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Abstract: Quantum-chemical calculations on the spectral properties of some aryl substituted 3-
phosphonocoumarins were performed, and the effect of the substituents in the aryl moiety was
evaluated. The structures possessing promising fluorescent properties were successfully synthe-
sized via Suzuki and Sonogashira cross-coupling. The synthetic protocol was also applied for the
phosphorous chemoisomer of 3-phosphonocoumarin, 1,2-benzoxaphosphorin, and their carboxylate
analogues. The optical properties of the arylated and alkynylated products were experimentally
determined. The obtained quantum-chemical and experimental results give the possibility for a
fine tuning of the optical properties of phosphorous-containing coumarin systems by altering the
substituent at its C-6 position.

Keywords: 3-phosphonocoumarin; 1,2-benzoxaphosphorin; coumarin-3-carboxylates; Pd-catalyzed
reactions; cross-coupling; Suzuki reaction; Sonogashira reaction; photophysical properties; fluores-
cence; DFT calculations

1. Introduction

The presence of the coumarin structure in natural products and biologically active
molecules has promoted considerable interest toward their synthesis [1–3]. The coumarin
framework is widely used as a building block for obtaining derivatives that exhibit a
wide variety of biological properties [4], especially anti-HIV, antitumor, anticoagulant, and
antibiotic activities [5]. Moreover, some representatives of this class of compounds were
screened as new drug candidates showing promising inhibition activity against the main
protease of SARS-CoV-2 (PDB ID: 5N5O) [6,7].

Furthermore, the photophysical properties of coumarin-based fluorescent dyes have
shown the advantage of using the benzopyran moiety as a fluorogenic scaffold [8]. Var-
ious coumarin-based compounds were applied in fields as laser dyes [9], cell-imaging
biomarkers [10], and optical brighteners [11].

The synthesis of substituted coumarins is still dominated by classical methods, such
as the Knoevenagel, Perkin, and Pechmann reactions [12–14], which although powerful
and proven, have limited scope in terms of functional group compatibility. Recent stud-
ies have centered on the use of palladium-catalyzed cross-coupling C–C bond formation
leading to the 3-, 4- and 6-substituted coumarins [15–19]; thus the number of Pd-catalyzed
approaches for obtaining coumarins is constantly growing [20–22]. However, most of
these synthetic protocols are focused on monosubstituted coumarins. Only limited ap-
plications of metal-catalyzed reactions for the synthesis of benzene ring-functionalized
3-substituted coumarins, especially when electron withdrawing groups are present, have
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been reported [23–25]. Therefore, herein we present an efficient method for the synthesis
of fluorescent coumarins and phosphorous-containing coumarin-type heterocycles via
palladium cross-coupling reactions, whereby the visible absorption properties of the com-
pounds can be controlled by introducing various C-3 and C-6 substituents directly to the
heteroaromatic structure.

2. Results and Discussion
2.1. Theoretical Investigation of Substituted 3-Phosphonocoumarin Structures—Evaluation of the
Fluorescent Properties

As a part of our systematic investigation on the chemical behavior of 3-phosphonocou-
marin, 1,2-benzoxaphosphorins as well as other 3-substituted coumarins, we theoretically
studied the possibility to obtain substituted fluorescent species, where a “push–pull” effect
with the substituent in the 3-rd position could be observed.

To check the photophysical properties and the possibility of fine tuning the spectral
properties of phosphorous-containing model coumarins, quantum-chemical calculations of
a series of phosphonocoumarins in acetonitrile as a solvent media were performed. For this
purpose, density functional theory (DFT) [26–29] and time-dependent (TD) DFT [30,31]
with the Gaussian16 suite of programs [32] were used.

The absorption and emission spectra of several compounds (CM-1—CM-12, Table 1),
varying the substituent in position C-6 of the coumarin ring were calculated. Based on
previous investigations in our group, coumarins bearing substituents in position C-6 [33]
and C-7 [34] exhibit good fluorescent properties. The model compounds phenyl and aryl
groups were chosen to enlarge the conjugated system, connected to the coumarin fragment.
In order to take the solvent effect into account, an implicit solvent model (PCM) was used.
The long-range corrected hybrid exchange-correlation functional CAM-B3LYP [35] paired
with 6-31++G** basis set was employed [36].

The calculated absorption and emission energies of the phosphorous-containing
coumarins were compared—structure CM-1 and models having either EDG (electron-
donating group) or EWG (electron withdrawing group) in 6-th position of the coumarin
ring (CM-2 to CM-12). The calculations showed that the chosen structures bearing different
substituents red-shifted the absorption by 4–32 nm compared to the unsubstituted one
(CM-1). This shift to a longer wavelength indicates that the differently substituted aryl
groups have a significant impact on the absorbance of the coumarin derivatives.

The absorption spectra of structure CM-5 with a p-methoxyphenyl group in position
C-6 is more red-shifted compared to its ortho-isomer (CM-3), 320 nm versus 312 nm,
respectively. For the model-bearing methoxy group in meta position, CM-10, the value for
λabs is 309 nm. The absorption and the emission wavelengths of the model C-10 are very
similar to the non-substituted phenyl-bearing coumarin model CM-2. As expected, due to
the lack of conjugation between the substituent and the coumarin moiety, an MeO-group in
meta position would not affect the photochemical properties of the phosphorous-containing
coumarin. This shows that not only the nature of the substituent in the phenyl ring is
important, but also its position. It could be assumed that better conjugation occurs when
there is an electron-donating group in para-position in the aryl substituent; therefore, the
push–pull effect tends to be stronger.

In order to check whether a phenyl group (structure CM-2) could influence the spectral
properties of the compound compared to the unsubstituted 3-phosphonocoumarin (CM-
1), calculations of the absorption spectra data were performed. The λabs value for CM-2
compound is 14 nm red-shifted compared to the one for CM-1; the same trend was observed
for the emission of these molecules, Table 1. Therefore, a scrutinous selectivity of the
substituents could efficiently be used to tune the fluorescent properties of the coumarins.
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Table 1. Calculated excitation—λabs and emission wavelengths—λem, f —oscillator strengths, Stokes
shifts.

Calculated
Models (CM) Structure λabs,

(nm) fabs
λem,
(nm) fem

Stokes Shift,
(nm)

CM-1
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Calculated 
Models (CM) 

Structure λabs,  
(nm) 

fabs 
λem,   

(nm) 
fem 

Stokes Shift, 
(nm) 

CM-1 
 

295 0.2800 344 0.4989 49 

CM-2 
 

309 0.3305 378 0.2419 69 

CM-3 

 

312 0.2574 386 0.1802 74 

CM-4 
 

299 0.4665 357 0.3821 58 

295 0.2800 344 0.4989 49

CM-2
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CM-5

Molecules 2022, 27, x FOR PEER REVIEW 3 of 34  
  

 

CM-5 
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310 0.3446 378 0.2513 68 

CM-7 
 

299 0.5267 372 0.2611 73 

CM-8 

 

319 0.3404 384 0.3114 65 

CM-9 

 

327 0.2703 402 0.2480 75 

CM-10 

 

309 0.3569 374 0.2826 66 

CM-11 
 

304 0.4667 363 0.3832 59 

CM-12 304 0.4195 364 0.3230 61 

The calculated absorption and emission energies of the phosphorous-containing cou-
marins were compared—structure CM-1 and models having either EDG (electron-donat-
ing group) or EWG (electron withdrawing group) in 6-th position of the coumarin ring 
(CM-2 to CM-12). The calculations showed that the chosen structures bearing different 
substituents red-shifted the absorption by 4–32 nm compared to the unsubstituted one 
(CM-1). This shift to a longer wavelength indicates that the differently substituted aryl 
groups have a significant impact on the absorbance of the coumarin derivatives.  

The absorption spectra of structure CM-5 with a p-methoxyphenyl group in position 
C-6 is more red-shifted compared to its ortho-isomer (CM-3), 320 nm versus 312 nm, re-
spectively. For the model-bearing methoxy group in meta position, CM-10, the value for 
λabs is 309 nm. The absorption and the emission wavelengths of the model C-10 are very 
similar to the non-substituted phenyl-bearing coumarin model CM-2. As expected, due to 
the lack of conjugation between the substituent and the coumarin moiety, an MeO-group 
in meta position would not affect the photochemical properties of the phosphorous-con-
taining coumarin. This shows that not only the nature of the substituent in the phenyl ring 
is important, but also its position. It could be assumed that better conjugation occurs when 
there is an electron-donating group in para-position in the aryl substituent; therefore, the 
push–pull effect tends to be stronger.  

In order to check whether a phenyl group (structure CM-2) could influence the spec-
tral properties of the compound compared to the unsubstituted 3-phosphonocoumarin 
(CM-1), calculations of the absorption spectra data were performed. The λabs value for 
CM-2 compound is 14 nm red-shifted compared to the one for CM-1; the same trend was 
observed for the emission of these molecules, Table 1. Therefore, a scrutinous selectivity 
of the substituents could efficiently be used to tune the fluorescent properties of the cou-
marins.  

The effect of EWG in the aryl substituent was also considered. Two models having -
CN or -F group were tested. The spectral properties of structure CM-4, containing CN-

320 0.2703 404 0.2480 84

CM-6
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310 0.3446 378 0.2513 68

CM-7
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CM-2 compound is 14 nm red-shifted compared to the one for CM-1; the same trend was 
observed for the emission of these molecules, Table 1. Therefore, a scrutinous selectivity 
of the substituents could efficiently be used to tune the fluorescent properties of the cou-
marins.  

The effect of EWG in the aryl substituent was also considered. Two models having -
CN or -F group were tested. The spectral properties of structure CM-4, containing CN-
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The effect of EWG in the aryl substituent was also considered. Two models having -CN
or -F group were tested. The spectral properties of structure CM-4, containing CN-group
in ortho-position, were investigated and the presence of this group lowers the λabs value,
Table 1. When the CN-group is at para or meta position, CM-11 and CM-12, the absorption
maximum for both structures is slightly bathochromically shifted by 5 nm compared to the
value for CM-4 model, which is 299 nm. Comparing the calculated absorption of CM-1
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with CM-6, the 15 nm red-shift indicates that a minor change in the UV-spectra could be
made when a fluorine atom is introduced in the aryl substituted.

Moreover, the effect of the alkyl groups in the aryl substituent (mesityl group), CM-7,
was evaluated. The absorption wavelength of the compound is slightly red-shifted (only
4 nm) compared to CM-1. The presence of mesityl group (CM-7) would suppress the
fluorescent properties compared to the phenyl substituent (CM-2), but still the emission is
slightly red-shifted, compared to CM-1.

The possibility of having a longer conjugated system was also considered. Two com-
pounds having triple C≡C bond were investigated (CM-8 and CM-9). Comparing their
emission to the one of CM-1 (384 nm for CM-8, 402 nm for CM-9, and 344 nm for CM-1)
indicates that the presence of an elongated π-system is beneficial to the fluorescent proper-
ties of the coumarin derivatives. In addition, (in CM-9) the presence of a methoxy group
at para-position leads to higher λem compared to CM-8. Interestingly the emission for the
model compounds CM-2 and CM-8 (having phenyl groups, 378 nm and 384 nm, respec-
tively) and CM-5 and CM-9 (404 nm and 402 nm, respectively) slightly differ; therefore the
addition of a triple bond does not affect the fluorescence properties of the coumarin species.
The models bearing CN-group (CM-4, CM-11, and CM-12) exhibit emission maxima at
a shorter wavelength (around 360 nm) compared to the structure having unsubstituted
phenyl ring CM-2.

The calculated Stokes shifts for all the compounds were compared to the unsubstituted
phosphorous coumarin CM-1 (49 nm), Table 1. The absolute values of the calculated shifts
for all the substituted compounds (CM-2–CM-9) are higher (64–84 nm) than the Stokes
shift for CM-1. Compound CM-4 bearing -CN group in the aryl moiety has the lowest
calculated Stokes shift (58 nm) in comparison to all of the substituted coumarin derivatives.
The highest one was calculated for structure CM-5 that might be due to the EDG group in
para-position in the aryl group.

The obtained theoretical results imply that the optical properties of phosphorous-
containing coumarin systems can be tuned by altering the substituent in its C-6 position.
These findings motivate us to synthesize the model structures that possess promising
fluorescent properties and to experimentally check the spectral properties of the substituted
3-phosphonocoumarins.

2.2. Synthesis of Fluorescent Coumarins and Phosphorous Containing Coumarin-Type Heterocycles

To obtain the calculated substituted fluorescent species, where a “push-pull” effect
with the substituent in 3-rd position could be observed, a Pd-catalyzed cross-coupling
reaction and in particulate the Suzuki–Miyaura coupling, was investigated.

The Knoevenagel reaction, as one of the classical cyclization methods, was the first
tested approach to obtain the desired structures. For this purpose, the phenyl substituted
salicylaldehyde 2 had to be synthesized. One of the possible reaction paths includes
adding the desired phenyl fragment via the Suzuki coupling starting from 5-bromo-2-
hydroxybenzaldehyde 1, Scheme 1. The reaction of compound 1 with phenylboronic
acid was performed by using sodium carbonate decahydrate as a base in mixed solvent
media (toluene:ethanol:water) and was catalyzed via bis(triphenylphosphine)palladium(II)
dichloride (2 mol%) in inert atmosphere for 24 h at 80 ◦C. The yield of the arylated product
2 was moderate—69%. This compound was previously synthesized with slightly better
yield using different base and solvent media, however, applying 10 mol% of the palladium
catalyst [37].
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two chemoisomers. The first obstacle was that compounds 3a and 4a have similar Rf-val-
ues on both silica and alumina (TLC-monitoring); therefore, it was difficult to separate the 
compounds to sufficient purity by column chromatography. On the other hand, both com-
pounds are slowly solidifying oils which made further purification by recrystallization 
impracticable.  

It is interesting to note that the phenyl substituted benzopyrans 3a and 4a possess 
fluorescent properties as calculated. Therefore, a parallel approach for obtaining these 
structures was planned based on the preparation of 6-bromo-3-phosphonocoumarin 5 by 
Knoevenagel condensation of 5-bromo-2-hydroxybenzaldehyde 1 with triethyl phos-
phonoacetate [38], Scheme 2, followed by a subsequent derivatization of the products by 
Suzuki coupling.  

The advantages of this synthetic pathway are the usage of a stable and cheaper alde-
hyde and mainly the easier separation and further purification by column chromatog-
raphy of products 5 and 6.  

Thereafter, the reaction of 6-bromo-3-phosphonocoumarin 5 with phenylboronic 
acid, Scheme 3, was carried out using a relatively high load of palladium catalyst (3 mol%) 
due to the electron-donating oxygen atom from the lactone, bonded to the benzene ring 
in the coumarin moiety.  

Scheme 1. Suzuki reaction of 5-bromo-2-hydroxybenzaldehyde 1 with phenylboronic acid.

The isolated 2-hydroxy-5-phenylbenzaldehyde 2 was used as a starting material in
the Knoevenagel reaction with triethyl phosphonoacetate. It should be mentioned that
compound 2 is not very stable—it slowly oxidized in air, both at room temperature or
when stored at 4–10 ◦C. The condensation reaction was carried out following the procedure
developed in our group [38] applying piperidine as a catalyst in dry toluene at reflux,
Scheme 2.
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Scheme 2. Knoevenagel condensation.

The reaction was completed in 5 h. Even though the reaction went smoothly, there
were some difficulties related to the evaporation of the solvent and the separation of the
two chemoisomers. The first obstacle was that compounds 3a and 4a have similar Rf-values
on both silica and alumina (TLC-monitoring); therefore, it was difficult to separate the
compounds to sufficient purity by column chromatography. On the other hand, both
compounds are slowly solidifying oils which made further purification by recrystallization
impracticable.

It is interesting to note that the phenyl substituted benzopyrans 3a and 4a possess
fluorescent properties as calculated. Therefore, a parallel approach for obtaining these
structures was planned based on the preparation of 6-bromo-3-phosphonocoumarin 5 by
Knoevenagel condensation of 5-bromo-2-hydroxybenzaldehyde 1 with triethyl phospho-
noacetate [38], Scheme 2, followed by a subsequent derivatization of the products by Suzuki
coupling.

The advantages of this synthetic pathway are the usage of a stable and cheaper alde-
hyde and mainly the easier separation and further purification by column chromatography
of products 5 and 6.

Thereafter, the reaction of 6-bromo-3-phosphonocoumarin 5 with phenylboronic acid,
Scheme 3, was carried out using a relatively high load of palladium catalyst (3 mol%) due
to the electron-donating oxygen atom from the lactone, bonded to the benzene ring in the
coumarin moiety.
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coumarin-3-phosphonate 3a. Formation of the dehalogenated coumarin structure 7 was 
also observed as a side product. Therefore, better reaction conditions needed to be devel-
oped for full conversion of 3b where no side reaction could be observed.  
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Scheme 3. Suzuki coupling.

During the preliminary studies, some unexpected problems were faced due to the sim-
ilar chromatographical behavior of compound 5 and the desired product 3a. This compli-
cated the TLC monitoring of the reaction and the purification of diethyl 6-phenylcoumarin-
3-phosphonate 3a. Formation of the dehalogenated coumarin structure 7 was also observed
as a side product. Therefore, better reaction conditions needed to be developed for full
conversion of 3b where no side reaction could be observed.

The optimal conditions for the palladium-catalyzed coupling were determined through
a series of experiments in which different combinations of catalyst (Figure 1) and solvent
were applied. Two groups of palladium catalysts were employed, differing by the Pd oxidation
state—Pd(0) and Pd(II), and by the coordinated ligand—phosphine and NHC-type.
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Figure 1. Pd-complexes used as catalyst in the studied reaction.

Due to the drawbacks mentioned above, a series of small-scale experiments were
performed, Scheme 4, Table 2. The ratio of compounds 5, 3a, and 7 was monitored by NMR
spectroscopy of the crude reaction mixture. Based on the chemical shift of the H-4 proton
in all coumarin species 5, 3a, and 7, the ratio of the compounds was determined.
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Table 2. Ratio of the formed products in the crude reaction mixture *.

