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Abstract: Molecular latent representations, derived from autoencoders (AEs), have been widely used
for drug or material discovery over the past couple of years. In particular, a variety of machine
learning methods based on latent representations have shown excellent performance on quantitative
structure–activity relationship (QSAR) modeling. However, the sequence feature of them has not
been considered in most cases. In addition, data scarcity is still the main obstacle for deep learning
strategies, especially for bioactivity datasets. In this study, we propose the convolutional recurrent
neural network and transfer learning (CRNNTL) method inspired by the applications of polyphonic
sound detection and electrocardiogram classification. Our model takes advantage of both convolu-
tional and recurrent neural networks for feature extraction, as well as the data augmentation method.
According to QSAR modeling on 27 datasets, CRNNTL can outperform or compete with state-of-art
methods in both drug and material properties. In addition, the performances on one isomers-based
dataset indicate that its excellent performance results from the improved ability in global feature
extraction when the ability of the local one is maintained. Then, the transfer learning results show
that CRNNTL can overcome data scarcity when choosing relative source datasets. Finally, the high
versatility of our model is shown by using different latent representations as inputs from other types
of AEs.

Keywords: DEEP learning; molecular autoencoders; QSAR; RNN; CNN; transfer learning

1. Introduction

For the excavation of crucial molecular factors on properties and activities, quantita-
tive structure-activity relationship (QSAR) has been an active research area in the past 50+
years. In QSAR, the molecular representations (or descriptors), as the input features of the
modeling, represent chemical information of actual entities in computer-understandable
numbers [1–3]. Historically, molecular fingerprints, such as extended-connectivity fin-
gerprints (ECFPs), have been widely used as representations for the modeling in drug
and material discovery [4]. Recent development in deep neural network facilitates the
utilization of different molecular representations such as latent representations [5,6]. Latent
representations are fixed-length continuous vectors that are derived from autoencoders
(AEs) with encoder−decoder architecture [7]. Although AEs are shown as a generative
algorithm for de novo design studies in the beginning [8,9], latent representations from
encoders of AEs have been extracted for QSAR modeling [6]. Without sophisticated
human-engineered feature selection, these kinds of representations show competitive per-
formance compared with traditional ones [5]. Furthermore, the representations and QSAR
models can be used for multi-objective molecular optimization to tackle inverse QSAR
problem [10].
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To obtain latent representations, sequenced-based strings, such as SMILES (Simplified
Molecular Input Line Entry Specification), are employed as inputs into AEs. The method
in detail is described in the next section. In recent years, great interest has been aroused by
developing QSAR models based on latent representations. One of the earliest achievements
in this field was the chemical variational autoencoders (VAE) by Aspuru-Guzik et al. [7].
After generating latent representations for the encoder, two fully connected artificial neural
networks (ANNs) were used for the prediction of water−octanol partition coefficient
(logP), the synthetic accessibility score, and drug-likeness. More recently, Winter et al. have
shown that latent representation applied on support vector machine (SVM) outperforms
ECFPs and graph-convolution method by the translation AE model (named CDDD) [6].
Subsequently, a convolutional neural network (CNN) was trained for the QSAR prediction
after generating latent representations [11,12]. Owing to the architectural characteristic of
local connectivity, shared weight, and pooling [13], some studies in the literature indicated
that CNNs perform better in QSAR modeling compared with ANN and other traditional
models [14].

On the one hand, latent representations should have sequence features if they are
derived from sequence-based strings [15]. As far as we know, recurrent neural network
(RNN) outperforms other models including CNN when dealing with sequence data in some
areas, such as natural language processing (NLP) [16] and electrocardiogram classification
(ECG) [17]. Even though CNN performs well due to its ability of local feature selection,
RNN has its advantage in global feature discovery [18]. With regard to molecules, it has
similarity with the NLP and ECG. We assume that the local feature represents the type
of atoms and functional group, and global feature is the atomic arrangement. Molecular
properties and activities depend on not only atom types and functional groups (local
features) but also the arrangement (global features). In other words, the sequence of the
atoms or functional groups plays an important role in molecular properties. However, very
few works have been done to study the modeling performance with the difference of the
molecular sequence (global features).

On the other hand, the scarce availability of labeled data is the major obstacle for QSAR
modeling [2]. According to the probably approximately correct theory, the size of training
data plays a key role in the accuracy of machine learning methods [19]. Nonetheless, the
available datasets are small at most stages of the QSAR pipeline, especially bioactivity
modeling. One strategy to solve this problem is transfer learning algorithms [20]. Transfer
learning is one kind of machine learning method that takes advantage of existing, gen-
eralizable knowledge from other sources [21]. For example, Li et al. reported an RNN
model pretrained on one million unlabeled molecules from ChEMBL and fine-tuned with
Lipophilicity (LogP), HIV, and FreeSolv data [22]. It indicated that transfer learning im-
proved the performance strongly compared with learning from scratch. Additionally,
Iovanac et al. improve the QSAR prediction ability by the integration of experimentally
available pKa data and DFT-based characterizations of the (de)protonation free energy [23].
However, few transfer learning strategies for multiple bioactivity and material datasets
have been presented. In comparison with physicochemical and physiological properties,
the measurements of molecular bioactivities are more time and resource consuming. Addi-
tionally, the scales of the datasets about experimental material properties are usually less
than 1000 [24]. Therefore, it is advisable to train more transfer learning models among this
type of dataset. In this way, the information from other datasets would be transferred into
small ones to facilitate molecular design and drug discovery.

