatty acid β-oxidation in rat liver mito-
chondria and microvessels of the brain [15,16]. Pan-
tethine is also well known to stimulate lipolysis and,
conversely, to inhibit fatty acid synthesis [17]. MPTP-
intoxicated mice display impaired energy production
[18], that is improved by KB infusion [19]. We therefore
investigated the effects of pantethine treatment in this
model. We determined the changes in the NAD-depen-
dent conversion of 3-hydroxybutyryl-CoA to acetoacetyl-
CoA. Our main finding is that i) the dehydrogenase activ-
ity and circulating KB levels decreased in intoxicated
mice and ii) these parameters were restored by pan-
tethine treatment, with improvement of dopaminergic
injury and functional disorders.

Methods
Reagents
Unless otherwise mentioned, all chemicals and reagents
were obtained from Sigma-Aldrich Chemical Company
(St. Louis, MO) as the highest available grades.

Animals and treatment
Ten-week old male C57BL/6 mice were purchased from
Janvier (Le Genest, France). They were handled according
to the rules of "Décret #87-848 du 19/10/1987, Paris";
approval #007031. Mice were administered 1-methyl-4-
(2'-methylphenyl)-1,2,3,6- tetrahydropyridine (abbrevi-
ated as 2'-methyl-MPTP), a more potent neurotoxin in
mice than MPTP [20,21]. The neurotoxin was given via
i.p. injections, at 20 mg/kg, according to a method
described previously [22]. Unless otherwise mentioned,
two 2'-methyl-MPTP injections were performed on the
same day at a 6 h interval, followed by one injection on
the following day. This protocol caused an about 80% loss
of striatal dopamine levels. D-pantethine was indicated
by the manufacturer to be 97% pure. Purity of the prepa-

ration was further ascertained using HPLC-mass spec-
trometry analysis (LCUV-MSD analysis) (SCA CNRS,
Lyon, France). Mice received two 5-day treatments with
daily i.p. injections of 15 mg of pantethine, before and
after 2'-methyl-MPTP administration. Preliminary exper-
iments showed that this regimen was well tolerated and
gave the best results for an as short as possible treatment.
Intraperitoneal administration avoids extensive hydroly-
sis of pantethine by intestinal pantetheinase. The high
dosage used is made necessary by the quick elimination
of pantethine into the urine [23]. When used, pantothen-
ate was injected at a molar concentration equivalent to
that of pantethine; for cystamine, the highest non-toxic
dose was used, i.e. 1.875 mg per mouse. The solutions
were prepared in apyrogenic 0.9% NaCl solution. Control
animals were injected with the same saline solution.

Pantethine reduction to pantetheine was performed
using the disulfide reducing gel TCEP (Tris (2-carboxy-
ethyl) phosphine) according to the manufacturer's
instructions (Pierce Chemical, Rockford, IL). Briefly, the
gel was washed with 50 mM pH 7.5 phosphate buffer and
then incubated with pantethine solution for 1 h at room
temperature. Pantethine reduction was checked by scan-
ning the UV-absorption spectrum using a Beckman
DU800 spectrophotometer. The decrease of the 245 nm-
peak until complete extinction indicated complete reduc-
tion.

Isolation of mitochondria
Brain and liver tissue were homogenized in mitochondria
extraction buffer (IMGENEX, Cliniscience, Montrouge,
France) according to the manufacturer's instructions.
Brain mitochondria were isolated using a discontinuous
Percoll gradient [24]. After a 10 min centrifugation at 30
400 × g, the mitochondrial layer was collected and
washed 3 times with 10 ml of extraction buffer. Liver
mitochondria were prepared as described previously [25].
Mitochondrial pellets were then resuspended in a hypo-
tonic buffer composed of (25 mM KH2PO4 and 5 mM
MgCl2, pH 7.5). Protein concentration was determined by
the Biorad assay method. Isolated mitochondria were
checked for membrane integrity by assaying citrate syn-
thase activity.