Entry Solvent 5 3a 7 Catalyst

1 PhCH3 traces >99 traces PdCl2(PPh3)2
2 PhCH3:H2O traces >99 traces PdCl2(PPh3)2
3 Dioxane ~14 ~86 traces PdCl2(PPh3)2
4 Dioxane:H2O traces >99 traces PdCl2(PPh3)2
5 EtOH:H2O:PhCH3 traces >99 traces PdCl2(PPh3)2

6 PhCH3 ~54 ~45 traces Pd(PPh3)4
7 PhCH3:H2O 18 74 7 Pd(PPh3)4
8 Dioxane ~54 ~45 traces Pd(PPh3)4
9 Dioxane:H2O 25 68 6 Pd(PPh3)4

10 EtOH:H2O:PhCH3 ~34 ~65 traces Pd(PPh3)4

11 PhCH3 ~57 ~42 traces IMesPd(dmba)Cl
12 PhCH3:H2O traces >99 - IMesPd(dmba)Cl
13 Dioxane ~56 ~43 traces IMesPd(dmba)Cl
14 Dioxane:H2O traces >99 traces IMesPd(dmba)Cl
15 EtOH:H2O:PhCH3 traces >99 traces IMesPd(dmba)Cl

16 PhCH3 30 70 - PEPPSI-type
17 PhCH3:H2O - 100 - PEPPSI-type
18 Dioxane 24 76 - PEPPSI-type
19 Dioxane:H2O - 100 - PEPPSI-type
20 EtOH ? ? ? PEPPSI-type
21 EtOH:H2O traces ~77 ~23 PEPPSI-type
22 EtOH:H2O:PhCH3 traces 94 5 PEPPSI-type

* The ratio is determined by NMR-spectroscopy.

For better comparison of the obtained results, the same reaction time was implied for
all of the listed small-scale reactions (20 h). The reactions were performed using 1.2 equiv.
of phenylboronic acid under an argon atmosphere at 80 ◦C. According to the literature
data [39–41], addition of water as a co-solvent or other protic solvent to the mixture might
improve the outcome of the reaction; thus, several combinations of water or ethanol with
dry toluene or dioxane were also tested. Potassium carbonate (3 equiv.) was tested as a base
for the reaction with the coumarin species due to the possibility of opening the lactone ring
if stronger bases were used [42,43]. Not only did the replacement of the sodium carbonate
with potassium carbonate improve the yields significantly but also K2CO3 is nontoxic,
cheap, and strong enough to activate [44–48] all of the used Pd(II) catalysts. The results of
the initial experiments are summarized in Table 2.

The catalysts were introduced as a solution in THF (0.5 mL) except for PdCl2(PPh3)2.
Due to its insolubility, this catalyst was introduced to the reaction in its crystalline form.
To properly evaluate the obtained results for PdCl2(PPh3)2, 0.5 mL THF was additionally
added to the reaction.

As we mentioned above, the reaction was performed in the presence of different types
of palladium catalyst according to the ligands coordinated to the metal atom. The catalytic
activity of the phosphine type complexes PdCl2(PPh3)2 and Pd(PPh3)4 in the studied
reaction differed significantly. The usage of the PdCl2(PPh3)2 in the arylation reaction led
to almost full conversion of the starting 6-bromo-3-phosphonocoumarin 5. As it could be
seen from the listed results, Table 2, when employing bis(triphenylphosphine)palladium(II)
dichloride, the reaction outcome is almost solvent-media-independent. However, not only
the starting material but also the dehalogenated coumarin 7 was observed in the crude
reaction mixture. The catalytic activity of tetrakis(triphenylphosphine)palladium(0) with
the presented coumarin 5 was not satisfying—Pd(PPh3)4 complex gave the worst results
amongst all of the chosen catalytic systems. However, when a mixed solvent (toluene:water
or dioxane:water; entry 7 and entry 9, Table 2) was used, the yield of the desired product
was increased.
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The next set of experiments was performed by palladium complexes coordinating
NHC-ligands. Two catalysts having bulkier ligands were tested in the Suzuki coupling—
IMesPd(dmba)Cl and PEPPSI-type. The main observation in the IMesPd(dmba)Cl catalyzed
reactions was the conversion and the yield of the targeted product. The selectivity of the
reaction increased when water was introduced in the solvent media, entry 12 and entry 14,
Table 2.

The full conversion of the 6-bromo-3-phosphocoumarin 5 into 6-phenyl-3-phosphon
ocoumarin 3a was observed only when the reaction was carried out under the conditions
listed as entry 17 and entry 19 (Table 2) in the presence of the PEPPSI-type catalyst.

It is interesting to note that when the reaction was performed in ethanol as a solvent
media, a full conversion of the starting product was observed; however, the formation of 3a
was not detected. This statement was based on the NMR spectra where the characteristic
signals for the protons at position C-4 for neither the 5, 3a, or 7 were found. This might
be due to opening of the lactone ring in the presence of ethanol/base as it was previously
reported [42,43,49–52].

Further scrutiny of the solvent media gave additional clarity of the overall conditions
for better coupling reactivity. This made us consider the combination of PEPPSI-type
catalyst and dioxane/water or toluene/water as the most effective in accomplishing high
cross-coupling yield with full conversion of the starting material. The combination of
toluene/water was preferred for the next Pd-catalyzed coupling reactions because of its
low toxicity and price.

The structure of the 6-phenyl-3-phosphonocoumarin 3a was determined by a single
crystal X-ray analysis (CCDC 2209998, Figure 2) where only one substance was identified
in the crystalline matter.
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Figure 2. ORTEP representation with thermal ellipsoids 40%—Crystal Data for C19H19O5P
(M = 358.333 g/mol): monoclinic, space group P21/n (no. 14), a = 13.6869(9) Å, b = 8.5123(5)
Å, c = 14.9033(9) Å, α = 90◦, β = 90.726(2)◦, γ = 90◦, V = 1736.20(19) Å3, Z = 4, T = 133.00 K,
µ(MoKα) = 0.185 mm−1, Dcalc = 1.371 g/cm3, 26,401 reflections measured (4.06◦ ≤ 2Θ ≤ 55.84◦),
4155 unique (Rint = 0.0591, Rsigma = 0.0405) which were used in all calculations. The final R1 was
0.0390 (I > 2σ(I)) and wR2 was 0.1092 (all data). The crystallographic data could be found in the
Supplementary Materials.

The cross-coupling reactivity of 6-bromo-3-phosphonocoumarin 5 was further tested
under the above-optimized conditions, Scheme 5. Aiming to increase the conjugation of
the push–pull system, a series of boronic acids bearing electron donating and electron
withdrawing groups were chosen, Table 3. The reactions were performed in five-time larger
scales compared with the preliminary studies illustrated in Table 2.



Molecules 2022, 27, 7649 9 of 34
Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-
phosphonocoumarin 5.

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%]

1

Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

PEPPSI-type 17 h 90%

2

Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

PEPPSI-type 120 h 41%

3 Pd(PPh3)2Cl2 48 h 63%

4

Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

PEPPSI-type 48 h 95%

5

Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

PEPPSI-type 48 h 61%

6

Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

Molecules 2022, 27, x FOR PEER REVIEW 9 of 34  
  

 

  
Scheme 5. Suzuki coupling of 6-bromo-3-phosphonocoumarin 5.  

Table 3. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromo-3-phos-
phonocoumarin 5. 

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%] 

1 
  3a 

PEPPSI-type 17 h 90% 

2 

  3b 

PEPPSI-type 120 h 41% 

3 Pd(PPh3)2Cl2 48 h 63% 

4 
  3c 

PEPPSI-type 48 h 95% 

5 
  3d 

PEPPSI-type 48 h 61% 

6 

  3e 

PEPPSI-type 48 h 19% 

7 Pd(PPh3)2Cl2 48 h 45% 

* Isolated yields after column chromatography.  

Interestingly, under the optimized reaction conditions and in the presence of the se-
lected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin 5 
could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted boronic 
acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost quan-
titative (61–95%) after purification by column chromatography. In all the presented ex-
periments, the time needed for the full conversion of the coumarin 5 when substituted 
boronic reagents were used had increased compared with the unsubstituted phenyl-
boronic acid. This implies that the hindrance of the reaction center and the electronic effect 
of the groups play a major role in the outcome of the reactions.  

As a proof of that hypothesis, we observed that when the reaction center of the bo-
ronic reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 
6, Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less 
yield is obtained. This observation is not new when a Suzuki reaction is performed with 
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not 
so voluminous palladium catalysts that have shown good catalytic activity in the initial 
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus 
resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63% 
and from 19% to 45%, respectfully.  

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl 
boronic acid gave the lowest yields in comparison with the other arylated products. 
Thence, an experiment for obtaining 3e with better yields was performed where the reac-
tion temperature was increased to 100 °C; however, this did not give the positive outcome 

O O

P(OEt)2

O
O

PEPPSI-type 48 h 19%

7 Pd(PPh3)2Cl2 48 h 45%

* Isolated yields after column chromatography.

Interestingly, under the optimized reaction conditions and in the presence of the
selected boronic acid, the cross-coupling reaction with 6-bromo-3-phosphonocoumarin
5 could be achieved, Table 3, Scheme 5. In cases of unsubstituted or para-substituted
boronic acids, the yields of the desired products 3a, 3c, and 3d varied from good to almost
quantitative (61–95%) after purification by column chromatography. In all the presented
experiments, the time needed for the full conversion of the coumarin 5 when substituted
boronic reagents were used had increased compared with the unsubstituted phenylboronic
acid. This implies that the hindrance of the reaction center and the electronic effect of the
groups play a major role in the outcome of the reactions.

As a proof of that hypothesis, we observed that when the reaction center of the boronic
reagent is hindered, the yield of the products 3b and 3e were low (entry 2 and entry 6,
Table 3) using PEPPSI-type catalyst. The more hindered the boronic adduct is, the less
yield is obtained. This observation is not new when a Suzuki reaction is performed with
ortho or di-ortho substituted boronic species [53,54]; therefore, we decided to test other not
so voluminous palladium catalysts that have shown good catalytic activity in the initial
reaction with 5. The arylation was performed with PdCl2(PPh3)2 (entry 3 and entry 7) thus
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resulting in significantly increasing of the yields for product 3b and 3e, from 41% to 63%
and from 19% to 45%, respectfully.

Even when using less hindered catalyst, entry 7, Table 3, the reaction with mesityl
boronic acid gave the lowest yields in comparison with the other arylated products. Thence,
an experiment for obtaining 3e with better yields was performed where the reaction
temperature was increased to 100 ◦C; however, this did not give the positive outcome that
we expected. The catalyst slowly decomposed, and only partial conversion of the starting
material was indicated.

Phosphorus-containing coumarins such as 7 [1] are of a great importance in the areas
of LiveScience due to the similarity of phosphorous compounds to the naturally occurring
carboxylic acid derivatives and their potential application in varies biological systems. In
order to further explore the generality of our modified procedure and to obtain analogous
structures, the chemical behavior of halogenated ethyl and methyl ester of coumarin-3-
carboxylic acid 8a,b was studied in the Suzuki reaction, Scheme 6.
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Scheme 6. Palladium-catalyzed arylation of 6-bromocoumarin-3-carboxylates 8a,b.

The same reaction conditions—PEPPSI-type catalyst, mixed solvent (toluene:water)
and potassium carbonate as a base—were employed in for the reactions with ethyl and
methyl ester of coumarin-3-carboxylic acid 8a,b. A striking observation was the extreme
reactivity of the bromo carboxylates in the Suzuki reaction catalyzed by the PEPPSI complex.
For example, the time needed for full conversion of both starting materials, in case of
unsubstituted or substituted in para-position boronic acid, was determined to be in the
range of 30 to 60 min.

Longer reaction time and lower yields were observed again when 2-metoxyphenyl
boronic acid was used as an adduct in the Suzuki reaction with coumarin 8a, entry 3,
Table 4. The replacement of the bulky PEPPSI-type catalyst with less hindered complex
as PdCl2(PPh3)2 resulted in increasing the yield from 20% to 68% (entry 4, Table 4). The
usage of bis(triphenylphosphine)palladium(II) dichloride gave us the opportunity to obtain
coumarin derivatives with even more hindered boronic acids—as 2,4,6-trimethylphenyl
boronic acid and 2,6-dimethoxyphenyl boronic acid (entry 10–13, Table 4).

A weak reactivity of the coumarin species in the studied conditions in cases listed as
entry 10–13 was observed. The obtained low yields for products 9e,f and 10e,f might be
due not only to the fact that there was not full conversion of the esters but also to difficulties
in their purification.

Longer reaction time and lower yields were observed again when 2-metoxyphenyl
boronic acid was used as an adduct in the Suzuki reaction with coumarin 8a, entry 3,
Table 4. The replacement of the bulky PEPPSI-type catalyst with less hindered complex
as PdCl2(PPh3)2 resulted in increasing the yield from 20% to 68% (entry 4, Table 4). The
usage of bis(triphenylphosphine)palladium(II) dichloride gave us the opportunity to obtain
coumarin derivatives with even more hindered boronic acids—as 2,4,6-trimethylphenyl
boronic acid and 2,6-dimethoxyphenyl boronic acid (entry 10–13, Table 4).
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Table 4. Parameters, reagents, and products of palladium-catalyzed arylation of 6-bromocoumarin-3-
carboxylates 8a,b.

Entry Boronic Acid Product [Pd] Time Yield *, [%]

1
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The synthesis of compounds 9a,c,d via the Suzuki reaction was previously reported
by two different research collectives [23,24]; however, different catalytic systems were used.
The obtained yields for these compounds were lower under longer reaction times. For
example, Gobec et al. [24] obtained the ethyl 6-phenylcoumarin-3-carboxylate 9a with only
33% yield, while the reaction time was not specified (overnight); Carbonaro et al. [23]
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reported the formation of product 9a in 55% yield for 12–16 h. In the procedure that
we developed, the ethyl 6-phenylcoumarin-3-carboxylate 9a was isolated with 90% yield
after only 30 min, entry 1 (Table 4). The yield of compound 9c was reported to be 67%
(overnight) [24] and 66% (12–16 h) [23]. Using the optimized procedure based on the
PEPPSI-type catalyst, we managed to isolate the ethyl 6-(4-methoxyphenyl)coumarin-3-
carboxylate 9c in 92% for 45 min, entry 6 (Table 4). The yield of 9d obtained from a Suzuki
reaction catalyzed by Pd(PPh3)4 was reported [24] to be 54% (overnight). As can be seen
from Table 4, changing the catalytic system could significantly increase the reactivity of the
coumarin 8a, thus resulting in the 80% yield for coumarin 9d and the conversion time of
45 min, entry 8.

The reactivity of 6-bromocoumarin-3-carboxylates 8a,b was tested with even bulkier
adduct—2,6-dimetoxyboronic acid, entry 12 and entry 13, Table 4. Unfortunately, in both
cases, no full conversion of the starting compounds was observed. Even though the
reaction times were long, a complexed mixture was obtained, and none of the structures
were isolated due to the absence of predominant product. Another drawback was the
similar chromatographic properties of some components of the mixture on both silica and
alumina.

Motivated by these results, we next sought to expand the scope of the optimized
procedure to the arylation of a more challenging substrate, such as 1,2-benzoxaphosphorin
6, Scheme 7.
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Under the optimized reaction conditions—PEPPSI-type catalyst, solvent mixture of
toluene:water, potassium carbonate and in the presence of the selected boronic acid—
the cross-coupling reaction with ethyl 6-bromo-2-ethoxybenzo[e][1,2]oxaphosphorine-3-
carboxylate 6 was achieved, Scheme 7, Table 5. The yields for the arylated products 11a–d
are similar to the ones obtained for the corresponding chemoisomeric structures 3a–d.
However, the time needed for the consumption of the starting material compared with the
3-phosphonocoumarin derivatives was shorter.

A different catalyst was used, Pd(PPh3)2Cl2 (entry 3, Table 5), only when 2-methoxy
phenylboronic acid was employed. The bis(triphenylphosphine)palladium(II) dichloride
complex gave better results with the studied carboxylates and with 6-bromo-3-phosphon
ocoumarin 5. However, in the case of oxaphosphorine-3-carboxylate 6, the yield of product
11b was moderate (45%).

In the studied reaction conditions, poor reactivity of the coumarin species was ob-
served with respect to hindered boronic acids; therefore, no experiments were performed
with 2,4,6-trimethylphenylboronic acid and 2,6-dimethoxyphenylboronic acid. On the other
hand, oxaphosphorine-3-carboxylate 6 is a byproduct, and there is still no efficient method
for its preparation on a large scale.

The Suzuki reaction of ethyl 6-bromo-2-ethoxybenzo[e][1,2]oxaphosphorine-3-carboxylate
6 is applicable for boronic acids bearing electron-donating and electron-withdrawing
groups. The only limitation of the procedure is when a hindered organoboron substrate
is used.
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Table 5. Parameters, reagents, and products of palladium-catalyzed arylation of ethyl 6-bromo-2-
ethoxybenzo[e][1,2]oxaphosphorine-3-carboxylate 6.

Entry Boronic Acid Product [Pd] Time, [h] Yield *, [%]
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To extend the π-system of the heterocyclic system, another Pd-catalyzed reaction was
tested on the studied coumarins—the Sonogashira alkynylation, Scheme 8, Table 6.
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Scheme 8. Palladium-catalyzed alkynylation of 3-substituted coumarin species—Sonogashira cou-
pling.

Most reactions with the chosen substrates were performed under classical conditions
for Sonogashira coupling [55,56]—Pd(PPh3)2Cl2/CuI as a catalytic system in the presence
of Et3N in DMF at 80 ◦C under argon atmosphere. To compensate the electron-rich nature
of the 4-ethynylanisole, entry 4, Table 6, PEPPSI-type complex was applied. However,
these conditions resulted in the formation of product 12d in only a 56% yield. Reaction
of the same alkynylating reagent and ethyl coumarin-3-carboxylate 8a was not carried
out since the product is a known compound and was prepared under the same classical
conditions [57]. The Sonogashira reaction in analogues conditions involving the methyl
carboxylate 8b had also been reported [58].