Herein, we describe the convolutional recurrent neural network and transfer learning
(CRNNTL) method to tackle the problems with molecular sequence and data scarcity. The
convolutional recurrent neural network (CRNN) is loosely inspired by the architectures
proposed in the applications of polyphonic sound detection and electrocardiogram classifi-
cation [25–27], which integrates the advantages of CNN and RNN (gated recurrent units
used here, named GRU) at the same time. The concept is illustrated in Figure 1 in which the
model is constituted by the CNN, GRU, and dense layer parts. Firstly, the CRNN model
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is tested using diverse benchmark datasets including drug and material properties and
compared with CNN and classical methods, such as random forest (RF) and SVM. Then, an
isomers-based dataset is trained by CRNN and CNN to elucidate the improved ability of
CRNN in the global feature learning. Next, we demonstrated that the transfer learning part
of CRNNTL could be used to improve the performance for scarce bioactivity and material
datasets. Finally, the high versatility of CRNNTL was shown by QSAR modeling based on
two other latent representations derived from different types of AEs.
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Figure 1. The architecture of CRNN and transfer learning method between large and small datasets.

2. Results and Discussion
2.1. Model Optimization

The performance of the deep learning method depends on the hyperparameters and
network architecture. Firstly, hyperparameter optimization was performed by grid search.
A series of models were built using different combinations of batch size for the whole
neural network, as well as optimizer learning rate and activation functions for the CNN
or GRU parts, respectively. The hyperparameter settings are summarized in Table 1. The
model provided the best performance with 128 batch size and ReLU activation function for
the two parts, while the best learning rates were 0.0001 and 0.0005 for the CNN and GRU,
respectively.

Table 1. Overview of the optimization settings.

Settings CNN GRU

activation function (anh, ReLU) (Sigmoid, ReLU)
learning rate (0.001, 0.0005, 0.0001) (0.001, 0.0005, 0.0001)

number of layers (3–5) (1,2)

Then, architecture optimization was performed on both CNN and GRU parts. As for
the CNN part, the model performed well with three convolutional layers. As the number
of layers increases, little improvement or a slight decrease (less than 2%) occurred, as
shown in Supplementary Table S1. This implied that deeper CNN network architecture
involving more parameters would affect the final performance of the model, especially for
the relatively small dataset in our cases [11]. Considering the increase in training time and
computing cost, three convolutional layers was most suitable for the modeling. Regarding
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the GRU part, one bidirectional layer for the GRU was enough for model training. One of
the reasons is similar with the one in the CNN case. Additionally, since the local feature
has been extracted well by CNN, denser GRU layers are not needed any more.

2.2. CRNN for Drug Properties

After model optimization, the QSAR results by five models were compared with each
other, including CNN, CRNN, and CRNN with the augmentation (AugCRNN), SVM,
and RF. The inputs of the first four models are latent representation, while RF is based
on ECFPs. The 20 datasets contain physicochemical properties, physiological properties,
and bioactivities for drug-like molecules (detailed information in Materials and Methods).
The random five-fold cross-validation was performed to compare the models with each
other. Table 2 shows the results for regression datasets, while Table 3 demonstrates the
results for classification tasks. Except for a few tasks, such as Lipo, the AugCRNN method
yielded better results than any of the other ones applied on latent representation, as well
as the classical machine learning method on ECFPs. In comparison to the CRNN method,
the augmentation can overcome the limitation of small data size, which was found in the
artificial intelligence area for not only drug discovery [28] but also other applications such
as computer vision and natural language procession [29].

Table 2. Coefficient of determination (r2) for regression datasets of drug properties.

Dataset a CNN CRNN AugCRNN SVM RF b

EGFR 0.67 0.70 0.71 0.70 0.69
EAR3 0.64 0.68 0.70 0.65 0.53
AUR3 0.55 0.57 0.61 0.60 0.54
FGFR1 0.63 0.68 0.72 0.71 0.68
MTOR 0.64 0.68 0.70 0.70 0.66

PI3 0.43 0.47 0.50 0.52 0.45
LogS 0.91 0.92 0.93 0.92 0.90
Lipo 0.63 0.67 0.70 0.73 0.66
BP 0.95 0.96 0.97 0.96 0.93
MP 0.47 0.46 0.52 0.46 0.45

The standard mean errors are shown in Supplementary Table S2. Bold texts represent the best performance.
a The information in detail for each dataset is summarized in Materials and Methods. b Calculated with ECFP
representation.