Determination of L-3-hydroxybutyryl-CoA dehydrogenase 
activity and of circulating KB levels
We performed time course studies to assess 2'-methyl-
MPTP-induced changes in fatty acid β-oxdation. L-3-
hydroxybutyryl-CoA dehydrogenase activity was assayed
both in the brain and liver, since the neurotoxin-induced
injuries are not limited to the brain [26,27]. Control and
pantethine-treated mice (15 mg/5 days) received two 2'-
methyl-MPTP injections on the same day at 6 h intervals.
Under these conditions, the neurotoxin induces an active
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neurological phase ranging from 12 hours to 4 days after
the last injection, followed by a progressive recovery [28].
Brain and liver mitochondrial samples were prepared 1, 2,
4 and 7 days following MPTP injections. Dehydrogenase
activity was determined in the forward direction, as it
occurs in vivo [29]. We used 125 μM β-hydroxybutyryl-
CoA as a substrate [30] in an assay medium containing 75
mM Tris (pH 10) with 75 mM KCl, NAD+ 1.2 mM.
Reduction of NAD was followed at 340 nm, with an
extinction coefficient taken as 6.22 mM-1cm-1. Control
assays were conducted in the absence of the substrate. For
determination of hydroxybutyrate and acetoacetate lev-
els, blood samples were taken from the retro-orbital
plexus of halothane-anesthetized mice into capillary
tubes containing 3.8% sodium citrate. Blood was immedi-
ately deproteinized with 4% perchloric acid, centrifuged

at 17 500 × g, 15 min at 4°C. Ketone bodies were quanti-
fied using enzymatic assay kits (Biosentec, Toulouse,
France) based on the reduction of NAD or oxidation of
NADH, followed at 340 nm in a spectrophotometer. The
assays were repeated three times.

Mass spectrometry analysis
Changes in brain GSH levels following pantethine injec-
tion were determined using HPLC-mass spectrometry
analysis (LCUV-MSD analysis) (SCA CNRS, Lyon,
France). Healthy mice received a single i.p. injection of 15
mg of pantethine and were then sacrificed at different
times, from 30 min to 4 h. Blood samples were taken from
the retro-orbital plexus of halothane-anesthetized mice
into capillary tubes containing 3.8% trisodium citrate.
Mice were then perfused with heparinized saline. Per-

Figure 1 Dehydrogenation of 3-hydroxybutyryl-CoA to acetoacetyl-CoA.



Cornille et al. BMC Neuroscience 2010, 11:51
http://www.biomedcentral.com/1471-2202/11/51

Page 4 of 11
fused brain and plasma samples were immediately
homogenized in 3 volumes of 4% perchloric acid. Sam-
ples were centrifuged at 20,000 × g for 10 min at 4°C; the
supernatants were snap-frozen in liquid nitrogen and
stored at -80°C pending assay. Samples were analyzed
using the HP1100-MSD (B) system with HPChemstation
software, version A.08.01-682. Chromatographic separa-
tions were performed by reverse-phase chromatography
on a 2 mm (inner diameter) C18 Waters Hilic column. A
gradient of 0.05% formic acid pH 2.6/acetonitrile was
delivered over 15 min to elute the compounds at a flow
rate of 300 μl/min. Compounds were ionized by electro-
spray (ES+) ionization. The mass spectral data were pro-
cessed into peak lists containing the characteristic
[M+H]+ ion m/z = 308.

Brain glutathione assays
Saline or pantethine-treated mice were anesthetized with
halothane on days 1 and 7 following the last neurotoxin
injection. Brain samples were frozen immediately in liq-
uid nitrogen and homogenized in 9 volumes of 100 mM
potassium phosphate buffer pH 7.5 containing 1 mM
EDTA. An aliquot of the homogenate was added to an
equal volume of 5-sulfosalicylic acid (1% w/v). After cen-
trifugation at 8,000 g for 10 min, the total glutathione
(GSH + GSSG) concentration in the supernatant was
determined with the colorimetric GSH assay Kit
(ApoGSH Glutathione Colorimetric Assay Kit, MBL,
Woburn, MA) according to the manufacturer's instruc-
tion.