Surprisingly, the reactions of ethyl 6-bromo-2-ethoxybenzo[e][1,2]oxaphosphorine-3-
carboxylate 6 under the described conditions led to the formation of complexed reaction
mixtures, and none of the structures 12c,e were isolated due to the absence of predominant
product.
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Table 6. Parameters, reagents, and products of palladium-catalyzed alkynylation of 3-substituted
coumarin species—Sonogashira reaction.

Entry Alkyne Product [Pd] Time, [h] Yield *, [%]

1
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2.3. Photophysical Properties

The photophysical properties of the synthesized compounds were experimentally
determined by UV-VIS and fluorescent spectroscopy. The absorption and fluorescence
spectra of the aryl substituted coumarin, 3a, were recorded in five different solvents—
acetonitrile (MeCN), methanol (MeOH), ethyl acetate (EtOAc), dimethyl sulfoxide (DMSO),
and dichloromethane (DCM), Figure 3, Table 7. The obtained results showed that the solvent
slightly affects the position of the longest absorption wavelength band. For example, in the
polar protic solvent (MeOH) the absorbance maximum was exhibited at 346 nm, and in the
non-polar one—dichloromethane was hypsochromically shifted only by 2 nm (Table 7 and
Figure 3). In the emission spectra obtained, MeOH and CH2Cl2 bands at 459 nm and at
452 nm, respectively, were observed. Interestingly, although DMSO is an aprotic solvent,
the maximum in the fluorescence spectrum was bathochromically shifted only by 1 nm
compared to MeOH. The biggest difference was noted in the case of EtOAc—the maximum
was blue-shifted by 16 nm with respect to the corresponding in DMSO, which was the most
red-shifted one.

The spectral data of the other three coumarins bearing phenyl substituents—9a, 10a
and 11a dissolved in acetonitrile, methanol and dichloromethane demonstrated minor
solvatochromic effect from 13 to 16 nm—in MeOH the bands were red-shifted, while
in DCM they were blue-shifted, and the maximum in acetonitrile was always between
these two maxima (Table 7, Figure 3). Due to the higher solubility of the coumarins in
acetonitrile compared to methanol, MeCN was selected as a solvent for all other synthesized
derivatives.

The UV-VIS and emission spectra of 3b–e, 12a, and 12d compounds in acetonitrile are
shown in Figure 4. As predicted by the DFT calculations, the presence of phenyl substituent
in 6-th position of the coumarin ring (3a) leads to a redshift both in the absorption and
the fluorescence spectra by 19 and 42 nm, respectively, compared to the unsubstituted
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substance. The absorption maximum in the UV spectrum of the 3e bearing mesityl group,
was at shorter wavelength like in the simulated one—333 nm in comparison with the
corresponding value for 3a—343 nm. The compounds having methoxy group in ortho-
position and F-atom in the aryl substituent exhibited maximum at 345 nm, while for
Ph-C≡C λmax was slightly red-shifted by 6 nm. The compound containing methoxyphenyl
group in ortho-position in the aryl substituent emitted at 493 nm.

The derivative 12a with triple bond and without OMe group in para position exhibits a
maximum at a shorter wavelength 461 nm. The largest bathochromic shift in the absorption
and emission spectra was observed for the coumarin derivates with longer conjugated
π-system, compounds 3c and 12d. They exhibited the same absorption maximum at 356 nm,
which by 13 nm red-shifted compared to the corresponding spectra of the phenyl derivate,
3a, while their emission is shifted to the longest wavelength by 82 and 90 nm for 3c and
12d, respectively.

The same trend was observed for the ethyl and methyl coumarin-3-carboxylates and
benzoxaphosphorines—the absorption and emission bands’ shift was highest when there is
para-methoxyphenyl substituent (Figure 5) as the fluorescence is very similar to that of the
corresponding phosphonocoumarins 3c and 12d—546, 543, and 541 nm for 9c, 10c, and 11c,
respectively, Figure 6. Thus, the substituent in position C-3 does not affect the fluorescence
of the coumarin species. The λmax in the fluorescence spectra of phenyl derivates is red-
shifted by nearly 50 nm with respect to the unsubstituted coumarins, which for each series
are denoted with the number of the parent series followed by H (Table 7).
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Table 7. Photophysical data of the coumarin derivatives.

Compounds Solvent λabs, nm λem, nm Stokes Shift, nm

7 MeCN 324 411 87

3a

DMSO 345 460 115
MeOH 346 459 113
MeCN 343 453 110
DCM 344 452 108

EtOAc 343 447 104
3b MeCN 345 493 148
3c MeCN 356 535 179
3d MeCN 345 456 148
3e MeCN 333 451 118

12a MeCN 351 461 110
12d MeCN 356 543 187

9-H * MeCN 326 412 86

9a
MeOH 355 470 115
MeCN 355 463 108
DCM 360 457 97

9b MeCN 353 503 150
9c MeCN 366 546 180
9d MeCN 366 458 92
9e MeCN 343 458 115

12b MeCN 357 472 115

10-H * MeCN 326 411 85

10a
MeOH 357 472 115
MeCN 353 466 113
DCM 358 457 99

10b MeCN 351 504 153
10c MeCN 363 543 180
10d MeCN 354 466 112
10e MeCN 340 460 120

11-H * MeCN 324 410 86

11a
MeOH 343 468 125
MeCN 342 459 117
DCM 342 452 110

11b MeCN 340 500 160
11c MeCN 350 541 191
11d MeCN 341 460 119

* unsubstituted at C-6 in the benzene moiety compounds.
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The observed Stokes shift for all compounds with C-6 substituents was above 100 nm,
while the highest was determined for the para-methoxyphenyl derivatives, and it varied
from 179 for 3c to 191 for 11c. For the unsubstituted coumarins, the Stokes shift is smaller
and is around 85 nm.

The computed maxima of the absorption spectra, multiplied by the scaling factor, is in
very good agreement with the experimental data (Table 8). The differences do not exceed
5 nm. The order of λmax in the calculated UV spectra is the same as in the experimentally
obtained—in direction H-, mesityl-, Ph-, ortho-MeOC6H4-, F-, Ph-C≡C-, para-MeOC6H4-,
and para-MeOC6H4-C≡C substituents at position C-6 is the observed bathochromic shift.

Table 8. Comparison between the experimental and calculated spectral characteristics. Scaling factor
for the absorbance—1.098 and 1.195—for the emission.

Exp CM λscaled
abs ∆λscaled

abs −λ
exp
abs λscaled

em ∆λscaled
em −λ

exp
em

∆Stokes shift
(calc−exp)

7 CM-1 324 0 411 0 −38
3a CM-2 339 −4 452 1 −41
3b CM-3 343 −2 461 32 −74
3c CM-5 351 −5 483 52 −95
3d CM-6 340 −5 452 41 −43
3e CM-7 328 −5 444 7 −45

12a CM-8 350 −1 459 2 −45
12d CM-9 359 3 480 62 −112

The variance for the fluorescence bands in some cases is much more pronounced by
up to 62 nm for coumarin 12d. However, in the results for 3a, 3e, and 12a, the simulated
data are red-shifted by only 1, 7, and 2 nm, respectively. The calculated Stokes shift differs
by around 40–45 nm. As for the two structures with methoxy group in para position, 3c
and 12d, the distinction is higher and is 95 and 112 nm, respectively.

To test the fluorescent properties of coumarins 3a and 3c in different pH, a series of
experiments by varying the concentration of sulfuric acid and sodium hydroxide (Figure 7)
were performed. Interestingly, the fluorescence of the para-methoxyphenyl derivative 3c
was suppressed when lowering the pH of the solution by adding sulfuric acid, while the
emission of the phenyl derivative 3a had increased. This different behavior of the coumarin
species might be due to different protonation positions. In compound 3a, the protonation
could occur at the lactone oxygen atom therefore the conjugation would be more effective.
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The quenching of the fluorescence of coumarin 3c might be due to the protonation of the
MeO-group which decreases the donor ability of the oxygen atom. The addition of sodium
hydroxide might lead to lactone ring opening, thus loss of conjugation (Figure 7c,d).
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thylsilane as internal standard with CDCl3 as solvent. Chemical shifts in 19F NMR refer-
enced by IUPAC recommendations (2000) and in 31P NMR spectra were referred from 
external standard—85% H3PO4. The NMR-spectra of the newly synthesized compounds 
could be found in the Supplementary Materials. Liquid chromatography mass spectrom-
etry analysis (LC-HRAM) was carried out on Q Exactive® hybrid quadrupole-Orbitrap® 
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3. Materials and Methods

Melting points were determined on an SRS MPA120 EZ-Melt apparatus and are used
without correction. The IR spectra were recorded with a Shimadzu FTIR-8400S spectropho-
tometer. 1H, 13C, and 31P NMR spectra were recorded on a Bruker AVNEO 400 spectrometer
(at 400 MHz for 1H, 100.6 MHz for 13C, 376.46 MHz for 19F, and 161.98 MHz for 31P, respec-
tively), Bruker Avance III 500 spectrometer (at 500 MHz for 1H, 125.7 MHz for 13C and
202.4 MHz for 31P, respectively). Chemical shifts are given in ppm from tetramethylsilane as
internal standard with CDCl3 as solvent. Chemical shifts in 19F NMR referenced by IUPAC
recommendations (2000) and in 31P NMR spectra were referred from external standard—
85% H3PO4. The NMR-spectra of the newly synthesized compounds could be found in
the Supplementary Materials. Liquid chromatography mass spectrometry analysis (LC-
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HRAM) was carried out on Q Exactive® hybrid quadrupole-Orbitrap® mass spectrometer
(ThermoScientific Co, Waltham, MA, USA) equipped with a HESI® (heated electrospray
ionization) module, TurboFlow® Ultra High Performance Liquid Chromatography (UH-
PLC) system (ThermoScientific Co, Waltham, MA, USA) and HTC PAL® autosampler
(CTC Analytics, Zwingen, Switzerland). The chromatographic separations of the analyzed
compounds were achieved on Nucleoshell C18 (100 × 2.1 mm, 2.7 µm) analytical column
(Macherey-Nagel, Düren, Germany) using gradient elution at 300 µL/min flow rate. The
used eluent systems were: A—0.1% formic acid in water; B—0.1% formic acid in CH3CN.
Full-scan mass spectra over the m/z range 100–600 were acquired in positive ion mode
at resolution settings of 140,000. The used mass spectrometer operating parameters were:
spray voltage—4.0 kV; capillary temperature—320 ◦C; probe heater temperature—300 ◦C;
sheath gas flow rate 40 units; auxiliary gas flow 12 units; sweep gas 2 units (units refer to
arbitrary values set by the Q Exactive Tune software); and S-Lens RF level of 50.00. Nitrogen
was used for sample nebulization and collision gas in the HCD cell. All derivatives were
quantified using 5 ppm mass tolerance filters to their theoretical calculated m/z values.
Data acquisition and processing were carried out with XCalibur® ver 2.4 software package
(ThermoScientific Co, Waltham, MA, USA). UV-Vis spectra were carried out on a Shimadzu
UV-1800. Fluoresce spectra were recorded at room temperature on a PerkinElmer LS45.
Reactions were monitored by TLC on silica gel 60 F254. Column chromatography was
carried out on silica gel (Merck 0.043–0.063 mm) using as eluent n-hexane/EtOAc mixture
with increasing polarity. The X-ray data set was collected using a Bruker D8 Venture
diffractometer with a microfocus sealed tube and a Photon II detector. Monochromated
MoKα radiation (λ = 0.71073 Å) was used. Data were collected at 133(2) K and corrected
for absorption effects using the multi-scan method. The structure was solved by direct
methods using SHELXT [59] and was refined by full matrix least squares calculations on
F2 (SHELXL2018 [60]) in the graphical user interface Shelxle [61]. Refinement—all non
H-atoms were located in the electron density maps and refined anisotropically. C-bound H
atoms were placed in positions of optimized geometry and treated as riding atoms. Their
isotropic displacement parameters were coupled to the corresponding carrier atoms by a
factor of 1.2 (CH, CH2) or 1.5 (CH3). Disorder: The ethoxy-group on O4 was split over two
positions. Its occupancy factors refined to 0.775 for the major compound.

Computational details—the quantum-chemical calculations of the series of phospho-
nocoumarins in acetonitrile were performed using density functional theory (DFT) [26–29],
time-dependent (TD) DFT [30,31] with Gaussian16 suite of programs [32] and the long
range corrected hybrid exchange-correlation functional CAM-B3LYP [35], paired with 6-
31++G** basis set was employed and a polarizable continuum model (PCM) was used [36].

All chemical reagents were purchased from Merck and Sigma Aldrich. The starting
6-bromo-3-substitueted-2-oxo-2H-1-benzopyrans 5,6,8a,b were prepared according to re-
ported procedures [38]. The used Pd-complexes (PdCl2(PPh3)2 [62], IMesPd(dmba)Cl [45],
and PEPPSI-type catalyst [44]) were prepared according to known procedures.

3.1. Starting Materials

4-Hydroxy-[1,1’-biphenyl]-3-carbaldehyde, 2

Compound 2 was prepared according to the reported procedure [37].
1H NMR (500 MHz, CDCl3) δ = 10.926 (s, 1H, OH), 9.889 (s, 1H, CHO), 7.672–7.781 (m, 2H,
aromatic), 7.171–7.573 (m, 5H, aromatic), 7.000 (d, J = 8.4 Hz, 1H, aromatic).

Diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phosphonate, 5

Compound 5 was prepared according to the reported procedure [38].
1H NMR (500 MHz, CDCl3) δ = 8.425 (d, J = 17.1 Hz, 1H, H-4), 7.714–7.728 (m, 2H, H-7,
H-5), 7.26 (d, J = 9.4 Hz, 1H, H-8), 4.215–4.347 (m, 4H, two CH3CH2O), 1.387 (t, J = 7.1 Hz,
6H, two CH3CH2O).

Ethyl 6-bromo-2-ethoxybenzo[e][1,2]oxaphosphinine-3-carboxylate 2-oxide, 6
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Compound 6 was prepared according to the reported procedure [38].
1H NMR (500 MHz, CDCl3) δ = 8.132 (d, J = 36.9 Hz, 1H, H-4), 7.604 (dd, J = 8.6 Hz, 2.1 Hz,
1H, H-7), 7.576 (d, J = 2.1 Hz, 1H, H-5), 7.267 (d, J = 8.5 Hz, 1H, H-8), 4.323–4.476 (m, 4H,
two CH2O), 1.412 (t, J = 7.1 Hz, 3H, CH3CH2OP), 1.391 (t, J = 7.1 Hz, 3H, CH3CH2O).

3.2. Procedure for Suzuki Reaction—Preliminary Study
3.2.1. Procedure for Suzuki Reaction with PEPPSI, Pd(PPh3)4, and IMesPd(dmba)Cl

In a Schlenk tube 0.108 g (0.3 mmol, 1 equiv) of diethyl (6-bromo-2-oxo-2H-chromen-
3-yl)phosphonate 5, phenylboronic acid (0.044 g, 0.36 mmol, 1.2 equiv), finely powdered
K2CO3 (0.124 g, 0.9 mmol, 3 equiv) were placed. A mixture of water:toluene (0.6 mL:2.4
mL), toluene (3 mL), water:dioxane (0.6 mL:2.4 mL), dioxane (3 mL), ethanol:water:toluene
(0.5 mL:1 mL:1 mL), or ethanol:water (2 mL:1 mL) were added. The vessel was evacuated
under vacuum and refilled with argon four times. After that, the respective catalyst (PEPPSI-
type, Pd(PPh3)4, and IMesPd(dmba)Cl) (3 mol %) was introduced as 0.5 mL THF solution.
The resulting suspension was heated at 80 ◦C for 20 h. After that, the reaction mixture
was cooled to room temperature, diluted with CHCl3, dried with Na2SO4 if water was
used, and filtered through a celite pad. Part of the solution (about 3 mL) was evaporated
under reduced pressure; the residue was dissolved in CDCl3 and was analyzed by NMR
spectroscopy.

3.2.2. Procedure for Suzuki Reaction with Pd(PPh3)2Cl2
In a Schlenk tube, 0.108 g (0.3 mmol, 1 equiv) of diethyl (6-bromo-2-oxo-2H-chromen-

3-yl)phosphonate 5, phenylboronic acid (0.044 g, 0.36 mmol, 1.2 equiv), finely powdered
K2CO3 (0.124 g, 0.9 mmol, 3 equiv) were placed. A mixture of water:toluene (0.6 mL:2.4 mL),
toluene (3 mL), water:dioxane (0.6 mL:2.4 mL), dioxane (3 mL), ethanol:water:toluene
(0.5 mL:1 mL:1 mL) or ethanol:water (2 mL:1 mL) were added. After that, the catalyst
Pd(PPh3)2Cl2 was introduced as solid, and 0.5 mL of THF were additionally added. The
vessel was evacuated under vacuum and refilled with argon four times. The resulting
suspension was heated at 80 ◦C for 20 h. After that, the reaction mixture was cooled to
room temperature, diluted with CHCl3, dried with Na2SO4 if water was used, and filtered
through a celite pad. Part of the solution (about 3 mL) was evaporated under reduced
pressure. The residue was dissolved in CDCl3 and was analyzed by NMR spectroscopy.