Table 3. The area under the receiver characteristic curve (ROC-AUC) for classification datasets of
drug properties.

Dataset a CNN CRNN AugCRNN SVM RF b

HIV 0.80 0.82 0.83 0.76 0.78
AMES 0.86 0.87 0.88 0.89 0.89
BACE 0.88 0.89 0.90 0.90 0.91
HERG 0.83 0.84 0.86 0.86 0.85
BBBP 0.88 0.89 0.91 0.93 0.89

BEETOX 0.89 0.91 0.92 0.92 0.90
JAK3 0.72 0.74 0.77 0.76 0.76

BioDeg 0.75 0.77 0.78 0.74 0.73
TOX21 0.75 0.77 0.78 0.74 0.73
SIDER 0.68 0.70 0.72 0.70 0.68

The standard mean errors are shown in Supplementary Table S3. Bold texts represent the best performance.
a The information in detail for each dataset is summarized in Materials and Methods. b Calculated with ECFP
representation.

In addition, it should be noted that the CRNN provided higher area under the receiver
characteristic curve (ROC-AUC) values or coefficients of determination (r2) in almost 20
tasks compared with the CNN method (except for MP and BACE), without data augmenta-
tion at the same time. As we mentioned above, the CRNN and CNN models have the same



Molecules 2021, 26, 7257 5 of 15

convolutional part and fully connected structures. Therefore, it suggested that the GRU in
CRNN results in better performance in QSAR. In the research area of electrocardiogram
(ECG) analysis, the local feature represents different kinds of amplitudes and intervals in a
short time, while the global one represents the permutation and combination of them [27].
It is reported that the CRNN model can learn not only amplitudes and intervals but also
their permutation and combination [26]. Given the good QSAR performance of our model,
we hypothesize that CRNN can effectively extract not only the molecular local feature but
also the global one in which the molecular local feature represents the type of atoms and
functional group, and the global feature is the atomic arrangement.

Although three different learning algorithms were performed on each task, the model-
ing performance based on the ECFPs could be further improved by choosing best flavor
of fingerprint representation. However, it would take considerable training time due to
20 tasks. Another thing we should pay attention to is that the performances of property
prediction are always low for the AUR3, PI3, and MP datasets, whichever model was used.
It might arise from the data scarcity of the three datasets. The prediction improvement
would be realized by the transfer learning method and will be shown and discussed in a
later section. To sum up, despite our harsh evaluation scheme, it still indicated that CRNN
can compete or outperform other baseline methods for molecular QSAR modeling in vari-
ous drug properties due to the abilities of both local and global feature extraction abilities.
In the next section, the QSAR performance for material properties will be demonstrated
and discussed.

2.3. CRNN for Material Properties

We turned our attention to the ability of material property prediction by our method.
The same five QSAR models were studied based on seven datasets. The first five of the
datasets belong to the traditional properties of luminescent materials (including absorption
peak position, emission peak position, extinction coefficient in logarithm, bandwidth in
full width at half maximum, and the lifetime). The sixth one is the triplet state energy
(ET1) for the thermally activated delayed fluorescent (TADF) molecules, and the last one
is the power conversion efficiency for organic solar cells from HOPV15 [30]. The detailed
information for the datasets and evaluation method are shown in the Method section.

Table 4 shows the result for seven datasets. As for the luminescent properties,
AugCRNN outperformed other models in most cases, and the performance of CRNN
is always better than that of CNN, which is consistent with the result in drug property
prediction. It should be noted that all the performances of AugCRNN are lower than in
the previous work using the Deep4Chem interface. One reason is that a random five-fold
cross-validation method was used here, while the previous work only split the data into
train, validation, and test sets. The other one is that a relatively smaller dataset is available
online for training. In short, CRNN is still an efficient QSAR method for the property
prediction of luminescent materials.

ET1 is the one of the most important values for TADF molecules in the application of
organic light-emitting diodes, since the reverse intersystem crossing occurs from the triplet
state to the singlet state to facilitate the energy transfer process [31]. In addition, PCE is a
vital value as well to show the energy transfer performance of the solar cell [24]. As far as
we know, it is the first time that QSAR modeling for the ET1 was studied based on TADF
molecules. As for the PCE modeling, previous work shows excellent performance when
using microscopic properties as the representation. However, this kind of representation is
expensive to compute or experimentally determine. Except for the data scarcity, the low
performance for the PCE might result from the unsuitability of our AE. Nowadays, most
AEs are designed and trained for drug-like molecules [5,6,27]. Molecules for photovoltaic
materials have much larger molecular weight, LogP, and more conjugated structures. It is
anticipated that more proper AE designed and trained for photovoltaic molecules would
result in better QSAR performance in PCE in the future. Given the above, our method
showed the competitive modeling performance of various material properties without
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sophisticated molecular representation computation. We will next study why CRNN can
perform better than CNN in most datasets.