Mitochondrial function
Complex I activity
For in vivo treatment, brain mitochondria were isolated
from mice treated with 15 mg of pantethine for 5 days.
For in vitro treatment, pantethine or pantetheine were
added to mitochondria isolated from control mice. Com-
plex I activity was determined based on protocols
described previously [31]. Mitochondria were lysed by
freeze-thawing three times. To initiate the reaction, 150
μg-protein extracts were added to the hypotonic assay
buffer containing (65 μM ubiquinone1, 130 μM NADH, 2
μg/ml of antimycin A, and 2.5 mg/ml of defatted BSA), in
the presence of different concentrations of MPP+ (0, 1.25,
2.5 mM). Pantetheine or pantethine (0, 0.5 or 1 mM) was
added 5 min later. The oxidation of NADH was moni-
tored spectrophotometrically at 340 nm for 3 min at 30°C
prior to the addition of the complex I inhibitor rotenone
(2 μg/ml), after which the activity was measured for an
additional 3 min. The differential rate before and after the
addition of rotenone was used to calculate complex I
activity. We checked, using the Ellman's reagent, that the
reduced form pantetheine was maintained throughout
the experiment.
Polarography
Brain mitochondria were suspended in respiration buffer
consisting of (225 mM mannitol, 75 mM sucrose, 10 mM
KCl, 5 mM HEPES, 5 mM K2HPO4 pH 7.5), with freshly
added 1 mg/ml of defatted BSA at 30°C. Oxygen con-
sumption was measured in a closed-chamber cuvette
with a mini-stirring bar using a Clark-type electrode
(VWR Fontenay sous Bois, France). To assess complex I-
mediated mitochondrial respiration, a one mg-protein
preparation in 1 ml of respiration buffer was preincu-
bated with 10 mM glutamate and 5 mM malate in the
presence of MPP+ (0, 50 and 100 μM) at 30°C. After 5 min
of incubation, pantetheine at (0, 0.5 or 1 mM) was added
and the oxygen consumption was measured for an addi-
tional time before the addition of 500 uM ADP to induce

Figure 2 Effects of pantethine treatment on circulating ketone 
body levels. Changes in circulating levels of KBs (3-hydroxybutyrate 
and acetoacetate) in 2'-methyl-MPTP-intoxicated mice, treated with 
pantethine or saline. d2-d7, days following injection of the neurotoxin; 
n = 4 mice per assay. Significant difference between pantethine-treat-
ed versus saline groups, **p < 0.01.
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state 3 respiration. Oxygen consumption was monitored
throughout the experiment.
ATP measurements
Samples were prepared under conditions identical to
those of the polarographical study. Mitochondria sus-
pended in respiration buffer were incubated in the pres-
ence of MPP+ (0, 50 or 100 μM). Pantetheine (0, 0.5 or 1
mM) was added 5 minutes later. After the reaction was
stopped, the mitochondrial suspension was lysed in an
equal volume of lysis buffer from the ATP biolumines-
cence assay kit (Sigma), and the content of ATP was mea-
sured according to the manufacturer's instructions. Light
emitted from luciferase-mediated reaction was captured
in a Beckman DTX800 luminometer and calculated from
a log-log plot of a standard curve of known ATP concen-
trations.

Striatal dopamine levels and motor activity
Saline and pantethine-treated mice were sacrificed by
decapitation on day 7 after the last 2'-methyl-MPTP
administration and the striata were collected and stored
at -80°C until analysis. The endogenous levels of dop-
amine (DA) and its metabolites, dihydroxyphenyl acetic
acid (DOPAC) and homovanillic acid (HVA), were deter-
mined using high performance reverse phase liquid chro-
matography with electrochemical detection according to
the method described previously [32]. Before being sacri-
ficed, the mice were used for the determination of
hypokinesia-like symptoms, using the iron pole test
according to the method described previously [33,34].
After pre-trial acclimatization, each mouse was given six
consecutive trials and the mean of the three best trials
was retained. Animals which died before the test were
noted as having required 60 sec.