3.3. General Procedure for the Preparative Suzuki Reaction

In a 50 mL Schlenk flask, a mixture of the respective brominated heterocycle 1.5 mmol
(1 equiv), boronic acid 1.8 mmol (1.2 equiv), potassium carbonate 0.622 g (4.5 mmol,
3 equiv), and palladium complex 45 µmol (3 mol%)–29 mg PEPPSI or 32 mg Pd(PPh3)2Cl2,
was placed, and the respective solvent was added—3 mL:12 mL water:toluene when a
PEPPSI-type catalyst was used, or 15 mL toluene for Pd(PPh3)2Cl2. The flask was evacuated
and refilled with argon (four times). The reaction was heated at 80 oC until the coumarin
derivative was consumed (TLC-monitoring). The needed time for the reactions is given in
Tables 2–4. The reaction was quenched by adding water to the reaction, and the organic
layer was extracted with chloroform (5 × 20 mL). The organic extracts were dried with
anhydrous sodium sulfate. After the evaporation of the solvent, the residue was purified
by column chromatography using n-hexane/EtOAc, n-hexane/CH2Cl2, or n-hexane/Et2O
as gradient eluent system.

Diethyl (2-oxo-6-phenyl-2H-chromen-3-yl)phosphonate, 3a

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phosphonate
5 (0.540 g), phenylboronic acid (0.220 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3 mL:12 mL
water:toluene for 17 h. The product was purified by column chromatography using n-
hexane/Et2O, 0.482 g, 90%, white powder, m.p. = 146.3–149.3 ◦C. IR (nujol): ν = 1738, 1240,
1052, 1037 cm−1.
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1H NMR (500 MHz, CDCl3) δ = 8.509 (d, J = 17.1 Hz, 1H, H-4), 7.780 (dd, J = 8.6 Hz,
2.1 Hz, 1H, H-7), 7.690 (d, J = 2.1 Hz, 1H, H-5), 7.498 (m, 2H, H-4′, H-8), 7.413 (m as t, 2H,
H-2′ and H-6′), 7.337 (m as q, 2H, H-3′and H-5′), 4.153–4.283 (m, 4H, two CH3CH2O), 1.330
(t, J = 7.1 Hz, 6H, two CH3CH2O);13C NMR (125.7 MHz, CDCl3) δ = 158.24 (d, JCP = 15.1 Hz,
C-2), 154.59 (s, C-8a), 153.46 (d, JCP = 6.5 Hz, C-4), 138.91 (s, C-6), 138.38 (s, C-1′), 133.14 (s,
C-7), 129.15 (s, C-2′ and C-6′), 128.08 (s, C-5), 127.33 (C-4′), 127.03 (s, C-3′ and C-5′), 118.27
(d, JCP = 196.2 Hz, C-3), 118.18 (d, JCP = 14.3 Hz, C-4a), 117.29 (s, C-8), 63.46 (d, JCP = 6.0 Hz,
two CH3CH2O), 16.41 (d, JCP = 6.0 Hz, two CH3CH2O); 31P NMR (161.98 MHz, CDCl3)
δ = 10.765.

HRMS (ESI) m/z calculated for C19H19O5P [M+H]+ 359.10429 found 359.10413 (ppm: 0.45).

Diethyl (6-(2-methoxyphenyl)-2-oxo-2H-chromen-3-yl)phosphonate, 3b

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phosphonate
5 (0.540 g), 2-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2
(32 mg) in 15 mL toluene for 48 h. The product was purified by column chromatography
using n-hexane/Et2O, 0.366 g, 63%, yellow slowly solidifying oil. IR (nujol): ν = 1739, 1243,
1056, 1024 cm−1.

Molecules 2022, 27, x FOR PEER REVIEW 22 of 34  
  

 

Diethyl (6-(2-methoxyphenyl)-2-oxo-2H-chromen-3-yl)phosphonate, 3b  

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phospho-
nate 5 (0.540 g), 2-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 
(32 mg) in 15 mL toluene for 48 h. The product was purified by column chromatography 
using n-hexane/Et2O, 0.366 g, 63%, yellow slowly solidifying oil. IR (nujol): ν = 1739, 1243, 
1056, 1024 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.556 (d, J = 17.2 Hz, 1H, H-4), 7.805 (dd, J = 8.6 Hz, 
2.2 Hz, 1H, H-7), 7.760 (d, J = 2.0 Hz, 1H, H-5), 7.392 (d, J = 8.5 Hz, 1H, H-8), 7.372 (dd, J = 
7.5 Hz, 1.1 Hz, 1H, H-3′), 7.308 (dd, J = 5.6 Hz, 1.7 Hz, 1H, H-5′), 7.065 (dd, J = 7.5 Hz, 1.1 
Hz, 1H, H-4′), 7.020 (dd, J = 8.3 Hz, 0.7 Hz, 1H, H-6′), 4.203–4.358 (m, 4H, two CH3CH2O), 
3.835 (s, 3H, CH3O), 1.391 (t, J = 7.1 Hz, 6H, two CH3CH2O);13C NMR (100 MHz, CDCl3) δ 
= 158.49 (d, JCP = 14.4 Hz, C-2), 156.35 (s, C-8a), 154.25 (s, C-1′), 153.99 (d, JCP = 6.7 Hz, C-4), 
135.77 (s, C-7), 135.54 (s, C-2′), 130.57 (s, C-3′), 129.99 (s, C-5′), 129.55 (s, C-5), 128.14 (s, C-
6), 121.10 (C-4′), 117.62 (d, JCP = 14.3 Hz, C-4a), 117.51 (d, JCP = 196.2 Hz, C-3), 116.43 (s, C-
8), 111.34 (s, C-6′) 63.43 (d, JCP = 6.2 Hz, two CH3CH2O), 55.54 (s, CH3O), 16.39 (d, JCP = 6.0 
Hz, two CH3CH2O); 31P NMR (161.98 MHz, CDCl3) δ = 11.141.  

HRMS (ESI) m/z calculated for C20H21O6P [M+H]+ 389.11485 found 389.11511 (ppm: 
−0.67).  

Diethyl (6-(4-methoxyphenyl)-2-oxo-2H-chromen-3-yl)phosphonate, 3c  

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phospho-
nate 5 (0.540 g), 4-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and PEPPSI (29 
mg) in 3 mL:12 mL water:toluene for 48 h. The product was purified by column chroma-
tography using CH2Cl2/Et2O, 0.551 g, 95%, pale yellow powder, m.p. = 111.6–112.5 °C IR 
(nujol): ν = 1740, 1242, 1047, 1025 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.494 (d, J = 17.2 Hz, 1H, H-4), 7.739 (dd, J = 8.6 Hz, 
2.2 Hz, 1H, H-7), 7.634 (d, J = 2.2 Hz, 1H, H-5), 7.328 (d, J = 8.6 Hz, 1H, H-8), 7.429 (dd, J = 
8.8 Hz, 3.1 Hz, 2H, H-3′ and H-5′), 6.937 (dd, J = 8.8 Hz, 3.7 Hz, 2H, H-2′ and H-6′), 4.137–
4.290 (m, 4H, two CH3CH2O), 3.793 (s, 3H, CH3O), 1.321 (t, J = 7.1 Hz, 3H, CH3CH2O) 1.319 
(t, J = 7.1 Hz, 3H, CH3CH2O);13C NMR (100 MHz, CDCl3) δ = 159.73 (C-4′), 158.31 (d, JCP = 
14.4 Hz, C-2), 154.19 (s, C-8a), 153.54 (d, JCP = 6.5 Hz, C-4), 138.03 (s, C-6), 132.78 (s, C-7), 
131.35 (s, C-1′), 128.11 (s, C-6′and C-2′), 126.71 (s, C-5), 118.16 (d, JCP = 14.3 Hz, C-4a), 118.10 
(d, JCP = 196.2 Hz, C-3), 117.19 (s, C-8), 114.57 (s, C-3′ and C-5′), 63.44 (d, JCP = 6.0 Hz, two 
CH3CH2O), 55.42 (s, CH3O), 16.40 (d, JCP = 6.2 Hz, two CH3CH2O); 31P NMR (161.98 MHz, 
CDCl3) δ = 10.879.  

HRMS (ESI) m/z calculated for C20H21O6P [M+H]+ 389.11485 found 389.11494 (ppm: 
−0.23).  

Diethyl (6-(4-fluorophenyl)-2-oxo-2H-chromen-3-yl)phosphonate, 3d  

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phospho-
nate 5 (0.540 g), 4-fluorophenylboronic acid (0.251 g), K2CO3 (0.622 g) and PEPPSI (29 mg) 
in 3 mL:12 mL water:toluene for 48 h. The product was purified by column chromatog-
raphy using CH2Cl2, 0.343 g, 61%, pale yellow powder, m.p. = 115.0–118.2 °C IR (nujol): ν 
= 1734, 1251, 1057, 1027 cm−1. 

1H NMR (400 MHz, CDCl3) δ = 8.556 (d, J = 17.2 Hz, 1H, H-4), 7.805 (dd, J = 8.6 Hz,
2.2 Hz, 1H, H-7), 7.760 (d, J = 2.0 Hz, 1H, H-5), 7.392 (d, J = 8.5 Hz, 1H, H-8), 7.372
(dd, J = 7.5 Hz, 1.1 Hz, 1H, H-3′), 7.308 (dd, J = 5.6 Hz, 1.7 Hz, 1H, H-5′), 7.065 (dd,
J = 7.5 Hz, 1.1 Hz, 1H, H-4′), 7.020 (dd, J = 8.3 Hz, 0.7 Hz, 1H, H-6′), 4.203–4.358 (m, 4H,
two CH3CH2O), 3.835 (s, 3H, CH3O), 1.391 (t, J = 7.1 Hz, 6H, two CH3CH2O);13C NMR
(100 MHz, CDCl3) δ = 158.49 (d, JCP = 14.4 Hz, C-2), 156.35 (s, C-8a), 154.25 (s, C-1′), 153.99
(d, JCP = 6.7 Hz, C-4), 135.77 (s, C-7), 135.54 (s, C-2′), 130.57 (s, C-3′), 129.99 (s, C-5′), 129.55
(s, C-5), 128.14 (s, C-6), 121.10 (C-4′), 117.62 (d, JCP = 14.3 Hz, C-4a), 117.51 (d, JCP = 196.2 Hz,
C-3), 116.43 (s, C-8), 111.34 (s, C-6′) 63.43 (d, JCP = 6.2 Hz, two CH3CH2O), 55.54 (s, CH3O),
16.39 (d, JCP = 6.0 Hz, two CH3CH2O); 31P NMR (161.98 MHz, CDCl3) δ = 11.141.

HRMS (ESI) m/z calculated for C20H21O6P [M+H]+ 389.11485 found 389.11511
(ppm: −0.67).

Diethyl (6-(4-methoxyphenyl)-2-oxo-2H-chromen-3-yl)phosphonate, 3c

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phosphonate
5 (0.540 g), 4-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in
3 mL:12 mL water:toluene for 48 h. The product was purified by column chromatography
using CH2Cl2/Et2O, 0.551 g, 95%, pale yellow powder, m.p. = 111.6–112.5 ◦C IR (nujol):
ν = 1740, 1242, 1047, 1025 cm−1.
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2.2 Hz, 1H, H-7), 7.634 (d, J = 2.2 Hz, 1H, H-5), 7.328 (d, J = 8.6 Hz, 1H, H-8), 7.429 (dd, J = 
8.8 Hz, 3.1 Hz, 2H, H-3′ and H-5′), 6.937 (dd, J = 8.8 Hz, 3.7 Hz, 2H, H-2′ and H-6′), 4.137–
4.290 (m, 4H, two CH3CH2O), 3.793 (s, 3H, CH3O), 1.321 (t, J = 7.1 Hz, 3H, CH3CH2O) 1.319 
(t, J = 7.1 Hz, 3H, CH3CH2O);13C NMR (100 MHz, CDCl3) δ = 159.73 (C-4′), 158.31 (d, JCP = 
14.4 Hz, C-2), 154.19 (s, C-8a), 153.54 (d, JCP = 6.5 Hz, C-4), 138.03 (s, C-6), 132.78 (s, C-7), 
131.35 (s, C-1′), 128.11 (s, C-6′and C-2′), 126.71 (s, C-5), 118.16 (d, JCP = 14.3 Hz, C-4a), 118.10 
(d, JCP = 196.2 Hz, C-3), 117.19 (s, C-8), 114.57 (s, C-3′ and C-5′), 63.44 (d, JCP = 6.0 Hz, two 
CH3CH2O), 55.42 (s, CH3O), 16.40 (d, JCP = 6.2 Hz, two CH3CH2O); 31P NMR (161.98 MHz, 
CDCl3) δ = 10.879.  

HRMS (ESI) m/z calculated for C20H21O6P [M+H]+ 389.11485 found 389.11494 (ppm: 
−0.23).  

Diethyl (6-(4-fluorophenyl)-2-oxo-2H-chromen-3-yl)phosphonate, 3d  

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phospho-
nate 5 (0.540 g), 4-fluorophenylboronic acid (0.251 g), K2CO3 (0.622 g) and PEPPSI (29 mg) 
in 3 mL:12 mL water:toluene for 48 h. The product was purified by column chromatog-
raphy using CH2Cl2, 0.343 g, 61%, pale yellow powder, m.p. = 115.0–118.2 °C IR (nujol): ν 
= 1734, 1251, 1057, 1027 cm−1. 

1H NMR (400 MHz, CDCl3) δ = 8.494 (d, J = 17.2 Hz, 1H, H-4), 7.739 (dd, J = 8.6 Hz,
2.2 Hz, 1H, H-7), 7.634 (d, J = 2.2 Hz, 1H, H-5), 7.328 (d, J = 8.6 Hz, 1H, H-8), 7.429 (dd,
J = 8.8 Hz, 3.1 Hz, 2H, H-3′ and H-5′), 6.937 (dd, J = 8.8 Hz, 3.7 Hz, 2H, H-2′ and H-6′),
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4.137–4.290 (m, 4H, two CH3CH2O), 3.793 (s, 3H, CH3O), 1.321 (t, J = 7.1 Hz, 3H, CH3CH2O)
1.319 (t, J = 7.1 Hz, 3H, CH3CH2O);13C NMR (100 MHz, CDCl3) δ = 159.73 (C-4′), 158.31
(d, JCP = 14.4 Hz, C-2), 154.19 (s, C-8a), 153.54 (d, JCP = 6.5 Hz, C-4), 138.03 (s, C-6), 132.78
(s, C-7), 131.35 (s, C-1′), 128.11 (s, C-6′and C-2′), 126.71 (s, C-5), 118.16 (d, JCP = 14.3 Hz,
C-4a), 118.10 (d, JCP = 196.2 Hz, C-3), 117.19 (s, C-8), 114.57 (s, C-3′ and C-5′), 63.44 (d,
JCP = 6.0 Hz, two CH3CH2O), 55.42 (s, CH3O), 16.40 (d, JCP = 6.2 Hz, two CH3CH2O); 31P
NMR (161.98 MHz, CDCl3) δ = 10.879.

HRMS (ESI) m/z calculated for C20H21O6P [M+H]+ 389.11485 found 389.11494
(ppm: −0.23).

Diethyl (6-(4-fluorophenyl)-2-oxo-2H-chromen-3-yl)phosphonate, 3d

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phosphonate
5 (0.540 g), 4-fluorophenylboronic acid (0.251 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3
mL:12 mL water:toluene for 48 h. The product was purified by column chromatography
using CH2Cl2, 0.343 g, 61%, pale yellow powder, m.p. = 115.0–118.2 ◦C IR (nujol): ν = 1734,
1251, 1057, 1027 cm−1.

Molecules 2022, 27, x FOR PEER REVIEW 23 of 34  
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Pd(PPh3)2Cl2 (32 mg) in 15 mL toluene for 48 h. The product was purified by column chro-
matography using n-hexane/Et2O, 0.270 g, 45%, white powder, m.p. = 130.0–132.6 °C. IR 
(nujol): ν = 1744, 1242, 1053, 1013 cm−1. 
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4.215–4.367 (m, 4H, two CH3CH2O), 2.345 (s, 3H, CH3), 1.993 (s, 6H, two CH3), 1.397 (t, J = 
7.1 Hz, 6H, two CH3CH2O);13C NMR (100 MHz, CDCl3) δ = 158.34 (d, JCP = 14.2 Hz, C-2), 
154.12 (s, C-8a), 153.58 (d, JCP = 6.7 Hz, C-4), 138.10 (s, C-6), 137.55 (s, C-5), 136.49 (s, C-1′), 
135.89 (s, C-6′and C-2′), 135.70 (d, JCF = 248.0 Hz, C-4′), 129.74 (s, C-7), 128.40 (d, JCP = 21.7 
Hz, C-3′ and C-5′), 118.02 (d, JCP = 14.3 Hz, C-4a), 118.01 (d, JCP = 196.1 Hz, C-3),116.96 (s, 
C-8), 63.44 (d, JCP = 5.9 Hz, two CH3CH2O), 21.03 (s, CH3), 20.76 (s, two CH3), 16.40 (d, JCP 
= 6.3 Hz, two CH3CH2O); 31P NMR (161.98 MHz, CDCl3) δ = 10.984.  

HRMS (ESI) m/z calculated for C22H25O5P [M+H]+ 401.15124 found 401.15143 (ppm: 
−0.47).  

  

1H NMR (400 MHz, CDCl3) δ = 8.495 (d, J = 17.2 Hz, 1H, H-4), 7.732 (dd, J = 8.6 Hz,
2.2 Hz, 1H, H-7), 7.641 (d, J = 2.2 Hz, 1H, H-5), 7.466 (ddq, JHF = 8.8 Hz, 5.0 Hz, JHP = 8.8 Hz,
3.1 Hz, 2H, H-3′ and H-5′), 7.356 (d, J = 8.6 Hz, 1H, H-8), 7.102 (ddq, JHF = 8.6 Hz, 3.1 Hz,
JHP = 8.6 Hz, 3.1 Hz, 2H, H-2′ and H-6′), 4.143–4.296 (m, 4H, two CH3CH2O), 1.324 (t,
J = 7.1 Hz, 3H, CH3CH2O) 1.323 (t, J = 7.1 Hz, 3H, CH3CH2O);13C NMR (100 MHz, CDCl3)
δ = 162.84 (d, JCF = 248.0 Hz, C-4′), 158.16 (d, JCP = 14.4 Hz, C-2), 154.54 (s, C-8a), 153.26
(d, JCP = 6.5 Hz, C-4), 137.39 (s, C-6), 135.07 (d, JCP = 3.3 Hz, C-1′), 132.94 (s, C-7), 128.71
(d, JCP = 10.5 Hz, C-6′and C-2′), 127.17 (s, C-5), 118.50 (d, JCP = 196.7 Hz, C-3), 118.21
(d, JCP = 15.5 Hz, C-4a), 117.36 (s, C-8), 116.10 (d, JCP = 21.7 Hz, C-3′ and C-5′), 63.47 (d,
JCP = 6.0 Hz, two CH3CH2O), 16.39 (d, JCP = 6.0 Hz, two CH3CH2O); 19F NMR (376.46 MHz,
CDCl3) δ = -114.18; 31P NMR (161.98 MHz, CDCl3) δ = 10.637.