Table 4. Coefficient of determination (r2) for regression datasets of material properties.

Dataset a CNN CRNN AugCRNN SVM RF b

Absmax 0.75 0.87 0.90 0.89 0.88
Emmax 0.72 0.82 0.85 0.85 0.81
Logε 0.52 0.73 0.75 0.73 0.73
σabs 0.44 0.56 0.59 0.52 0.55

lifetime 0.45 0.59 0.63 0.59 0.58
ET1 0.49 0.48 0.52 0.48 0.52
PCE 0.42 0.43 0.47 0.42 0.43

The standard mean errors are shown in Supplementary Table S4. Bold texts represent the best performance. a The
first five datasets represent the absorption peak position (Absmax), emission peak position (Emmax), extinction
coefficient in logarithm (logε), bandwidth in full width at half maximum (σabs), and the molecular lifetime,
respectively; the sixth one is the triplet state energy (ET1) for the TADF molecules; the last one is the power
conversion efficiency (PCE) from HOPV15 b Calculated with ECFP representation.

2.4. CRNN for the Isomers-Based Dataset

So far, the difference between the local and global feature of molecules has been
demonstrated. It is well-acknowledged that CNN could extract the local feature effectively
in molecular modeling. However, few works have been done for the molecular global
feature extraction. One question in mind is which model will perform best on a dataset with
only global feature variation. In chemistry, the isomers have the same atoms or functional
groups (local feature) but different atomic arrangement (global feature). It could be the
most coincident case for the study of the ability of global feature extraction. We will now
explore the melting point QSAR modeling based on isomers by CNN, CRNN, and SVM
applied on latent representation. The isomer information is extracted from PubChem and
ChemSpider, which includes three types of isomers alcohols and ethers, amino acids and
amides, as well as carboxylic acids and esters. Some cases for three types of isomers are
shown in Table 5.

Table 5. Names, SMILES, molecular structures, and melting points of isomers.

Name SMILES Molecular Structure Melting Point (◦C)

2-
Hydroxypropanamide CC(O)C(N)=O

Molecules 2021, 26, x FOR PEER REVIEW 6 of 15 
 

 

logarithm (logε), bandwidth in full width at half maximum (abs), and the molecular lifetime, respectively; the sixth one is 

the triplet state energy (ET1) for the TADF molecules; the last one is the power conversion efficiency (PCE) from HOPV15 
b Calculated with ECFP representation. 

ET1 is the one of the most important values for TADF molecules in the application of 

organic light-emitting diodes, since the reverse intersystem crossing occurs from the tri-

plet state to the singlet state to facilitate the energy transfer process [31]. In addition, PCE 

is a vital value as well to show the energy transfer performance of the solar cell [24]. As 

far as we know, it is the first time that QSAR modeling for the ET1 was studied based on 

TADF molecules. As for the PCE modeling, previous work shows excellent performance 

when using microscopic properties as the representation. However, this kind of represen-

tation is expensive to compute or experimentally determine. Except for the data scarcity, 

the low performance for the PCE might result from the unsuitability of our AE. Nowa-

days, most AEs are designed and trained for drug-like molecules [5,6,27]. Molecules for 

photovoltaic materials have much larger molecular weight, LogP, and more conjugated 

structures. It is anticipated that more proper AE designed and trained for photovoltaic 

molecules would result in better QSAR performance in PCE in the future. Given the 

above, our method showed the competitive modeling performance of various material 

properties without sophisticated molecular representation computation. We will next 

study why CRNN can perform better than CNN in most datasets. 

2.4. CRNN for the Isomers-Based Dataset 

So far, the difference between the local and global feature of molecules has been 

demonstrated. It is well-acknowledged that CNN could extract the local feature effec-

tively in molecular modeling. However, few works have been done for the molecular 

global feature extraction. One question in mind is which model will perform best on a 

dataset with only global feature variation. In chemistry, the isomers have the same atoms 

or functional groups (local feature) but different atomic arrangement (global feature). It 

could be the most coincident case for the study of the ability of global feature extraction. 

We will now explore the melting point QSAR modeling based on isomers by CNN, 

CRNN, and SVM applied on latent representation. The isomer information is extracted 

from PubChem and ChemSpider, which includes three types of isomers alcohols and 

ethers, amino acids and amides, as well as carboxylic acids and esters. Some cases for three 

types of isomers are shown in Table 5. 

Table 5. Names, SMILES, molecular structures, and melting points of isomers. 

Name SMILES Molecular Structure Melting Point (°C) 

2-Hydroxypropanamide CC(O)C(N)=O 

 

78 

Alanine CC(N)C(=O)O 

 

292 a 

1,3-Dimethoxypropane COCCCOC  −82 

1,5-Pentanediol OCCCCCO  −16 

Methyl benzoate COC(=O)c1ccccc1 

 

−12 

Phenylacetic acid O=C(O)Cc1ccccc1 
 

77 

a Alanine decomposes before melting, the value here is the temperature at which it decomposes. 