Tyrosine hydroxylase (TH) immunohistochemistry and 
quantitative analysis
Mice received two 2'-methyl-MPTP injections on the
same day at 6 h interval, followed by one injection on the
following day. They were treated with saline or pan-
tethine for 5 days, before and after the neurotoxin injec-
tions, and they were then sacrificed by decapitation.
Brain coronal sections (10 μm), cut every 100 μm, were
incubated with a rabbit anti-TH antibody (Calbiochem-
Novabiochem, San Diego, CA) (1:1000) followed by per-
oxidase-conjugated anti-IgG antibody (Jackson Immu-
noResearch, obtained from Beckman Coulter, Marseille,
France). Immunoreactivity was visualized by incubation
in 0.1% 3,3'-diaminobenzidine tetrahydrochloride (DAB)
and quantified using LUCIA image analysis software
(Laboratory Imaging, Prague, Czech Republic). For the
determination of dopaminergic cell loss, the sections
were counterstained with cresyl violet (Sigma-Aldrich).
The number of TH-positive neurons in the substantia
nigra pars compacta (SNpc) was estimated using a semi-
quantitative method [35]. The area of the SNpc was
determined at low magnification (4× objective) and neu-
rons were counted at higher magnification (40× objec-
tive) in three microscopic fields (area of 40,000 μm2 each)
situated on the mediolateral axis of the SN of each histo-
logical section. Neuronal density was calculated as the
ratio between the sum of neuronal counts and the sum of
the areas of 5 sections and is expressed as number of neu-
rons per square millimeter.

Statistical analysis
Nonparametric Mann-Whitney U tests were performed
using GraphPad Prism software. Dopamine levels and
motor activity time data were analyzed using the New-

Table 1: Effects of pantethine treatment on L-3-hydroxybutyryl-CoA dehydrogenase activity.

Days after 2'methyl
-MPTP injection

L-3-hydroxybutyryl-CoA dehydrogenase activity

Brain
(nmol.min-1.mg protein-1)

Liver
(μmol.min-1.mg protein-1)

Saline Pantethine Saline Pantethine

d0 63.91 ± 4.90 73.95 ± 2.55# 2.96 ± 0.35 3.11 ± 0.27

d1 28.91 ± 3.54** 51.09 ± 4.87## 2.74 ± 0.14 3.56 ± 0.18#

d2 35.58 ± 3.31** 45.82 ± 3.84# 2.08 ± 0.17** 2.94 ± 0.19##

d4 45.01 ± 5.19* 46.01 ± 5.05 1.60 ± 0.27** 2.98 ± 0.32##

d7 54.31 ± 4.95 57.55 ± 3.65 2.67 ± 0.18 2.85 ± 0.17

Brain and liver mitochondria were isolated from 2'-methyl-MPTP- injected mice, previously treated with saline or pantethine. Tissue and 
blood samples were collected from day 0 to day 7 following the neurotoxin injection and were then processed for dehydrogenase activity, 
i.e conversion of L-3-hydroxybutytyl-CoA to acetoacetyl-CoA. Values are means ± SD; n = 4 mice per assay. Significant decrease versus d0 
control, *p < 0.05 and **p < 0.01; significant increase versus paired saline, #p < 0.05 and ##p < 0.01.
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man-Keuls test for groups; p < 0.05 was considered signif-
icant.

Results
L-3-hydroxybutyryl-CoA dehydrogenase activity and 
circulating KB levels
Time course studies were performed to assess 2'-methyl-
MPTP-induced changes in L-3-hydroxybutyryl-CoA
dehydrogenase activity in brain and liver mitochondria.
The animals were treated with either pantethine or saline.