HRMS (ESI) m/z calculated for C19H18FO5P [M+H]+ 377.09486 found 377.09473 (ppm: 0.34).

Diethyl (6-mesityl-2-oxo-2H-chromen-3-yl)phosphonate, 3e

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phosphonate
5 (0.540 g), 2,4,6-trimethylphenylboronic acid (0.294 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2
(32 mg) in 15 mL toluene for 48 h. The product was purified by column chromatography us-
ing n-hexane/Et2O, 0.270 g, 45%, white powder, m.p. = 130.0–132.6 ◦C. IR (nujol): ν = 1744,
1242, 1053, 1013 cm−1.
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1H NMR (400 MHz, CDCl3) δ = 8.535 (d, J = 17.2 Hz, 1H, H-4), 7.428(s, 1H, H-5), 7.425 
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Hz, C-3′ and C-5′), 118.02 (d, JCP = 14.3 Hz, C-4a), 118.01 (d, JCP = 196.1 Hz, C-3),116.96 (s, 
C-8), 63.44 (d, JCP = 5.9 Hz, two CH3CH2O), 21.03 (s, CH3), 20.76 (s, two CH3), 16.40 (d, JCP 
= 6.3 Hz, two CH3CH2O); 31P NMR (161.98 MHz, CDCl3) δ = 10.984.  

HRMS (ESI) m/z calculated for C22H25O5P [M+H]+ 401.15124 found 401.15143 (ppm: 
−0.47).  

  

1H NMR (400 MHz, CDCl3) δ = 8.535 (d, J = 17.2 Hz, 1H, H-4), 7.428(s, 1H, H-5), 7.425
(s, 1H, H-8), 7.376 (dd as t, J = 1.5 Hz, 1H, H-7), 6.972 (d, JHP = 0.4 Hz, 2H, H-3′ and H-5′),
4.215–4.367 (m, 4H, two CH3CH2O), 2.345 (s, 3H, CH3), 1.993 (s, 6H, two CH3), 1.397 (t,
J = 7.1 Hz, 6H, two CH3CH2O);13C NMR (100 MHz, CDCl3) δ = 158.34 (d, JCP = 14.2 Hz,
C-2), 154.12 (s, C-8a), 153.58 (d, JCP = 6.7 Hz, C-4), 138.10 (s, C-6), 137.55 (s, C-5), 136.49
(s, C-1′), 135.89 (s, C-6′and C-2′), 135.70 (d, JCF = 248.0 Hz, C-4′), 129.74 (s, C-7), 128.40
(d, JCP = 21.7 Hz, C-3′ and C-5′), 118.02 (d, JCP = 14.3 Hz, C-4a), 118.01 (d, JCP = 196.1 Hz,
C-3),116.96 (s, C-8), 63.44 (d, JCP = 5.9 Hz, two CH3CH2O), 21.03 (s, CH3), 20.76 (s, two
CH3), 16.40 (d, JCP = 6.3 Hz, two CH3CH2O); 31P NMR (161.98 MHz, CDCl3) δ = 10.984.
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HRMS (ESI) m/z calculated for C22H25O5P [M+H]+ 401.15124 found 401.15143
(ppm: −0.47).

Ethyl 2-oxo-6-phenyl-2H-chromene-3-carboxylate, 9a

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a
(0.444 g), phenylboronic acid (0.219 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3 mL:12
mL water:toluene for 30 min. The product was purified by column chromatography using
n-hexane/Et2O and then CH2Cl2, 0.397 g, 90%, pale yellow powder, m.p. = 150.4–151.5 ◦C.
IR (nujol): ν = 1758, 1694 cm−1.
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128.07 (s, C-4′), 127.47 (s, C-5), 127.04 (s, C-2′ and C-6′), 118.66 (s, C-3), 118.12 (s, C-4a), 
117.19 (s, C-8), 62.05 (s, CH3CH2O), 14.26 (s, CH3CH2O).  

HRMS (ESI) m/z calculated for C18H14O4 [M+H]+ 295.09649 found 295.09616 (ppm: 
1.12).  

Ethyl 6-(2-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 9b  

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a 
(0.444 g), 2-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 (32 
mg) in 15 mL toluene for 24 h. The product was purified by column chromatography using 
n-hexane/CH2Cl2 and then CH2Cl2, 0.331 g, 68%, yellow powder, m.p. = 120.0–124.2 °C. IR 
(nujol): ν = 1773, 1712 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.566 (s, 1H, H-4), 7.811 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
7), 7.757 (d, J = 2.1 Hz, 1H, H-5), 7.387 (d, J = 8.6 Hz, 1H, H-8), 7.374 (td, J = 5.6 Hz, 1.7 Hz, 
1H, H-5′), 7.313 (td, J = 7.5 Hz, 1.7 Hz, 1H, H-3′), 7.064 (td, J = 7.5 Hz, 1.1 Hz, 1H, H-4′), 
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CH3O), 1.421 (t, J = 7.1 Hz, 3H, CH3CH2O); 13C NMR (100 MHz, CDCl3) δ = 163.20 (s, 
COOEt), 156.91 (s, C-2), 156.33 (s, C-1′), 154.15 (s, C-8a), 148.99 (s, C-4), 135.93 (s, C-7), 
135.48 (s, C-2′), 130.59 (s, C-3′), 130.05 (s, C-5), 129.54 (s, C-5′), 128.20 (s, C-6), 121.10 (s, C-
4′), 118.16 (s, C-3), 118.12 (s, C-4a), 117.58 (s, C-8), 111.34 (s, C-6′), 61.98 (s, CH3CH2O), 55.56 
(s, CH3O), 14.26 (s, CH3CH2O).  

HRMS (ESI) m/z calculated for C19H16O5 [M+H]+ 325.10705 found 325.1069 (ppm: 
0.46).  

Ethyl 6-(4-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 9c  

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a 
(0.444 g), 4-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 
3 mL:12 mL water:toluene for 45 min. The product was purified by column chromatog-
raphy using n-hexane/CH2Cl2 and then CH2Cl2, 0.444 g, 92%, yellow powder, m.p. = 144.8–
146.2 °C. IR (nujol): ν = 1761, 1689 cm−1. 
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1H NMR (400 MHz, CDCl3) δ = 8.510 (s, 1H, H-4), 7.783 (dd, J = 10.8 Hz, 6.4 Hz, 1H,
H-7), 7.709 (d, J = 2.2 Hz, 1H, H-5), 7.503 (dd as dt, J = 7 Hz, 1.5 Hz, 2H, H-2′ and H-6′),
7.411 (ddd as dt, J = 7.4 Hz, 1.5 Hz, 2H, H-3′and H-5′), 7.352 (d, J = 8.6 Hz, 1H, H-8), 7.326
(tt, J = 7.2 Hz, 1.3 Hz, 1H, H-4′), 4.356 (q, J = 7.1 Hz, 2H, CH3CH2O), 1.348 (t, J = 7.1 Hz, 3H,
CH3CH2O); 13C NMR (100 MHz, CDCl3) δ = 163.06 (s, COOEt), 156.69 (s, C-2), 154.49 (s,
C-8a), 148.65 (s, C-4), 138.92 (s, C-6), 138.29 (s, C-1′), 133.29 (s, C-7), 129.14 (s, C-3′ and C-5′),
128.07 (s, C-4′), 127.47 (s, C-5), 127.04 (s, C-2′ and C-6′), 118.66 (s, C-3), 118.12 (s, C-4a),
117.19 (s, C-8), 62.05 (s, CH3CH2O), 14.26 (s, CH3CH2O).

HRMS (ESI) m/z calculated for C18H14O4 [M+H]+ 295.09649 found 295.09616 (ppm: 1.12).

Ethyl 6-(2-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 9b

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a
(0.444 g), 2-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 (32 mg)
in 15 mL toluene for 24 h. The product was purified by column chromatography using
n-hexane/CH2Cl2 and then CH2Cl2, 0.331 g, 68%, yellow powder, m.p. = 120.0–124.2 ◦C.
IR (nujol): ν = 1773, 1712 cm−1.
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The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a 
(0.444 g), phenylboronic acid (0.219 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3 mL:12 mL 
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hexane/Et2O and then CH2Cl2, 0.397 g, 90%, pale yellow powder, m.p. = 150.4–151.5 °C. IR 
(nujol): ν = 1758, 1694 cm−1. 
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H-7), 7.709 (d, J = 2.2 Hz, 1H, H-5), 7.503 (dd as dt, J = 7 Hz, 1.5 Hz, 2H, H-2′ and H-6′), 
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8a), 148.65 (s, C-4), 138.92 (s, C-6), 138.29 (s, C-1′), 133.29 (s, C-7), 129.14 (s, C-3′ and C-5′), 
128.07 (s, C-4′), 127.47 (s, C-5), 127.04 (s, C-2′ and C-6′), 118.66 (s, C-3), 118.12 (s, C-4a), 
117.19 (s, C-8), 62.05 (s, CH3CH2O), 14.26 (s, CH3CH2O).  

HRMS (ESI) m/z calculated for C18H14O4 [M+H]+ 295.09649 found 295.09616 (ppm: 
1.12).  

Ethyl 6-(2-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 9b  

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a 
(0.444 g), 2-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 (32 
mg) in 15 mL toluene for 24 h. The product was purified by column chromatography using 
n-hexane/CH2Cl2 and then CH2Cl2, 0.331 g, 68%, yellow powder, m.p. = 120.0–124.2 °C. IR 
(nujol): ν = 1773, 1712 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.566 (s, 1H, H-4), 7.811 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
7), 7.757 (d, J = 2.1 Hz, 1H, H-5), 7.387 (d, J = 8.6 Hz, 1H, H-8), 7.374 (td, J = 5.6 Hz, 1.7 Hz, 
1H, H-5′), 7.313 (td, J = 7.5 Hz, 1.7 Hz, 1H, H-3′), 7.064 (td, J = 7.5 Hz, 1.1 Hz, 1H, H-4′), 
7.020(dd, J = 8.3 Hz, 0.8 Hz, 1H, H-6′), 4.418 (q, J = 7.1 Hz, 2H, CH3CH2O), 3.834 (s, 3H, 
CH3O), 1.421 (t, J = 7.1 Hz, 3H, CH3CH2O); 13C NMR (100 MHz, CDCl3) δ = 163.20 (s, 
COOEt), 156.91 (s, C-2), 156.33 (s, C-1′), 154.15 (s, C-8a), 148.99 (s, C-4), 135.93 (s, C-7), 
135.48 (s, C-2′), 130.59 (s, C-3′), 130.05 (s, C-5), 129.54 (s, C-5′), 128.20 (s, C-6), 121.10 (s, C-
4′), 118.16 (s, C-3), 118.12 (s, C-4a), 117.58 (s, C-8), 111.34 (s, C-6′), 61.98 (s, CH3CH2O), 55.56 
(s, CH3O), 14.26 (s, CH3CH2O).  

HRMS (ESI) m/z calculated for C19H16O5 [M+H]+ 325.10705 found 325.1069 (ppm: 
0.46).  

Ethyl 6-(4-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 9c  

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a 
(0.444 g), 4-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 
3 mL:12 mL water:toluene for 45 min. The product was purified by column chromatog-
raphy using n-hexane/CH2Cl2 and then CH2Cl2, 0.444 g, 92%, yellow powder, m.p. = 144.8–
146.2 °C. IR (nujol): ν = 1761, 1689 cm−1. 
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1H NMR (400 MHz, CDCl3) δ = 8.566 (s, 1H, H-4), 7.811 (dd, J = 8.6 Hz, 2.2 Hz, 1H,
H-7), 7.757 (d, J = 2.1 Hz, 1H, H-5), 7.387 (d, J = 8.6 Hz, 1H, H-8), 7.374 (td, J = 5.6 Hz,
1.7 Hz, 1H, H-5′), 7.313 (td, J = 7.5 Hz, 1.7 Hz, 1H, H-3′), 7.064 (td, J = 7.5 Hz, 1.1 Hz, 1H,
H-4′), 7.020(dd, J = 8.3 Hz, 0.8 Hz, 1H, H-6′), 4.418 (q, J = 7.1 Hz, 2H, CH3CH2O), 3.834 (s,
3H, CH3O), 1.421 (t, J = 7.1 Hz, 3H, CH3CH2O); 13C NMR (100 MHz, CDCl3) δ = 163.20
(s, COOEt), 156.91 (s, C-2), 156.33 (s, C-1′), 154.15 (s, C-8a), 148.99 (s, C-4), 135.93 (s, C-7),
135.48 (s, C-2′), 130.59 (s, C-3′), 130.05 (s, C-5), 129.54 (s, C-5′), 128.20 (s, C-6), 121.10 (s,
C-4′), 118.16 (s, C-3), 118.12 (s, C-4a), 117.58 (s, C-8), 111.34 (s, C-6′), 61.98 (s, CH3CH2O),
55.56 (s, CH3O), 14.26 (s, CH3CH2O).

HRMS (ESI) m/z calculated for C19H16O5 [M+H]+ 325.10705 found 325.1069 (ppm: 0.46).

Ethyl 6-(4-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 9c

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a
(0.444 g), 4-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in
3 mL:12 mL water:toluene for 45 min. The product was purified by column chromatography
using n-hexane/CH2Cl2 and then CH2Cl2, 0.444 g, 92%, yellow powder, m.p. = 144.8–
146.2 ◦C. IR (nujol): ν = 1761, 1689 cm−1.
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1H NMR (400 MHz, CDCl3) δ = 8.572 (s, 1H, H-4), 7.816 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
7), 7.726 (d, J = 2.2 Hz, 1H, H-5), 7.398 (d, J = 9.3 Hz, 1H, H-8), 7.507 (dq, J = 8.8 Hz, 3.1 Hz, 
2H, H-3′ and H-5′), 7.009 (dq, J = 8.8 Hz, 3.1 Hz, 2H, H-4′ and H-6′), 4.419 (q, J = 7.1 Hz, 2H, 
CH3CH2O), 3.867 (s, 3H, CH3O), 1.422 (t, J = 7.2 Hz, 3H, CH3CH2O); 13C NMR (100 MHz, 
CDCl3) δ = 163.11 (s, COOEt), 159.72 (s, C-4′), 156.77 (s, C-2), 154.10 (s, C-8a), 148.73 (s, C-
4), 137.95 (s, C-6), 132.93 (s, C-7), 131.36 (s, C-1′), 128.10 (s, C-3′ and C-5′), 126.83 (s, C-5), 
118.54 (s, C-3), 118.10 (s, C-4a), 117.09 (s, C-8), 114.56 (s, C-2′ and C-6′), 62.02 (s, CH3CH2O), 
55.42 (s, CH3O), 14.25 (s, CH3CH2O).  

HRMS (ESI) m/z calculated for C19H16O5 [M+H]+ 325.10705 found 325.10675 (ppm: 
0.92).  

Ethyl 6-(4-fluorophenyl)-2-oxo-2H-chromene-3-carboxylate, 9d  

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a 
(0.444 g), 4-fluorophenylboronic acid (0.251 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3 
mL:12 mL water:toluene for 45 min. The product was purified by column chromatography 
using CH2Cl2, 0.374 g, 80%, pale yellow powder, m.p. = 180.3–184.7 °C. IR (nujol): ν = 1742, 
1711 cm−1. 

 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.577 (s, 1H, H-4), 7.808 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
7), 7.738 (d, J = 2.2 Hz, 1H, H-5), 7.543 (ddq, JHF = 8.9 Hz, 5.2 Hz; J = 8.9 Hz, 3.2 Hz, 2H, H-
3′ and H-5′), 7.423 (d, J = 8.6 Hz, 1H, H-8), 7.185 (ddq as tq, JHF = 8.6 Hz, 3.1 Hz; J = 8.6 Hz, 
3.1 Hz, 2H, H-2′ and H-6′), 4.432 (q, J = 7.1 Hz, 2H, CH3CH2O), 1.423 (t, J = 7.1 Hz, 3H, 
CH3CH2O); 13C NMR (100 MHz, CDCl3) δ = 163.02 (s, COOEt), 162.84 (d, J = 248.0 Hz, C-
4′), 156.60 (s, C-2), 154.45 (s, C-8a), 148.50 (s, C-4), 137.32 (s, C-6), 135.09 (d, J = 3.2 Hz, C-
1′), 133.10 (s, C-7), 128.71 (d, J = 8.2 Hz, C-2′ and C-6′), 127.32 (s, C-5), 118.81 (s, C-3), 118.14 
(s, C-4a), 117.27 (s, C-8), 116.20 (d, J = 21.7 Hz, C-3′ and C-5′), 62.09 (s, CH3CH2O), 14.24 (s, 
CH3CH2O); 19F NMR (376.46 MHz, CDCl3) δ = -114.196.  

HRMS (ESI) m/z calculated for C18H13FO4 [M+H]+ 313.08706 found 313.08682 (ppm: 
0.77).  