78

Alanine CC(N)C(=O)O

Molecules 2021, 26, x FOR PEER REVIEW 6 of 15 
 

 

logarithm (logε), bandwidth in full width at half maximum (abs), and the molecular lifetime, respectively; the sixth one is 

the triplet state energy (ET1) for the TADF molecules; the last one is the power conversion efficiency (PCE) from HOPV15 
b Calculated with ECFP representation. 

ET1 is the one of the most important values for TADF molecules in the application of 

organic light-emitting diodes, since the reverse intersystem crossing occurs from the tri-

plet state to the singlet state to facilitate the energy transfer process [31]. In addition, PCE 

is a vital value as well to show the energy transfer performance of the solar cell [24]. As 

far as we know, it is the first time that QSAR modeling for the ET1 was studied based on 

TADF molecules. As for the PCE modeling, previous work shows excellent performance 

when using microscopic properties as the representation. However, this kind of represen-

tation is expensive to compute or experimentally determine. Except for the data scarcity, 

the low performance for the PCE might result from the unsuitability of our AE. Nowa-

days, most AEs are designed and trained for drug-like molecules [5,6,27]. Molecules for 

photovoltaic materials have much larger molecular weight, LogP, and more conjugated 

structures. It is anticipated that more proper AE designed and trained for photovoltaic 

molecules would result in better QSAR performance in PCE in the future. Given the 

above, our method showed the competitive modeling performance of various material 

properties without sophisticated molecular representation computation. We will next 

study why CRNN can perform better than CNN in most datasets. 

2.4. CRNN for the Isomers-Based Dataset 

So far, the difference between the local and global feature of molecules has been 

demonstrated. It is well-acknowledged that CNN could extract the local feature effec-

tively in molecular modeling. However, few works have been done for the molecular 

global feature extraction. One question in mind is which model will perform best on a 

dataset with only global feature variation. In chemistry, the isomers have the same atoms 

or functional groups (local feature) but different atomic arrangement (global feature). It 

could be the most coincident case for the study of the ability of global feature extraction. 

We will now explore the melting point QSAR modeling based on isomers by CNN, 

CRNN, and SVM applied on latent representation. The isomer information is extracted 

from PubChem and ChemSpider, which includes three types of isomers alcohols and 

ethers, amino acids and amides, as well as carboxylic acids and esters. Some cases for three 

types of isomers are shown in Table 5. 

Table 5. Names, SMILES, molecular structures, and melting points of isomers. 

Name SMILES Molecular Structure Melting Point (°C) 

2-Hydroxypropanamide CC(O)C(N)=O 

 

78 

Alanine CC(N)C(=O)O 

 

292 a 

1,3-Dimethoxypropane COCCCOC  −82 

1,5-Pentanediol OCCCCCO  −16 

Methyl benzoate COC(=O)c1ccccc1 

 

−12 

Phenylacetic acid O=C(O)Cc1ccccc1 
 

77 

a Alanine decomposes before melting, the value here is the temperature at which it decomposes. 

292 a

1,3-
Dimethoxypropane COCCCOC

Molecules 2021, 26, x FOR PEER REVIEW 6 of 15 
 

 

logarithm (logε), bandwidth in full width at half maximum (abs), and the molecular lifetime, respectively; the sixth one is 

the triplet state energy (ET1) for the TADF molecules; the last one is the power conversion efficiency (PCE) from HOPV15 
b Calculated with ECFP representation. 

ET1 is the one of the most important values for TADF molecules in the application of 

organic light-emitting diodes, since the reverse intersystem crossing occurs from the tri-

plet state to the singlet state to facilitate the energy transfer process [31]. In addition, PCE 

is a vital value as well to show the energy transfer performance of the solar cell [24]. As 

far as we know, it is the first time that QSAR modeling for the ET1 was studied based on 

TADF molecules. As for the PCE modeling, previous work shows excellent performance 

when using microscopic properties as the representation. However, this kind of represen-

tation is expensive to compute or experimentally determine. Except for the data scarcity, 

the low performance for the PCE might result from the unsuitability of our AE. Nowa-

days, most AEs are designed and trained for drug-like molecules [5,6,27]. Molecules for 

photovoltaic materials have much larger molecular weight, LogP, and more conjugated 

structures. It is anticipated that more proper AE designed and trained for photovoltaic 

molecules would result in better QSAR performance in PCE in the future. Given the 

above, our method showed the competitive modeling performance of various material 

properties without sophisticated molecular representation computation. We will next 

study why CRNN can perform better than CNN in most datasets. 

2.4. CRNN for the Isomers-Based Dataset 

So far, the difference between the local and global feature of molecules has been 

demonstrated. It is well-acknowledged that CNN could extract the local feature effec-

tively in molecular modeling. However, few works have been done for the molecular 

global feature extraction. One question in mind is which model will perform best on a 

dataset with only global feature variation. In chemistry, the isomers have the same atoms 

or functional groups (local feature) but different atomic arrangement (global feature). It 

could be the most coincident case for the study of the ability of global feature extraction. 