In the forward direction, yielding NADH and acetoace-
tate (ACA), enzymatic activity was determined using L-3-
hydroxybutyryl-CoA as substrate (fig 1). In the brain, the
activity was reduced drastically on day 1 following 2'-
methyl-MPTP injection (table 1). In the liver, the enzyme
activity was about two orders of magnitude higher than in
the brain and it was also inhibited by the neurotoxin, with
however a different time course: minimal activity was
observed on day 4. Pantethine treatment mitigated the
inhibitory effect of the neurotoxin, and always main-
tained enzymatic activity close to the control level in both
brain and liver. Under the mild pathological conditions
used in this study, activity tended progressively back to
normal levels on day 7. Changes in circulating KB levels
were consistent with the changes in enzyme activity in
the liver, responsible for the circulating KBs. In agree-
ment, the concentration of ACA, the enzyme product,
was drastically reduced when dehydrogenase activity was
inhibited, i.e. on days 2-4 following the neurotoxin injec-
tion (Fig. 2). In contrast, the fall of ACA concentration
was avoided in pantethine-treated animals; it even dis-
played a drastic rise on day 4, reaching a level about four
times higher than in paired saline controls. The concen-
tration of the enzyme substrate, β-OHB, correlated nega-
tively with the ACA concentration. Pantethine had little
effect on dehydrogenase activity and KB levels in healthy
animals. Under our experimental conditions, mice
treated with pantothenic acid or cystamine instead of
pantethine did not differ from the saline groups (data not
shown).

GSH stores
HPLC-mass spectrometry analysis showed that adminis-
tration of pantethine rapidly increased GSH levels in nor-
mal animals: a single pantethine injection triggered a rise
in brain GSH levels within 2 hours (Fig. 3). A similar GSH
rise was also observed in plasma (not shown). After
intoxication with 2'-methyl-MPTP, GSH stores in the
brain were reduced by about 35%, whereas they remained
at the control levels in pantethine treated ones (Table 2).

Mitochondrial activity
NADH-ubiquinone oxidoreductase (respiratory chain
complex I) activity was determined in brain mitochon-
dria. In a first experiment, mitochondria isolated from
mice treated with either pantethine or saline were incu-
bated with MPP+, the active metabolite of MPTP. MPP+

reduced complex I activity in a dose-dependent manner.
The activity was however significantly enhanced by pan-
tethine treatment: whatever the MPP+ concentration
used, the activity was always higher in mitochondria from
pantethine-treated mice than in the saline matched pairs
(Fig. 4). In a second experiment, we examined the effects
of pantethine on mitochondria isolated from control

Figure 3 Increase in brain GSH levels following pantethine injec-
tion. Normal mice received a single i.p injection of 15 mg of pan-
tethine and were sacrificed at different times. Brains were perfused and 
sampled for analysis by LCUV-MSD. The figure shows the mass spectral 
data processed into peak lists containing the characteristic [M+H]+ ion 
m/z = 308 for gluthatione.
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mice, in the presence of MPP+. In this case, restoration of
complex I activity was obtained not with pantethine but
with its reduced form, i.e. pantetheine. At a 1 mM con-
centration, pantetheine re-established completely com-
plex I activity in the presence of 1.25 mM MPP+. At a
lower pantetheine concentration (0.5 mM) or in the pres-
ence of a higher MPP+ concentration (2.5 mM) no protec-
tive effect was observed (Fig. 5A). We further examined
whether pantetheine might rescue mitochondrial respira-
tion and ATP production depressed by MPP+-mediated
complex I blockade. Under our experimental conditions,
glutamate- and malate-supported oxygen consumption
was reduced by 38% in the presence of 50 μM MPP+; the
reduction did not occur in the presence of 1 mM panteth-
eine (Fig. 5B). At a higher MPP+ concentration (100 μM),

where respiration was inhibited by 56%, pantetheine was
ineffective. Pantetheine had similar effects on mitochon-
drial ATP levels: in the presence of 50 μM MPP+, it
restored the normal ATP levels when used at a 1 mM
concentration (Fig. 5C). In these in vitro experiments, the
native form pantethine had no effect (data not shown).