Ethyl 6-mesityl-2-oxo-2H-chromene-3-carboxylate, 9e  

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a 
(0.444 g), 2,4,6-trimethylphenylboronic acid (0.294 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 (32 
mg) in 15 mL toluene for 72 h. The product was purified by column chromatography using 
n-hexane/Et2O, 0.147 g, 29%, pale yellow powder, m.p. = 142.8–146.2 °C. IR (nujol): ν = 
1758, 1691 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.518 (s, 1H, H-4), 7.427 (s, 1H, H-8), 7.424 (s, 1H, H-
5), 7.386 (dd as t, J = 1.2 Hz, 1H, H-7), 6.968 (d, J = 0.4 Hz, 1H, 2H, H-3′ and H-5′), 4.420 (q, 
J = 7.1 Hz, 2H, CH3CH2O), 2.343 (s, 3H, CH3Ar), 1.993 (s, 6H, CH3Ar), 1.416 (t, J = 7.1 Hz, 
3H, CH3CH2O); 13C NMR (100 MHz, CDCl3) 163.16 (s, COOEt), 156.84 (s, C-2), 154.01 (s, 
C-8a), 148.63 (s, C-4), 138.04 (s, C-6), 137.54 (s, C-5), 136.51 (s, C-1′), 135.91 (s, C-2′ and C-
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1H NMR (400 MHz, CDCl3) δ = 8.572 (s, 1H, H-4), 7.816 (dd, J = 8.6 Hz, 2.2 Hz, 1H,
H-7), 7.726 (d, J = 2.2 Hz, 1H, H-5), 7.398 (d, J = 9.3 Hz, 1H, H-8), 7.507 (dq, J = 8.8 Hz, 3.1 Hz,
2H, H-3′ and H-5′), 7.009 (dq, J = 8.8 Hz, 3.1 Hz, 2H, H-4′ and H-6′), 4.419 (q, J = 7.1 Hz, 2H,
CH3CH2O), 3.867 (s, 3H, CH3O), 1.422 (t, J = 7.2 Hz, 3H, CH3CH2O); 13C NMR (100 MHz,
CDCl3) δ = 163.11 (s, COOEt), 159.72 (s, C-4′), 156.77 (s, C-2), 154.10 (s, C-8a), 148.73 (s,
C-4), 137.95 (s, C-6), 132.93 (s, C-7), 131.36 (s, C-1′), 128.10 (s, C-3′ and C-5′), 126.83 (s, C-5),
118.54 (s, C-3), 118.10 (s, C-4a), 117.09 (s, C-8), 114.56 (s, C-2′ and C-6′), 62.02 (s, CH3CH2O),
55.42 (s, CH3O), 14.25 (s, CH3CH2O).

HRMS (ESI) m/z calculated for C19H16O5 [M+H]+ 325.10705 found 325.10675 (ppm: 0.92).

Ethyl 6-(4-fluorophenyl)-2-oxo-2H-chromene-3-carboxylate, 9d

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a
(0.444 g), 4-fluorophenylboronic acid (0.251 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3
mL:12 mL water:toluene for 45 min. The product was purified by column chromatography
using CH2Cl2, 0.374 g, 80%, pale yellow powder, m.p. = 180.3–184.7 ◦C. IR (nujol): ν = 1742,
1711 cm−1.
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1H NMR (400 MHz, CDCl3) δ = 8.572 (s, 1H, H-4), 7.816 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
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0.92).  
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(0.444 g), 4-fluorophenylboronic acid (0.251 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3 
mL:12 mL water:toluene for 45 min. The product was purified by column chromatography 
using CH2Cl2, 0.374 g, 80%, pale yellow powder, m.p. = 180.3–184.7 °C. IR (nujol): ν = 1742, 
1711 cm−1. 

 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.577 (s, 1H, H-4), 7.808 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
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CH3CH2O); 13C NMR (100 MHz, CDCl3) δ = 163.02 (s, COOEt), 162.84 (d, J = 248.0 Hz, C-
4′), 156.60 (s, C-2), 154.45 (s, C-8a), 148.50 (s, C-4), 137.32 (s, C-6), 135.09 (d, J = 3.2 Hz, C-
1′), 133.10 (s, C-7), 128.71 (d, J = 8.2 Hz, C-2′ and C-6′), 127.32 (s, C-5), 118.81 (s, C-3), 118.14 
(s, C-4a), 117.27 (s, C-8), 116.20 (d, J = 21.7 Hz, C-3′ and C-5′), 62.09 (s, CH3CH2O), 14.24 (s, 
CH3CH2O); 19F NMR (376.46 MHz, CDCl3) δ = -114.196.  

HRMS (ESI) m/z calculated for C18H13FO4 [M+H]+ 313.08706 found 313.08682 (ppm: 
0.77).  

Ethyl 6-mesityl-2-oxo-2H-chromene-3-carboxylate, 9e  

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a 
(0.444 g), 2,4,6-trimethylphenylboronic acid (0.294 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 (32 
mg) in 15 mL toluene for 72 h. The product was purified by column chromatography using 
n-hexane/Et2O, 0.147 g, 29%, pale yellow powder, m.p. = 142.8–146.2 °C. IR (nujol): ν = 
1758, 1691 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.518 (s, 1H, H-4), 7.427 (s, 1H, H-8), 7.424 (s, 1H, H-
5), 7.386 (dd as t, J = 1.2 Hz, 1H, H-7), 6.968 (d, J = 0.4 Hz, 1H, 2H, H-3′ and H-5′), 4.420 (q, 
J = 7.1 Hz, 2H, CH3CH2O), 2.343 (s, 3H, CH3Ar), 1.993 (s, 6H, CH3Ar), 1.416 (t, J = 7.1 Hz, 
3H, CH3CH2O); 13C NMR (100 MHz, CDCl3) 163.16 (s, COOEt), 156.84 (s, C-2), 154.01 (s, 
C-8a), 148.63 (s, C-4), 138.04 (s, C-6), 137.54 (s, C-5), 136.51 (s, C-1′), 135.91 (s, C-2′ and C-
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1H NMR (400 MHz, CDCl3) δ = 8.577 (s, 1H, H-4), 7.808 (dd, J = 8.6 Hz, 2.2 Hz, 1H,
H-7), 7.738 (d, J = 2.2 Hz, 1H, H-5), 7.543 (ddq, JHF = 8.9 Hz, 5.2 Hz; J = 8.9 Hz, 3.2 Hz, 2H,
H-3′ and H-5′), 7.423 (d, J = 8.6 Hz, 1H, H-8), 7.185 (ddq as tq, JHF = 8.6 Hz, 3.1 Hz; J = 8.6 Hz,
3.1 Hz, 2H, H-2′ and H-6′), 4.432 (q, J = 7.1 Hz, 2H, CH3CH2O), 1.423 (t, J = 7.1 Hz, 3H,
CH3CH2O); 13C NMR (100 MHz, CDCl3) δ = 163.02 (s, COOEt), 162.84 (d, J = 248.0 Hz,
C-4′), 156.60 (s, C-2), 154.45 (s, C-8a), 148.50 (s, C-4), 137.32 (s, C-6), 135.09 (d, J = 3.2 Hz,
C-1′), 133.10 (s, C-7), 128.71 (d, J = 8.2 Hz, C-2′ and C-6′), 127.32 (s, C-5), 118.81 (s, C-3),
118.14 (s, C-4a), 117.27 (s, C-8), 116.20 (d, J = 21.7 Hz, C-3′ and C-5′), 62.09 (s, CH3CH2O),
14.24 (s, CH3CH2O); 19F NMR (376.46 MHz, CDCl3) δ = -114.196.

HRMS (ESI) m/z calculated for C18H13FO4 [M+H]+ 313.08706 found 313.08682 (ppm: 0.77).

Ethyl 6-mesityl-2-oxo-2H-chromene-3-carboxylate, 9e

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a
(0.444 g), 2,4,6-trimethylphenylboronic acid (0.294 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2
(32 mg) in 15 mL toluene for 72 h. The product was purified by column chromatography
using n-hexane/Et2O, 0.147 g, 29%, pale yellow powder, m.p. = 142.8–146.2 ◦C. IR (nujol):
ν = 1758, 1691 cm−1.
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1H NMR (400 MHz, CDCl3) δ = 8.572 (s, 1H, H-4), 7.816 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
7), 7.726 (d, J = 2.2 Hz, 1H, H-5), 7.398 (d, J = 9.3 Hz, 1H, H-8), 7.507 (dq, J = 8.8 Hz, 3.1 Hz, 
2H, H-3′ and H-5′), 7.009 (dq, J = 8.8 Hz, 3.1 Hz, 2H, H-4′ and H-6′), 4.419 (q, J = 7.1 Hz, 2H, 
CH3CH2O), 3.867 (s, 3H, CH3O), 1.422 (t, J = 7.2 Hz, 3H, CH3CH2O); 13C NMR (100 MHz, 
CDCl3) δ = 163.11 (s, COOEt), 159.72 (s, C-4′), 156.77 (s, C-2), 154.10 (s, C-8a), 148.73 (s, C-
4), 137.95 (s, C-6), 132.93 (s, C-7), 131.36 (s, C-1′), 128.10 (s, C-3′ and C-5′), 126.83 (s, C-5), 
118.54 (s, C-3), 118.10 (s, C-4a), 117.09 (s, C-8), 114.56 (s, C-2′ and C-6′), 62.02 (s, CH3CH2O), 
55.42 (s, CH3O), 14.25 (s, CH3CH2O).  

HRMS (ESI) m/z calculated for C19H16O5 [M+H]+ 325.10705 found 325.10675 (ppm: 
0.92).  

Ethyl 6-(4-fluorophenyl)-2-oxo-2H-chromene-3-carboxylate, 9d  

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a 
(0.444 g), 4-fluorophenylboronic acid (0.251 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3 
mL:12 mL water:toluene for 45 min. The product was purified by column chromatography 
using CH2Cl2, 0.374 g, 80%, pale yellow powder, m.p. = 180.3–184.7 °C. IR (nujol): ν = 1742, 
1711 cm−1. 

 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.577 (s, 1H, H-4), 7.808 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
7), 7.738 (d, J = 2.2 Hz, 1H, H-5), 7.543 (ddq, JHF = 8.9 Hz, 5.2 Hz; J = 8.9 Hz, 3.2 Hz, 2H, H-
3′ and H-5′), 7.423 (d, J = 8.6 Hz, 1H, H-8), 7.185 (ddq as tq, JHF = 8.6 Hz, 3.1 Hz; J = 8.6 Hz, 
3.1 Hz, 2H, H-2′ and H-6′), 4.432 (q, J = 7.1 Hz, 2H, CH3CH2O), 1.423 (t, J = 7.1 Hz, 3H, 
CH3CH2O); 13C NMR (100 MHz, CDCl3) δ = 163.02 (s, COOEt), 162.84 (d, J = 248.0 Hz, C-
4′), 156.60 (s, C-2), 154.45 (s, C-8a), 148.50 (s, C-4), 137.32 (s, C-6), 135.09 (d, J = 3.2 Hz, C-
1′), 133.10 (s, C-7), 128.71 (d, J = 8.2 Hz, C-2′ and C-6′), 127.32 (s, C-5), 118.81 (s, C-3), 118.14 
(s, C-4a), 117.27 (s, C-8), 116.20 (d, J = 21.7 Hz, C-3′ and C-5′), 62.09 (s, CH3CH2O), 14.24 (s, 
CH3CH2O); 19F NMR (376.46 MHz, CDCl3) δ = -114.196.  

HRMS (ESI) m/z calculated for C18H13FO4 [M+H]+ 313.08706 found 313.08682 (ppm: 
0.77).  

Ethyl 6-mesityl-2-oxo-2H-chromene-3-carboxylate, 9e  

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a 
(0.444 g), 2,4,6-trimethylphenylboronic acid (0.294 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 (32 
mg) in 15 mL toluene for 72 h. The product was purified by column chromatography using 
n-hexane/Et2O, 0.147 g, 29%, pale yellow powder, m.p. = 142.8–146.2 °C. IR (nujol): ν = 
1758, 1691 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.518 (s, 1H, H-4), 7.427 (s, 1H, H-8), 7.424 (s, 1H, H-
5), 7.386 (dd as t, J = 1.2 Hz, 1H, H-7), 6.968 (d, J = 0.4 Hz, 1H, 2H, H-3′ and H-5′), 4.420 (q, 
J = 7.1 Hz, 2H, CH3CH2O), 2.343 (s, 3H, CH3Ar), 1.993 (s, 6H, CH3Ar), 1.416 (t, J = 7.1 Hz, 
3H, CH3CH2O); 13C NMR (100 MHz, CDCl3) 163.16 (s, COOEt), 156.84 (s, C-2), 154.01 (s, 
C-8a), 148.63 (s, C-4), 138.04 (s, C-6), 137.54 (s, C-5), 136.51 (s, C-1′), 135.91 (s, C-2′ and C-
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1H NMR (400 MHz, CDCl3) δ = 8.518 (s, 1H, H-4), 7.427 (s, 1H, H-8), 7.424 (s, 1H, H-5),
7.386 (dd as t, J = 1.2 Hz, 1H, H-7), 6.968 (d, J = 0.4 Hz, 1H, 2H, H-3′ and H-5′), 4.420 (q,
J = 7.1 Hz, 2H, CH3CH2O), 2.343 (s, 3H, CH3Ar), 1.993 (s, 6H, CH3Ar), 1.416 (t, J = 7.1 Hz,
3H, CH3CH2O); 13C NMR (100 MHz, CDCl3) 163.16 (s, COOEt), 156.84 (s, C-2), 154.01 (s,
C-8a), 148.63 (s, C-4), 138.04 (s, C-6), 137.54 (s, C-5), 136.51 (s, C-1′), 135.91 (s, C-2′ and
C-6′), 135.79 (s, C-4′), 129.83 (s, C-7), 128.38 (s, C-3′ and C-5′),118.51 (s, C-3), 117.99 (s,
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C-4a), 116.95 (s, C-8), 62.02 (s, CH3CH2O), 21.04 (s, CH3Ar), 20.76 (s, two CH3Ar), 14.26 (s,
CH3CH2O).

HRMS (ESI) m/z calculated for C21H20O4 [M+H]+ 337.14344 found 337.14352
(ppm: −0.24).

Methyl 2-oxo-6-phenyl-2H-chromene-3-carboxylate, 10a

The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8b
(0.425 g), phenylboronic acid (0.219 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3 mL:12 mL
water:toluene for 60 min. The product was purified by column chromatography using n-
hexane/CH2Cl2 and then CH2Cl2, 0.409 g, 97%, pale yellow powder, m.p. = 160.7–164.5 ◦C.
IR (nujol): ν = 1755, 1694 cm−1.
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6′), 135.79 (s, C-4′), 129.83 (s, C-7), 128.38 (s, C-3′ and C-5′),118.51 (s, C-3), 117.99 (s, C-4a), 
116.95 (s, C-8), 62.02 (s, CH3CH2O), 21.04 (s, CH3Ar), 20.76 (s, two CH3Ar), 14.26 (s, 
CH3CH2O).  

HRMS (ESI) m/z calculated for C21H20O4 [M+H]+ 337.14344 found 337.14352 (ppm: 
−0.24).  

Methyl 2-oxo-6-phenyl-2H-chromene-3-carboxylate, 10a  
The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 

8b (0.425 g), phenylboronic acid (0.219 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3 mL:12 
mL water:toluene for 60 min. The product was purified by column chromatography using 
n-hexane/CH2Cl2 and then CH2Cl2, 0.409 g, 97%, pale yellow powder, m.p. = 160.7–164.5 
°C. IR (nujol): ν = 1755, 1694 cm−1. 

 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.627 (s, 1H, H-4), 7.871 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
7), 7.785 (d, J = 2.2 Hz, 1H, H-5), 7.565–7.589 (m, 2H, H-2′ and H-6′), 7.468–7.487 (m, J = 7.4 
Hz, 2H, H-3′and H-5′), 7.390–7.432 (m, 1H, H-4′), 7.434 (d, J = 8.8 Hz, 1H, H-8), 3.972 (s, J = 
3H, CH3OOC); 13C NMR (100 MHz, CDCl3) 163.72 (s, COOCH3), 156.69 (s, C-2), 154.54 (s, 
C-8a), 149.22 (s, C-4), 138.87 (s, C-6), 138.37 (s, C-1′), 133.45 (s, C-7), 129.15 (s, C-3′ and C-
5′), 128.09 (s, C-4′), 127.52 (s, C-5), 127.04 (s, C-2′ and C-6′), 118.26 (s, C-3), 118.09 (s, C-4a), 
117.20 (s, C-8), 52.98 (s, CH3O).  

HRMS (ESI) m/z calculated for C17H12O4 [M+H]+ 281.08084 found 281.08112 (ppm: 
−1.00).  

Methyl 6-(2-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 10b  

The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 
8b (0.425 g), 2-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 (32 
mg) in 15 mL toluene for 21 h. The product was purified by column chromatography using 
n-hexane/CH2Cl2 and then CH2Cl2, 0.385 g, 83%, yellow powder, m.p. = 130.9–135.5 °C. IR 
(nujol): ν = 1760, 1759 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.611 (s, 1H, H-4), 7.819 (dd, J = 8.6 Hz, 2.1 Hz, 1H, H-
7), 7.763 (d, J = 2.1 Hz, 1H, H-5), 7.393 (d, J = 8.8 Hz, 1H, H-8), 7.374 (td, J = 5.6 Hz, 1.7 Hz 
1H, H-5′), 7.311 (dd, J = 7.5 Hz, 1.8 Hz, 1H, H-3′), 7.066 (td, J = 7.5 Hz, 1.0 Hz, H-4′), 7.022 
(d, J = 8.3 Hz, H-6′), 3.967 (s, 3H, CH3OOC), 3.834 (s, 3H, CH3O); 13C NMR (100 MHz, 
CDCl3) δ = 163.86 (s, COOCH3), 156.91 (s, C-2), 154.21 (s, C-8a), 156.32 (s, C-1′), 149.56 (s, 
C-4), 136.10 (s, C-7), 135.56 (s, C-2′), 130.59 (s, C-5′), 130.11 (s, C-5),129.57 (s, C-3′), 128.15 
(s, C-6), 121.11 (s, C-4′), 117.77 (s, C-3), 117.56 (s, C-4a), 116.33 (s, C-8), 111.34 (s, C-6′), 52.93 
(s, CH3O).  