We will now explore the melting point QSAR modeling based on isomers by CNN, 

CRNN, and SVM applied on latent representation. The isomer information is extracted 

from PubChem and ChemSpider, which includes three types of isomers alcohols and 

ethers, amino acids and amides, as well as carboxylic acids and esters. Some cases for three 

types of isomers are shown in Table 5. 

Table 5. Names, SMILES, molecular structures, and melting points of isomers. 

Name SMILES Molecular Structure Melting Point (°C) 

2-Hydroxypropanamide CC(O)C(N)=O 

 

78 

Alanine CC(N)C(=O)O 

 

292 a 

1,3-Dimethoxypropane COCCCOC  −82 

1,5-Pentanediol OCCCCCO  −16 

Methyl benzoate COC(=O)c1ccccc1 

 

−12 

Phenylacetic acid O=C(O)Cc1ccccc1 
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1,5-Pentanediol OCCCCCO
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77 

a Alanine decomposes before melting, the value here is the temperature at which it decomposes. 

−16

Methyl benzoate COC(=O)c1ccccc1
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a Alanine decomposes before melting, the value here is the temperature at which it decomposes. 

77

a Alanine decomposes before melting, the value here is the temperature at which it decomposes.

As shown in Table 5, the melting points between isomers are different from each other,
while the SMILES are made up of the same characters with different arrangements. For
instance, the melting point of amino acids is much higher compared with the amides, since
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there is an internal transfer of a hydrogen ion from the -COOH group to the -NH2 group to
leave an ion with both a negative charge and a positive charge. These ionic attractions take
more energy to break, so the amino acids have high melting points, while this effect will
not occur in amides. The two other types of isomers have different melting points due to a
similar reason.

The r2 values of the isomers-based datasets are 0.81, 0.88, and 0.86 using CNN, CRNN,
and SVM, respectively. In other words, the CRNN outperforms CNN and SVM on the
QSAR modeling applied on the dataset with only difference in the global feature. The
relatively huge different performance (10%) between CRNN and CNN strengthened our
hypothesis that CRNN has better performance in global feature extraction when the ability
of local feature learning is maintained. Figure 1 demonstrates the architecture of CRNN
and its abilities in two types of feature learning. At first, the convolutional part extracted
the information of the types of atoms and functional groups. Then, the knowledge about
the atomic arrangement was learned by the GRU part. Finally, all the features come into
dense layers for classification or regression. It should be noted that in regular melting point
modeling among the 20 datasets above, the r2 by the CRNN model was lower than the one
by CNN. To elucidate the contradiction, the molecule structures in the dataset above were
checked. It turned out that no isomer in the dataset was found. Therefore, the global feature
extraction might not be the key ability for this QSAR modeling. Moreover, since CRNN has
many more parameters for fitting in the training process, a small dataset (283 molecules)
might contribute to under-fitting for it. Therefore, these seemingly contradictory results
between two MP datasets have been explained. We will next show the transfer learning
performance by CRNNTL.

2.5. Transfer Learning for Small Datasets of Drug Properties

Some of the 20 datasets above were used to investigate the knowledge transfer ability
of our model. In detail, MP, SIDER, AUR3c, and PI3 were considered as target datasets,
while BP, TOX21, FGFR1, MTOR, and EGFR acted as source datasets. Regarding the transfer
learning for physiology and physicochemical datasets, the ROC-AUC and r2 results are
reported in Supplementary Table S5 in detail. With the big datasets acting as a source target,
the transfer learning performance achieved about a 5% improvement in scores (for both
MP and SIDER) compared to learning from scratch, which is consistent with the previous
work due to the knowledge transferred from the big dataset into the small one [32].

Having settled the transfer learning performance of CRNNTL in the physiological
and physicochemical datasets, we turned our attention to the knowledge transfer ability
to bioactivities. As shown in the first part, the regression results of AUR3 and PI3 were
relatively worse than the other ones because of the small data size (shown in Table 2).
Hence, larger datasets, including FGFR1, MTOR, and EGFR, were used to transfer the
knowledge into AUR3 and PI3. Figure 2 showed the results of the transfer learning based
on the CRNN method. On the one hand, when FGFR1 serves as the source dataset, the r2

of both PI3 and AUR3 increased by about 10% compared to learning from scratch. On the
other hand, regarding the MTOR, QSAR for PI3 achieved almost a 30% improvement in
r2. However, no improvement was realized in case of AUR3. Despite the adequate QSAR
performance and size of the EGFR dataset, there was no statistical improvement when
EGFR acted as a source for both the PI3 and AUR3 targets. Therefore, it demonstrated that
the transfer learning ability did not only depend on the performance and size of the source
dataset.