Dopaminergic structures and motor ability
The overall effect of pantethine treatment was the rever-
sal of 2'-methyl-MPTP-induced structural and functional
defects. Mice were taken 7 days after neurotoxin injec-
tions and their motility was determined using the iron
pole test. The animals were then sacrificed and the brains
processed for quantification of dopamine (DA) and its
metabolites. Under our experimental conditions, levels of
striatal DA, DOPAC and HVA were significantly reduced,
with DA levels being reduced by more than 80% (Fig. 6A).
The motility of the animals in the iron pole test was dra-
matically impaired (Fig. 6B). In the pantethine treated
group, the loss of striatal DA content was attenuated, to
about 50% of the normal level. The treatment restored
also the normal levels of DOPAC and HVA. Correlatively,
the treated mice behaved like normal mice in the iron
pole test. Healthy animals were not affected by the treat-
ment (data not shown). The functional protection by pan-
tethine against the toxicity of 2'-methyl-MPTP was
associated with the preservation of the nigrostriatal
structures. In the saline group, striatal tyrosine hydroxy-
lase OD was reduced to 35% of the control level, whereas
it was close to the values of controls in pantethine-treated
mice (Fig. 7A). Accordingly, the number of SNpc TH+
neurons were significantly higher in pantethine-treated
mice than in the saline group and were close to the values
in the control group. Fig. 7B shows typical aspects of the
brain structures involved.

Discussion
We showed that the neurotoxin 2'-methyl-MPTP inhib-
ited L-3-hydroxybutyryl-CoA dehydrogenase activity and
caused a concomitant fall of circulating levels of the prod-

Table 2: Preservation of GSH stores by pantethine treatment.

Days following 2'-methyl-MPTP injection

Day 1 Day 7

Control 2.00 ± 0.13 1.81 ± 0.09

2'-methyl-MPTP + saline 1.25 ± 0.18 1.66 ± 0.20

2'-methyl-MPTP + pantethine 1.96 ± 0.12§ 1.79 ± 0.10

Control + pantethine 2.54 ± 0.29#

Total brain glutathione levels were determined in 2'-methyl-MPTP- intoxicated mice, treated with either saline or pantethine. Glutathione 
levels are expressed as μmol/g of tissue. Values are means ± SD; n = 6 mice per assay. Significant increase versus paired saline, § p < 0.05, and 
versus the control group, #p < 0.05.

Figure 4 Preservation of mitochondrial complex I activity by pan-
tethine treatment. Mitochondria were isolated from saline or pan-
tethine-treated mice and incubated with 0, 1.25, 2.5 and 5 mM of MPP+ 

for 5 min, then complex I activity was determined. Values are means ± 
SD; n = 4 mice per assay. Significant difference between pantethine-
treated versus saline groups, **p < 0.01.
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uct of the reaction, acetoacetate (ACA). These alterations
were avoided by pantethine treatment. The protective
effect of pantethine was associated with the enhancement
of GSH synthesis, restoration of mitochondrial function,
i.e. complex I activity, ATP synthesis and oxygen con-

sumption, leading to a protection against dopaminergic
injury.

KBs are produced by hepatocytes and are transported
to the tissues, including the brain; astrocytes are also
ketogenic, although to a lesser extent however [36]. In
agreement, we found that dehydrogenase activity is two-
orders of magnitude higher in the liver than in the brain,
and circulating KB levels correlate with enzyme activity
of the liver. We observed that injection of the neurotoxin
induced, in both brain and liver, a decrease of dehydroge-
nase activity, which was restored by pantethine treat-
ment. These findings may be compared with published
data on L-3-hydroxyacyl-CoA dehydrogenase type II/
amyloid binding alcohol dehydrogenase (HADHII/
ABAD). The enzyme is downregulated in PD patients and
in the mouse, on days 2 to 7 after MPTP injection. Con-
versely, transgenic mice with increased expression of
human HADHII/ABAD are significantly more resistant
to MPTP; overexpression of the enzyme mitigates
MPTP-induced impairment of oxidative phosphorylation
and ATP production [37]. Thus the changes of dehydro-
genase activity that we observed following MPTP injec-
tion and pantethine treatment may reflect changes in the
amount of the enzyme.