HRMS (ESI) m/z calculated for C18H14O5 [M+H]+ 311.0914 found 311.09083 (ppm: 
−1.00).  

Methyl 6-(4-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 10c  

The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 
8b (0.425 g), 4-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and PEPPSI (29 mg) 
in 3 mL:12 mL water:toluene for 45 min. The product was purified by column chromatog-
raphy using n-hexane/CH2Cl2 and then CH2Cl2, 0.463 g, 99%, lemon yellow powder, m.p. 
= 158.7–161.4 °C. IR (nujol): ν = 1756, 1700 cm−1. 

1H NMR (400 MHz, CDCl3) δ = 8.627 (s, 1H, H-4), 7.871 (dd, J = 8.6 Hz, 2.2 Hz, 1H,
H-7), 7.785 (d, J = 2.2 Hz, 1H, H-5), 7.565–7.589 (m, 2H, H-2′ and H-6′), 7.468–7.487 (m,
J = 7.4 Hz, 2H, H-3′and H-5′), 7.390–7.432 (m, 1H, H-4′), 7.434 (d, J = 8.8 Hz, 1H, H-8), 3.972
(s, J = 3H, CH3OOC); 13C NMR (100 MHz, CDCl3) 163.72 (s, COOCH3), 156.69 (s, C-2),
154.54 (s, C-8a), 149.22 (s, C-4), 138.87 (s, C-6), 138.37 (s, C-1′), 133.45 (s, C-7), 129.15 (s, C-3′

and C-5′), 128.09 (s, C-4′), 127.52 (s, C-5), 127.04 (s, C-2′ and C-6′), 118.26 (s, C-3), 118.09 (s,
C-4a), 117.20 (s, C-8), 52.98 (s, CH3O).

HRMS (ESI) m/z calculated for C17H12O4 [M+H]+ 281.08084 found 281.08112
(ppm: −1.00).

Methyl 6-(2-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 10b

The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate
8b (0.425 g), 2-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 (32
mg) in 15 mL toluene for 21 h. The product was purified by column chromatography using
n-hexane/CH2Cl2 and then CH2Cl2, 0.385 g, 83%, yellow powder, m.p. = 130.9–135.5 ◦C.
IR (nujol): ν = 1760, 1759 cm−1.
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6′), 135.79 (s, C-4′), 129.83 (s, C-7), 128.38 (s, C-3′ and C-5′),118.51 (s, C-3), 117.99 (s, C-4a), 
116.95 (s, C-8), 62.02 (s, CH3CH2O), 21.04 (s, CH3Ar), 20.76 (s, two CH3Ar), 14.26 (s, 
CH3CH2O).  

HRMS (ESI) m/z calculated for C21H20O4 [M+H]+ 337.14344 found 337.14352 (ppm: 
−0.24).  

Methyl 2-oxo-6-phenyl-2H-chromene-3-carboxylate, 10a  
The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 

8b (0.425 g), phenylboronic acid (0.219 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 3 mL:12 
mL water:toluene for 60 min. The product was purified by column chromatography using 
n-hexane/CH2Cl2 and then CH2Cl2, 0.409 g, 97%, pale yellow powder, m.p. = 160.7–164.5 
°C. IR (nujol): ν = 1755, 1694 cm−1. 

 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.627 (s, 1H, H-4), 7.871 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
7), 7.785 (d, J = 2.2 Hz, 1H, H-5), 7.565–7.589 (m, 2H, H-2′ and H-6′), 7.468–7.487 (m, J = 7.4 
Hz, 2H, H-3′and H-5′), 7.390–7.432 (m, 1H, H-4′), 7.434 (d, J = 8.8 Hz, 1H, H-8), 3.972 (s, J = 
3H, CH3OOC); 13C NMR (100 MHz, CDCl3) 163.72 (s, COOCH3), 156.69 (s, C-2), 154.54 (s, 
C-8a), 149.22 (s, C-4), 138.87 (s, C-6), 138.37 (s, C-1′), 133.45 (s, C-7), 129.15 (s, C-3′ and C-
5′), 128.09 (s, C-4′), 127.52 (s, C-5), 127.04 (s, C-2′ and C-6′), 118.26 (s, C-3), 118.09 (s, C-4a), 
117.20 (s, C-8), 52.98 (s, CH3O).  

HRMS (ESI) m/z calculated for C17H12O4 [M+H]+ 281.08084 found 281.08112 (ppm: 
−1.00).  

Methyl 6-(2-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 10b  

The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 
8b (0.425 g), 2-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 (32 
mg) in 15 mL toluene for 21 h. The product was purified by column chromatography using 
n-hexane/CH2Cl2 and then CH2Cl2, 0.385 g, 83%, yellow powder, m.p. = 130.9–135.5 °C. IR 
(nujol): ν = 1760, 1759 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.611 (s, 1H, H-4), 7.819 (dd, J = 8.6 Hz, 2.1 Hz, 1H, H-
7), 7.763 (d, J = 2.1 Hz, 1H, H-5), 7.393 (d, J = 8.8 Hz, 1H, H-8), 7.374 (td, J = 5.6 Hz, 1.7 Hz 
1H, H-5′), 7.311 (dd, J = 7.5 Hz, 1.8 Hz, 1H, H-3′), 7.066 (td, J = 7.5 Hz, 1.0 Hz, H-4′), 7.022 
(d, J = 8.3 Hz, H-6′), 3.967 (s, 3H, CH3OOC), 3.834 (s, 3H, CH3O); 13C NMR (100 MHz, 
CDCl3) δ = 163.86 (s, COOCH3), 156.91 (s, C-2), 154.21 (s, C-8a), 156.32 (s, C-1′), 149.56 (s, 
C-4), 136.10 (s, C-7), 135.56 (s, C-2′), 130.59 (s, C-5′), 130.11 (s, C-5),129.57 (s, C-3′), 128.15 
(s, C-6), 121.11 (s, C-4′), 117.77 (s, C-3), 117.56 (s, C-4a), 116.33 (s, C-8), 111.34 (s, C-6′), 52.93 
(s, CH3O).  

HRMS (ESI) m/z calculated for C18H14O5 [M+H]+ 311.0914 found 311.09083 (ppm: 
−1.00).  

Methyl 6-(4-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 10c  

The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 
8b (0.425 g), 4-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and PEPPSI (29 mg) 
in 3 mL:12 mL water:toluene for 45 min. The product was purified by column chromatog-
raphy using n-hexane/CH2Cl2 and then CH2Cl2, 0.463 g, 99%, lemon yellow powder, m.p. 
= 158.7–161.4 °C. IR (nujol): ν = 1756, 1700 cm−1. 

1H NMR (400 MHz, CDCl3) δ = 8.611 (s, 1H, H-4), 7.819 (dd, J = 8.6 Hz, 2.1 Hz, 1H,
H-7), 7.763 (d, J = 2.1 Hz, 1H, H-5), 7.393 (d, J = 8.8 Hz, 1H, H-8), 7.374 (td, J = 5.6 Hz, 1.7 Hz
1H, H-5′), 7.311 (dd, J = 7.5 Hz, 1.8 Hz, 1H, H-3′), 7.066 (td, J = 7.5 Hz, 1.0 Hz, H-4′), 7.022
(d, J = 8.3 Hz, H-6′), 3.967 (s, 3H, CH3OOC), 3.834 (s, 3H, CH3O); 13C NMR (100 MHz,
CDCl3) δ = 163.86 (s, COOCH3), 156.91 (s, C-2), 154.21 (s, C-8a), 156.32 (s, C-1′), 149.56 (s,
C-4), 136.10 (s, C-7), 135.56 (s, C-2′), 130.59 (s, C-5′), 130.11 (s, C-5),129.57 (s, C-3′), 128.15 (s,
C-6), 121.11 (s, C-4′), 117.77 (s, C-3), 117.56 (s, C-4a), 116.33 (s, C-8), 111.34 (s, C-6′), 52.93 (s,
CH3O).

HRMS (ESI) m/z calculated for C18H14O5 [M+H]+ 311.0914 found 311.09083
(ppm: −1.00).

Methyl 6-(4-methoxyphenyl)-2-oxo-2H-chromene-3-carboxylate, 10c

The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8b
(0.425 g), 4-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in
3 mL:12 mL water:toluene for 45 min. The product was purified by column chromatography
using n-hexane/CH2Cl2 and then CH2Cl2, 0.463 g, 99%, lemon yellow powder, m.p. = 158.7–
161.4 ◦C. IR (nujol): ν = 1756, 1700 cm−1.
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1H NMR (400 MHz, CDCl3) δ = 8.613 (s, 1H, H-4), 7.826 (dd, J = 8.6 Hz, 2.6 Hz, 1H, H-
7), 7.726 (d, J = 2.2 Hz, 1H, H-5), 7.506 (dq, J = 8.6 Hz, 3.0 Hz, 2H, H-3′ and H-5′), 7.403 (d, 
J = 8.6 Hz, 1H, H-8), 7.011 (dq, J = 8.8 Hz, 3.0 Hz, 2H, H-2′ and H-6′), 3.969 (s, J = 3H, 
CH3OOC), 3.868 (s, J = 3H, CH3O); 13C NMR (100 MHz, CDCl3) δ = 163.77 (s, COOCH3), 
159.75 (s, C-4′), 156.77 (s, C-2), 154.16 (s, C-8a), 149.22 (s, C-4), 138.03 (s, C-6), 133.10 (s, C-
7), 131.31 (s, C-1′), 129.15 (s, C-5′ and C-3′), 126.89 (s, C-5), 118.07 (s, C-3), 118.15 (s, C-8), 
117.12 (s, C-4a), 114.55 (s, C-2′ and C-6′), 52.96 (s, CH3O).  

HRMS (ESI) m/z calculated for C18H14O5 [M+H]+ 311.0914 found 311.09106 (ppm: 
1.09).  

Methyl 6-(4-fluorophenyl)-2-oxo-2H-chromene-3-carboxylate, 10d  

The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 
8a (0.425 g), 4-fluorophenylboronic acid (0.252 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in 
3 mL:12 mL water:toluene for 60 min. The product was purified by column chromatog-
raphy using CH2Cl2, 0.443 g, 99%, pale yellow powder, m.p. = 170.8–174.5.7 °C. IR (nujol): 
ν = 1743, 1712 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.618 (s, 1H, H-4), 7.819 (dd, J = 8.6 Hz, 2.2 Hz, 1H, H-
7), 7.734 (d, J = 2.2 Hz, 1H, H-5), 7.550 (ddq, JHF = 8.8 Hz, 5.2 Hz; J = 8.8 Hz, 3.1 Hz, 2H, H-
3′ and H-5′), 7.430 (d, J = 8.6 Hz, 1H, H-8), 7.202 (ddq as tq, JHF = 8.6 Hz, 3.6 Hz; J = 8.6 Hz, 
3.2 Hz, 2H, H-2′ and H-6′), 3.973 (s, 3H, CH3OOC); 13C NMR (100 MHz, CDCl3) δ = 163.68 
(s, COOEt), 162.86 (d, J = 248.0 Hz, C-4′), 156.60 (s, C-2), 154.51 (s, C-8a), 149.07 (s, C-4), 
137.40 (s, C-6), 135.05 (d, J = 3.3 Hz, C-1′), 133.26 (s, C-7), 128.71 (d, J = 10.5 Hz, C-2′ and C-
6′), 127.38 (s, C-5), 118.11 (s, C-3), 117.29 (s, C-4a), 118.42 (s, C-8), 116.12 (d, J = 21.7 Hz, C-
3′ and C-5′), 53.00 (s, CH3O); 19F NMR (376.46 MHz, CDCl3) δ = −114.135.  

HRMS (ESI) m/z calculated for C17H11FO4 [M+H]+ 299.07141 found 299.07090 (ppm: 
1.71).  

Methyl 6-mesityl-2-oxo-2H-chromene-3-carboxylate, 10e  

The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 
8a (0.425 g), 2,4,6-trimethylphenylboronic acid (0.294 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2 
(32 mg) in 15 mL toluene for 90 h. The product was purified by column chromatography 
using n-hexane/CH2Cl2, 0.085 g, 18%, white powder, m.p. = 139.9–143.5 °C. IR (nujol): ν = 
1745, 1706 cm−1. 

 
 
 
 

1H NMR (400 MHz, CDCl3) δ = 8.564 (s, 1H, H-4), 7.438 (s, 1H, H-8), 7.434 (s, 1H, H-
5), 7.392 (dd as t, J = 1.0 Hz, 1H, H-7), 6.970 (d, J = 0.4 Hz, 2H, H-3′ and H-5′), 3.968 (s, 3H, 
CH3OOC), 2.343 (s, 3H, CH3Ar), 1.994 (s, 6H, CH3Ar); 13C NMR (100 MHz, CDCl3) 163.80 
(s, COOEt), 156.84 (s, C-2), 154.07 (s, C-8a), 149.21 (s, C-4), 138.11 (s, C-6), 137.57 (s, C-5), 
136.46 (s, C-1′), 135.97 (s, C-2′ and C-6′), 137.10 (s, C-4′), 129.90 (s, C-7), 128.39 (s, C-3′ and 
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CH3OOC), 3.868 (s, J = 3H, CH3O); 13C NMR (100 MHz, CDCl3) δ = 163.77 (s, COOCH3),
159.75 (s, C-4′), 156.77 (s, C-2), 154.16 (s, C-8a), 149.22 (s, C-4), 138.03 (s, C-6), 133.10 (s, C-7),
131.31 (s, C-1′), 129.15 (s, C-5′ and C-3′), 126.89 (s, C-5), 118.07 (s, C-3), 118.15 (s, C-8), 117.12
(s, C-4a), 114.55 (s, C-2′ and C-6′), 52.96 (s, CH3O).

HRMS (ESI) m/z calculated for C18H14O5 [M+H]+ 311.0914 found 311.09106 (ppm: 1.09).

Methyl 6-(4-fluorophenyl)-2-oxo-2H-chromene-3-carboxylate, 10d

The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate
8a (0.425 g), 4-fluorophenylboronic acid (0.252 g), K2CO3 (0.622 g) and PEPPSI (29 mg) in
3 mL:12 mL water:toluene for 60 min. The product was purified by column chromatography
using CH2Cl2, 0.443 g, 99%, pale yellow powder, m.p. = 170.8–174.5.7 ◦C. IR (nujol):
ν = 1743, 1712 cm−1.
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The product was prepared from methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate
8a (0.425 g), 2,4,6-trimethylphenylboronic acid (0.294 g), K2CO3 (0.622 g) and Pd(PPh3)2Cl2
(32 mg) in 15 mL toluene for 90 h. The product was purified by column chromatography
using n-hexane/CH2Cl2, 0.085 g, 18%, white powder, m.p. = 139.9–143.5 ◦C. IR (nujol):
ν = 1745, 1706 cm−1.
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HRMS (ESI) m/z calculated for C20H18O5 [M+H]+ 323.12779 found 323.12753
(ppm: −0.80).
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Ethyl 2-ethoxy-6-phenylbenzo[e][1,2]oxaphosphinine-3-carboxylate-2-oxide, 11a

The product was prepared from ethyl 6-bromo-2-ethoxybenzo[e][1,2]oxaphosphinine-
3-carboxylate-2-oxide 6 (0.540 g), phenylboronic acid (0.220 g), K2CO3 (0.622 g) and PEPPSI
(29 mg) in 3 mL:12 mL water:toluene for 16 h. The product was purified by column
chromatography using n-hexane/Et2O, 0.476 g, 89%, pale yellow powder, m.p. = 118.7–
120.3 ◦C. IR (nujol): ν = 1715, 1196, 1076, 1028 cm−1.
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4a), 118.36 (d, JCP = 7.4 Hz, C-8), 118.35 (d, JCP = 177.7 Hz, C-3), 111.31 (s, C-2′), 64.78 (d, JCP 
= 6.4 Hz, CH3CH2OP), 61.98 (s, CH3CH2O), 55.56 (s, OCH3), 16.46 (d, JCP = 6.5 Hz, 
CH3CH2OP), 14.24 (s, CH3CH2O); 31P NMR (161.98 MHz, CDCl3) δ = 5.537.  

HRMS (ESI) m/z calculated for C20H21O6P [M+H]+ 389.11485 found 389.1149 (ppm: 
0.13).  

1H NMR (400 MHz, CDCl3) δ = 8.307 (d, J = 36.9 Hz, 1H, H-4), 7.702 (dd, J = 8.6 Hz,
2.0 Hz, 1H, H-7), 7.657 (d, J = 2.1 Hz, 1H, H-5), 7.545 (dq, J = 7.6 Hz, 2.0 Hz, 1.5 Hz, 2H,
H-2′ and H-6′), 7.459 (tt, J = 2.0 Hz, 1.5 Hz, 2H, H-3′and H-5′), 7.382 (tt, J = 7.3, 2.2, 1.3 Hz,
1H, H-4′), 7.266 (d, J = 8.5 Hz, 1H, H-8), 4.413–4.493 (m, 2H, CH3CH2OP), 4.323–4.403
(m, 2H, CH3CH2OOC), 1.438 (t, J = 7.0 Hz, 3H, CH3CH2OP), 1.403 (t, J = 7.1 Hz, 3H,
CH3CH2OOC);13C NMR (100 MHz, CDCl3) δ = 163.75 (d, JCP = 14.7 Hz, COOEt), 152.01 (d,
JCP = 8.7 Hz, C-8a), 150.46 (d, JCP = 3.5 Hz, C-4), 139.06 (s, C-1′), 137.59 (s, C-6), 132.34 (s,
C-7), 129.87 (d, JCP = 1.5 Hz, C-5), 127.85 (C-4′), 129.04 (s, C-3′ and C-5′), 126.93 (s, C-2′ and
C-6′), 119.68 (s, C-4a), 119.19 (d, JCP = 7.5 Hz, C-8), 118.88 (d, JCP = 193.3 Hz, C-3), 64.93 (d,
JCP = 6.3 Hz, CH3CH2OP), 62.04 (s, CH3CH2O), 16.47 (d, JCP = 6.5 Hz, CH3CH2OP), 14.24
(s, CH3CH2O); 31P NMR (161.98 MHz, CDCl3) δ = 5.321.