According to the lock–key model in pharmaceutical science, the protein structures
play a significant role in the ligand–target interaction as well as the molecular ones, which
is different from the cases in physicochemical and physiological properties. Within the
target structures, local binding site similarities could be more important than global similar-
ities [33,34]. Hence, the local binding site similarities were compared using SMAP p-values
among the targets mentioned above [35]. SMAP p-values represent the binding site simi-
larity between two targets, which is based on a sensitive and robust ligand binding site



Molecules 2021, 26, 7257 8 of 15

comparison algorithm [36–38]. The lower the SMAP p-value, the more similarity between
binding sites.
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Figure 2. Transfer learning results for PI3 and AUR3 as target datasets and FGFR1, MOTR, and EGFR
as source datasets, learning from scratch as the baseline to evaluate the improvement.

As shown in Table 6, in comparison with MTOR, the SMAP p-values of PI3 is
7.8 × 10−6, which is the lowest among others, while the p-value between MTOR and
AUR3 implied that there is insignificant similarity between them. These results indicated
that a high binding site similarity resulted in the efficient knowledge transfer from the
source dataset into the target dataset. When FGFR1 acted as a source dataset, the results
were consistent with the ones above: due to moderate binding site similarities with the
source, moderate improvements were achieved for PI3 and AUR3 during the knowledge
transfer process. As for EGFR, no statistical improvement in two cases arose from lit-
tle binding site similarities with both two targets. In brief, a strong positive correlation
between transfer learning ability and binding site similarity was found.

Table 6. Binding site similarities between different targets. SMAP p-values represent the similarities
and the lower the SMAP p-value, the more similarity between different targets.

Targets PI3 AUR3

FGFR1 1.3 × 10−4 2.1 × 10−5

MTOR 7.8 × 10−6 9.4 × 10−3

EGFR 5.2 × 10−3 8.6 × 10−3

The transfer learning performance by CNN was also studied and shown in Supple-
mentary Table S6. Given the binding site similarities, high improvement was achieved as
well. However, the result of CRNN for transfer learning was still better than that of the
CNN method. To elucidate the difference, we tried to freeze the weights either in the local
(convolutional) or global (GRU) feature learning part when fine-tuning the models. As
shown in Supplementary Information Table S7, similar improvement was shown when
freezing the weights in the local feature learning part, while there was little improvement
as weights in the global part frozen. It indicated that fine tuning in the GRU part played a
key role in the transfer learning process. That is to say, local features can be shared between
different targets with binding site similarity in CRNNTL. Then, valuable local features
can be transferred from the source dataset. Finally, modeling performance was improved
efficiently by fine tuning the global feature learning (GRU) part.
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2.6. Transfer Learning for Small Datasets of Material Properties

Compared with datasets of luminescent properties, the sizes of datasets of ET and PCE
are small. Inspired by the knowledge transfer between drug properties, five luminescent
datasets acted as sources, while ET and PCE were considered as target datasets. Regarding
ET, a 12% improvement was achieved when Emmax was used as a source dataset. Addi-
tionally, the r2 increased by 9% when Absmax was used as the source. In contrast, no matter
which source was used, no improvement was shown compared with the learning from
scratch method.

The result above might be explained by analyzing the property relationships between
them. Emmax and Absmax represent the information of the energy level of a molecular
excited singlet state (ET1). According to a simple two-electron two-state model, ES1 and
ET1 can be written as [39]

ES1 = hH + hL + JHL + KHL, (1)

ET1 = hH + hL + JHL − KHL. (2)

Here, hH and hL represent the one-electron energy of the HOMO and LUMO orbital,
respectively, while JHL is the Coulomb repulsion energy between electron 1 on the HOMO
and electron 2 on the LUMO, and KHL denotes the corresponding electron exchange energy.
Hence, the difference between the ES1 and ET1 is small. The knowledge from the Emmax
and Absmax datasets can be effectively transferred for the QSAR modeling of ET1. As for
PCE, the value can be expressed as [24]

PCE = 100 × Voc × FF × JSC
Pin

, (3)

where VOC, FF, JSC, and Pin denote the open-circuit voltage, fill factor, short-circuit current,
and input power, respectively. Even though the five luminescent properties are relevant to
the values mentioned above, they do not play key roles for the PCE. Therefore, transfer
learning is inefficient between the source and target. In a word, efficient transfer learning
could be realized by CRNNTL when a relevant source and target dataset are selected.

2.7. Versatility

To demonstrate the versatility of our strategy, two latent representations were gener-
ated from one AAE [40] and another VAE [9] (named DDC). Then, their QSAR performance
were studied based on CRNN and other baseline methods as well as transfer learning for
the modeling improvement on a small dataset. As shown in the Supplementary Informa-
tion Tables S8–S10, the results were accordant with the aforementioned ones derived from
CDDD VAE: firstly, AugCRNN outperformed other models among most datasets; secondly,
the results using CRNN were better than the one by CNN in most cases due to the abilities
of both global and local feature extractions; thirdly, up to 30% improvements achieved
by the transfer learning module when taking binding site similarities into con-sideration.
Meanwhile, the QSAR modeling performance based on the AAE was not as good as the
results of two other VAEs. Compared with CDDD VAE, fewer molecules were trained in
the sequence-to-sequence model. Additionally, despite a similar amount of training data,
SMILES enumeration was used to improve the performance in another DDC encoder. The
results of AAE strengthen our hypothesis in material QSAR that the unsuitability of the AE
would affect the QSAR performance. Given the above, our approach has high versatility
to be used as QSAR modeling and transfer learning for other latent representations from
different AEs.