Pantethine is metabolized in vivo, yielding mainly pan-
tetheine, cysteamine, pantothenic acid and 4'-phospho-
pantetheine (4'-PP) [38]. All these derivatives may well be
involved in the effects that we observed after treatment
with pantethine. The treatment increased the GSH con-
centration, which is likely to be mediated by the increase
of intracellular levels of L-cysteine via disulfide exchange
reactions. Free cysteine is available to several pathways,
including formation of mixed disulfides, and synthesis of

Figure 5 In vitro improvement of mitochondrial functions by 
pantetheine. Mitochondria were isolated from control mice and incu-
bated with increasing concentrations of MPP+ for 5 min; 0, 0.5 or 1 mM 
pantetheine was then added and (A) complex I activity, (B) oxygen 
consumption and (C) ATP levels were determined. Values are means ± 
SD; n = 4 mice per assay. Significant difference between assays in the 
presence of the absence of pantetheine, **p < 0.01.

Figure 6 Pantethine treatment preserves striatal dopamine lev-
els and motor activity. (A), striatal levels of dopamine (DA) and its de-
rivatives DOPAC and HVA. (B), motor function evaluated in the pole 
test (TLA, motor activity time, indicates the time for the mice to go back 
to the ground). Values are means ± SEM, n = 10 mice per group. MPTP 
refers to 2'-methyl-MPTP. Significant difference between saline and 
pantethine-treated groups, *p < 0.05; **p < 0.01.
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glutathione [39]. The maintenance of normal GSH levels
is essential for NADH-ubiquinone oxido-reductase (com-
plex I) activity since the complex I is thiol-regulated
[13,40,41]. Accordingly, we found that, when applied to
isolated mitochondria, the reduced form pantetheine was
able to preserve complex I activity, and therefore to main-
tain complex I redox status; the oxidized form pantethine
did not. It should be underlined that GSH and CoA levels,
as well as complex I activity and ATP production are
interdependent and their interactions remain to be clari-
fied [42,43].

Our main finding is that the administration of pan-
tethine to 2'-methyl-MPTP intoxicated mice stimulates
fatty acid β-oxidation and increases circulating KB levels.

This effect is specific for pantethine and was not
observed with cystamine. This may reflect the fact that

pantetheine constitutes the active moiety of CoA. Not
only CoA-fatty acid thioesters but also pantetheine- and
4'PP-fatty acid thioesters are acceptable substrates for
HAD. In comparison, cysteamine is a too small an entity;
the HAD Km value is 125 fold higher for acyl-cysteamine
than for acyl-pantetheine [44]. The thiol group and the
pantoic acid moiety (2,4-dihydroxy-3-dimethyl butyric
acid) of pantetheine play a central role in enzyme binding
[44,45]. These elements do not occur in either pantoth-
enic acid or cysteamine, respectively. Accordingly, under
our experimental conditions, these two compounds were
unable to enhance either dehydrogenase activity or circu-
lating levels of KB (data not shown). Pantethine also dis-
plays anti-inflammatory activity in inhibiting the
activation of the cellular response to pro-inflammatory
factors, as we reported earlier [46].

In summary, treatment with pantethine reproduces the
effects of KB administration and ketogenic diets with
however several advantages. First, the stimulation of KB
synthesis is a rational way to enhance KB levels. Second,
long-term administration of high fat diets has detrimen-
tal effects [47] that could be circumvent by the hypolidi-
demic properties of pantethine. Third, pantethine has
apparently no effects on circulating ACA levels under
normal conditions, meaning that it could act "on
demand" only.

Conclusions
It is now becoming clear that the cerebral hypometabo-
lism in major diseases such as PD and Alzheimer's dis-
ease [48,49] constitutes a therapeutic target. Treatments
able to enhance neuronal energy reserves may improve
the ability of neurons to resist metabolic challenges [50]
and may be effective in relieving physiological as well as
cognitive dysfunctions. Pantethine seems to promote
metabolic flexibility, i.e. the transition between carbohy-
drate and lipid utilization for energy production and is
therefore a good candidate drug against diseases associ-
ated with metabolic disorders. Under our experimental
conditions, we used high doses of pantethine; however, in
view of a potential clinical application, an appropriate
delivery device may improve the efficiency of treatment
and allow a drastic reduction of the dose to be adminis-
tered.
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