HRMS (ESI) m/z calculated for C19H19O5P [M+H]+ 359.10429 found 359.10446
(ppm: −0.47).

Ethyl 2-ethoxy-6-(2-methoxyphenyl)benzo[e][1,2]oxaphosphinine-3-carboxylate-2-oxide, 11b

The product was prepared from ethyl 6-bromo-2-ethoxybenzo[e][1,2]oxaphosphinine-
3-carboxylate-2-oxide 6 (0.540 g), 2-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g)
and Pd(PPh3)2Cl2 (32 mg) in 15 mL toluene for 42 h. The product was purified by column
chromatography using n-hexane/EtOAc, 0.366 g, 45%, yellow oil. IR (nujol): ν = 1700, 1190,
1074, 1035 cm−1.
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4a), 118.36 (d, JCP = 7.4 Hz, C-8), 118.35 (d, JCP = 177.7 Hz, C-3), 111.31 (s, C-2′), 64.78 (d, JCP 
= 6.4 Hz, CH3CH2OP), 61.98 (s, CH3CH2O), 55.56 (s, OCH3), 16.46 (d, JCP = 6.5 Hz, 
CH3CH2OP), 14.24 (s, CH3CH2O); 31P NMR (161.98 MHz, CDCl3) δ = 5.537.  

HRMS (ESI) m/z calculated for C20H21O6P [M+H]+ 389.11485 found 389.1149 (ppm: 
0.13).  
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2.5 Hz, 1H, H-7), 7.636 (s, 1H, H-5), 7.355 (td, J = 8.0 Hz, 2.2 Hz, 1H, H-3′), 7.283 (dd, J = 7.5,
1.7 Hz, 1H, H-5′), 7.223 (d, J = 8.2 Hz, 1H, H-8), 7.023 (td, J = 7.4, 0.9 Hz, 1H, H-6′), 6.982 (td,
J = 7.5 Hz, 1.1 Hz, 1H, H-4′), 4.315–4.487 (m, 4H, CH3CH2OP and CH3CH2OOC), 3.820 (s,
3H, OCH3), 1.420 (t, J = 7.1 Hz, 3H, CH3CH2OP), 1.406 (t, J = 7.1 Hz, 3H, CH3CH2OOC);
13C NMR (100 MHz, CDCl3) δ = 163.89 (d, JCP = 13 Hz, COOEt), 156.32 (s, C-1′), 151.63 (d,
JCP = 8.8 Hz, C-8a), 150.89 (d, JCP = 3.6 Hz, C-4), 134.98 (s, C-7), 134.74 (s, C-5), 130.54 (s,
C-5′), 129.32 (s, C-3′), 128.36 (s, C-6), 121.04 (s, C-6′), 121.03 (C-4′), 119.18 (d, JCP = 15.8 Hz,
C-4a), 118.36 (d, JCP = 7.4 Hz, C-8), 118.35 (d, JCP = 177.7 Hz, C-3), 111.31 (s, C-2′), 64.78
(d, JCP = 6.4 Hz, CH3CH2OP), 61.98 (s, CH3CH2O), 55.56 (s, OCH3), 16.46 (d, JCP = 6.5 Hz,
CH3CH2OP), 14.24 (s, CH3CH2O); 31P NMR (161.98 MHz, CDCl3) δ = 5.537.

HRMS (ESI) m/z calculated for C20H21O6P [M+H]+ 389.11485 found 389.1149 (ppm: 0.13).

Ethyl 2-ethoxy-6-(4-methoxyphenyl)benzo[e][1,2]oxaphosphinine-3-carboxylate-2-oxide, 11c



Molecules 2022, 27, 7649 29 of 34

The product was prepared from ethyl 6-bromo-2-ethoxybenzo[e][1,2]oxaphosphinine-
3-carboxylate-2-oxide 6 (0.540 g), 4-methoxyphenylboronic acid (0.273 g), K2CO3 (0.622 g)
and PEPPSI (29 mg) in 3 mL:12 mL water:toluene for 3 h. The product was purified
by column chromatography using n-hexane/EtOAc, 0.506 g, 87%, pale yellow powder,
m.p. = 132.7–135.3 ◦C IR (nujol): ν = 1720, 1195, 1043, 1026 cm−1.
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1H NMR (400 MHz, CDCl3) δ = 8.296 (d, J = 36.9 Hz, 1H, H-4), 7.662 (dd, J = 8.6 Hz,
2.0 Hz, 1H, H-7), 7.603 (d, J = 2.3 Hz, 1H, H-5), 7.475 (dq, J = 8.8 Hz, 3.0 Hz, 2H, H-2′ and
H-6′), 6.989 (dq, J = 8.8 Hz, 3.0 Hz, 2H, H-3′and H-5′), 7.237 (d, J = 8.5 Hz, 1H, H-8), 4.319–
4.490 (m, 4H, CH3CH2OP and CH3CH2OOC), 1.423 (t, J = 7.0 Hz, 3H, CH3CH2OP), 1.409
(t, J = 7.1 Hz, 3H, CH3CH2OOC);13C NMR (100 MHz, CDCl3) δ = 163.78 (d, JCP = 13.0 Hz,
COOEt), 151.58 (d, JCP = 8.6 Hz, C-8a), 150.59 (d, JCP = 3.5 Hz, C-4), 131.55 (s, C-1′), 137.26
(s, C-6), 131.95 (s, C-7), 129.35 (d, JCP = 1.2 Hz, C-5), 159.55 (C-4′), 114.47 (s, C-3′ and
C-5′), 127.99 (s, C-2′ and C-6′), 119.64 (s, C-4a), 119.11 (d, JCP = 7.4 Hz, C-8), 118.66 (d,
JCP = 177.3 Hz, C-3), 64.89 (d, JCP = 6.3 Hz, CH3CH2OP), 62.02 (s, CH3CH2O), 16.47 (d,
JCP = 6.4 Hz, CH3CH2OP), 14.24 (s, CH3CH2O); 31P NMR (161.98 MHz, CDCl3) δ = 5.408.

HRMS (ESI) m/z calculated for C20H21O6P [M+H]+ 389.11485 found 389.11517
(ppm: −0.82).

Ethyl 2-ethoxy-6-(4-fluorophenyl)benzo[e][1,2]oxaphosphinine-3-carboxylate-2-oxide, 11d

The product was prepared from ethyl 6-bromo-2-ethoxybenzo[e][1,2]oxaphosphinine-
3-carboxylate-2-oxide 6 (0.540 g), 4-fluorophenylboronic acid (0.251 g), K2CO3 (0.622 g)
and PEPPSI (29 mg) in 3 mL:12 mL water:toluene for 2.5 h. The product was purified
by column chromatography using n-hexane/EtOAc, 0.500 g, 89%, pale yellow powder,
m.p. = 115.0–118.2 ◦C IR (nujol): ν = 1718, 1198, 1078, 1028 cm−1.
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1H NMR (400 MHz, CDCl3) δ = 8.294 (d, J = 36.5 Hz, 1H, H-4), 7.647 (dd, J = 8.5 Hz,
2.1 Hz, 1H, H-7), 7.606 (d, J = 2.2 Hz, 1H, H-5), 7.502 (ddq, J = 8.8 Hz, 5,2 Hz, 3.4 Hz,
2H, H-2′ and H-6′), 7.149 (tq, J = 8.6 Hz, 3.4 Hz, 2H, H-3′and H-5′), 7.261 (d, J = 8.4 Hz,
1H, H-8), 4.323–4.498 (m, 4H, CH3CH2OP and CH3CH2OOC), 1.429 (t, J = 7.1 Hz, 3H,
CH3CH2OP), 1.411 (t, J = 7.1 Hz, 3H, CH3CH2OOC);13C NMR (100 MHz, CDCl3) δ = 163.68
(d, JCP = 13.0 Hz, COOEt), 151.98 (d, JCP = 8.6 Hz, C-8a), 150.27 (d, JCP = 3.5 Hz, C-4), 135.23
(d, J = 3.1 Hz C-1′), 136.62 (s, C-6), 132.16 (s, C-7), 129.71 (s, C-5), 162.72 (d, JCP = 247.7 Hz,
C-4′), 128.58 (d, JCP = 8.1 Hz, C-3′ and C-5′), 115.98 (d, JCP = 21.6 Hz, C-2′ and C-6′), 119.88
(s, C-4a), 119.27 (d, JCP = 7.4 Hz, C-8), 118.92 (d, JCP = 162.2 Hz, C-3), 64.98 (d, JCP = 6.3 Hz,
CH3CH2OP), 62.07 (s, CH3CH2O), 16.47 (d, JCP = 6.4 Hz, CH3CH2OP), 14.24 (s, CH3CH2O);
31P NMR (161.98 MHz, CDCl3) δ = 5.232; 19F NMR (376.46 MHz, CDCl3) δ = −114.590.

HRMS (ESI) m/z calculated for C19H18FO5P [M+H]+ 377.09486 found 377.09515
(ppm: −0.77).

3.4. General Procedure for the Sonogashira Reaction

A mixture of the corresponding coumarin derivative (1.4 mmol), aryl ethyne (1.8 mmol,
1.2 equiv.), PdCl2(PPh3)2/PEPPSI (2 mol%), CuI (4 mol%), Et3N (3 equiv), and DMF (15 mL)
was heated at 80 ◦C under an Ar atmosphere until the coumarin derivative was consumed
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(TLC-monitoring). The needed time for the reactions is given in Table 5. Then, it was
concentrated under reduced pressure. The crude product was dissolved in EtOAc, watched
several times with brine (5 × 5 mL), and once with water (1 × 10 mL). The organic layer
was dried with anhydrous sodium. After the evaporation of the solvent, the residue was
purified by column chromatography.

Diethyl (2-oxo-6-(phenylethynyl)-2H-chromen-3-yl)phosphonate, 12a

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phosphonate
5 (0.500 g), ethynylbenzene (0.170 g), PdCl2(PPh3)2 (19.4 mg), CuI (10.5 mg), Et3N (0.58 mL,
0.42 g) and DMF (15 mL) for 20 h. The product was purified by column chromatography
using n-hexane/EtOAc, 0.437 g, 82%, reddish colored powder, m.p. = 94.3–99.6 ◦C. IR
(nujol): ν = 1745, 1239, 1046, 1018 cm−1.
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7.674 (s, 1H, H-7), 7.465 (s, 1H, H-8), 7.297 (s, 2H, H-2′ and H-6′), 7.271 (s, 2H, H-3′ and
H-5′), 7.254 (s, 1H, H-4′), 4.146–4.261 (m, 4H, two CH3CH2O), 1.316 (t, J = 7.1 Hz, 6H,
two CH3CH2O);13C NMR (125.7 MHz, CDCl3) δ = 157.81 (d, JCP = 14.4 Hz, C-2), 154.62
(s, C-8a), 152.64 (d, JCP = 6.6 Hz, C-4), 137.06 (s, C-7), 132.07 (s, C-5), 131.67 (s, C-6′and
C-2′), 128.83 (s, C-4′), 128.48 (s, C-3′ and C-5′), 122.44 (s, C-6), 120.49 (s, C-1′), 118.75 (d,
JCP = 196.4 Hz, C-3), 117.99 (d, JCP = 14.5 Hz, C-4a), 117.93 (s, C-8), 90.67 (s, C≡C), 87.02 (s,
C≡C), 63.57 (d, JCP = 6.9 Hz, two CH3CH2O), 16.38 (d, JCP = 6.3 Hz, two CH3CH2O); 31P
NMR (161.98 MHz, CDCl3) δ = 10.343.

HRMS (ESI) m/z calculated for C21H19O5P [M+H]+ 383.10429 found 383.10468
(ppm: −1.02).

Ethyl 2-oxo-6-(phenylethynyl)-2H-chromene-3-carboxylate, 12b

The product was prepared from ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate 8a
(0.444 g), ethynylbenzene (0.184 g), PdCl2(PPh3)2 (21 mg), CuI (11.4 mg), Et3N (0.63 mL,
0.46 g) and DMF (15 mL) for 22 h. The product was purified by column chromatography
using n-hexane/EtOAc, 0.247 g, 52%, reddish colored powder, m.p. = 57.1–61.8 ◦C. IR
(nujol): ν = 1744, 1711 cm−1.
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1H NMR (400 MHz, CDCl3) δ = 8.485 (s, 1H, H-4), 7.774 (s, 1H, H-5), 7.755 (dd,
J = 7.3 Hz, 2.0 Hz, 1H, H-7), 7.530–7.555 (m, 2H, H-2′ and H-6′), 7.341 (dd, J = 9.2 Hz, 0.4 Hz,
1H, H-8), 7.363–7.388 (m, 2H, H-3′ and H-5′), 4.421 (q, J = 7.1 Hz, 2H, CH3CH2O), 1.420 (t,
J = 7.1 Hz, 3H, CH3CH2O); 13C NMR (100 MHz, CDCl3) δ = 162.87 (s, COOEt), 156.23 (s,
C-2), 154.54 (s, C-8a), 147.82 (s, C-4), 122.46 (s, C-6), 120.43 (s, C-1′), 137.19 (s, C-7), 128.49
(s, C-3′ and C-5′), 128.83 (s, C-4′), 132.19 (s, C-5), 131.66 (s, C-2′ and C-6′), 117.94 (s, C-3),
119.11 (s, C-4a), 117.10 (s, C-8), 62.16 (s, CH3CH2O), 14.22 (s, CH3CH2O).

HRMS (ESI) m/z calculated for C20H14O4 [M+H]+ 319.09649 found 319.09641 (ppm: 0.25).

Diethyl (6-((4-methoxyphenyl)ethynyl)-2-oxo-2H-chromen-3-yl)phosphonate, 12d

The product was prepared from diethyl (6-bromo-2-oxo-2H-chromen-3-yl)phosphonate
5 (0.540 g), 1-ethynyl-4-methoxybenzene (0.238 g), PEPPSI (19.4 mg), CuI (11.4 mg), Et3N
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(0.62 mL, 0.55 g) and DMF (15 mL) for 30 h. The product was purified by column chromatog-
raphy using n-hexane/EtOAc, 0.349 g, 56%, reddish colored powder, m.p. = 131.7–136.0 ◦C.
IR (nujol): ν = 2211, 1744, 1243, 1060, 1027 cm−1.
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Quantum-chemical calculations on the spectral properties of aryl and alkynyl 3-phos-
phonocoumarins were performed as a continuation of our systematic studies on phospho-
rous-containing coumarin derivatives. It was found that by altering the substituent in C-
6, fine tuning of the fluorescent properties could be achieved. Introducing a CH3O-group 
in para-position in the aryl moiety has the most noticeable effect leading to bathochromic 
shift in the absorption and fluorescence spectra. This tendency was observed both in the 
calculated and the experimental data. The photophysical properties of the newly obtained 
compounds were studied in different solvents. It was found that the type of media has 
little or no effect on both absorption and fluorescence maxima. The experimental data are 
in good agreement with the theoretically predicted photophysical properties of the com-
pounds.  
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2.0 Hz, 1H, H-7), 7.716 (d, J = 2.0 Hz, 1H, H-5), 7.327 (d, J = 8.5 Hz, 1H, H-8), 7.485 (dq,
J = 8.8 Hz, 2.8 Hz, 2H, H-2′ and H-6′), 6.901 (dq, J = 8.8 Hz, 2.8 Hz, 2H, H-3′ and H-5′),
4.226–4.343 (m, 4H, two CH3CH2O), 3.844 (s, 3H, CH3O), 1.392 (t, J = 7.1 Hz, 6H, two
CH3CH2O); 13C NMR (100 MHz, CDCl3) δ = 160.06 (s, C-4′), 157.82 (s, C-2), 154.43 (s, C-8a),
152.69 (d, JCP = 6.6 Hz, C-4), 136.95 (s, C-7), 131.79 (s, C-5), 133.19 (s, C-6′and C-2′), 114.49
(s, C-3′ and C-5′), 120.90 (s, C-6), 119.69 (s, C-1′), 118.72 (d, JCP = 196.1 Hz, C-3), 117.98
(d, JCP = 14.5 Hz, C-4a), 117.13 (s, C-8), 90.79 (s, C≡C), 85.83 (s, C≡C), 55.35 (s, CH3O),
63.54 (d, JCP = 6.0 Hz, two CH3CH2O), 16.39 (d, JCP = 6.3 Hz, two CH3CH2O); 31P NMR
(161.98 MHz, CDCl3) δ = 10.390.

HRMS (ESI) m/z calculated for C22H21O6P [M+H]+ 413.11485 found 413.11524
(ppm: −0.94).

4. Conclusions

A synthetic protocol for the efficient preparation of new substituted 3-phosphono
coumarins, 1,2-benzoxaphosphorines, methyl and ethyl coumarin-3-carboxylates via pal-
ladium catalyzed cross-coupling reactions was developed. The Suzuki and Sonogashira
reaction was applied successfully to obtain the structures in good to quantitative yields.

Quantum-chemical calculations on the spectral properties of aryl and alkynyl 3-
phosphonocoumarins were performed as a continuation of our systematic studies on
phosphorous-containing coumarin derivatives. It was found that by altering the sub-
stituent in C-6, fine tuning of the fluorescent properties could be achieved. Introducing a
CH3O-group in para-position in the aryl moiety has the most noticeable effect leading to
bathochromic shift in the absorption and fluorescence spectra. This tendency was observed
both in the calculated and the experimental data. The photophysical properties of the
newly obtained compounds were studied in different solvents. It was found that the type of
media has little or no effect on both absorption and fluorescence maxima. The experimental
data are in good agreement with the theoretically predicted photophysical properties of the
compounds.
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