3. Materials and Methods
3.1. Input

While latent representation could be generated from various initial molecular repre-
sentation by encoders of AEs, in this work, we concentrated on the sequence-based SMILES
as the input representations. The SMILES represent molecular structures where atoms are
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labeled as nodes and bonds between atoms are encoded as edges [41]. In the beginning,
we used canonical SMILES to generate latent representation. Then, data augmentation for
the training set was performed to optimize our modeling in which 9 other SMILES were
randomly generated from the canonical SMILES for model training. Meanwhile, the testing
set remained the same with the QSAR method without data augmentation.

3.2. AEs

Subsequently, the SMILES strings were encoded by AEs to generate fixed-length
vectors as the latent representations. In recent years, developing AEs for molecular de
novo design and QSAR modeling has become a hot topic for drug discovery [7,8]. In an
AE, the latent representation is derived from the encoder. Then, the decoder part of an AE
could be used to reconstruct the molecular structure. For instance, the VAE is one kind of
developed AEs in which new samples could be generated by the decoders. Additionally,
adversarial autoencoders (AAEs) are a modification of VAEs where an AE is combined
with a generative adversarial network (GAN). Due to a prior distribution of the training,
AAEs facilitate the generation of novel structures. In this study, two VAEs [6,9] and one
AAE [40] were used for latent representation generation. Their description is provided in
Supplementary Materials. At first, based on the latent representation from CDDD [6] (one
of the VAEs algorithm), we compare the CRNNTL performance on the QSAR modeling
and transfer learning with state-of-the-art methods. Then, the versatility was studied based
on the latent representation generated from the other VAE and AAE methods.

3.3. Datasets and Preprocessing

As for the QSAR in drug properties, the datasets include various physicochemical
or physiological properties and bioactivities in which 10 for classification and 10 for
regression were selected from different sources. Table 7 summarized the information about
20 datasets. They were obtained from DeepChem or other sources. The isomers-based
dataset represents different melting point for 70 molecules. In the dataset, for some amino
acids, it is difficult to get the exact melting point because they tend to decompose before
melting. In such a case, the decomposition temperatures are used as labeling data instead.
Each isomer couples were in the same group for cross-validation.

Table 7. Overview of the datasets of drug properties (left for regression and right for classification).

Acronym Description Size Acronym Description Size

EGFR Epidermal growth factor
inhibition [42] 4113 HIV Inhibition of HIV

replication [43] 41101

EAR3 Ephrin type-A receptor 3
[42] 587 AMES Mutagenicity [6] 6130

AUR3 Aurora kinase C [42] 1001 BACE Human β-secretase 1
inhibitors [43] 1483

FGFR1 Fibroblast growth factor
receptor [44] 4177 HERG HERG inhibition [40] 3440

MTOR Rapamycin target protein
[45] 6995 BBBP Blood–brain barrier

penetration [43] 1879

PI3 PI3-kinase p110-gamma
[46] 2995 BEETOX Toxicity in honeybees

[47] 188

LogS Aqueous solubility [43] 1144 JAK3 Janus kinase 3 inhibitor
[48] 868

Lipo Lipophilicity [43] 3817 BioDeg Biodegradability [49] 1698
BP Boiling point [50] 12451 TOX21 In-vitro toxicity [43] 7785
MP Melting point [51] 283 SIDER Side Effect Resource [43] 1412

With regard to the dataset of material properties, the five datasets featuring lumi-
nescent properties were obtained from the previous work [52]. Meanwhile, the dataset
of TADF molecules was collected from two reviews [31,53]. In addition, the dataset of
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molecules for solar cells is from HOPV15 [30]. Table 8 summarizes the information about 7
datasets.

Table 8. Overview of the datasets of material properties.

Acronym Description Size

Absmax absorption peak position [52] 6433
Emmax emission peak position [52] 6412
Logε extinction coefficient in logarithm [52] 3848
σabs bandwidth in full width at half maximum [52] 1606

lifetime molecular lifetime [52] 2755
ET1 triplet state energy [31,53] 60
PCE power conversion efficiency [30] 249

3.4. The Architecture of QSAR Models

The architecture of CRNN has CNN, GRU, and dense layer parts, as shown in Figure 1.
This new method was benchmarked against state-of-the-art ones, including CNN and SVM
applied on latent representation as well as classical machine learning on ECFPs.

The hyperparameter settings were fixed based on the HIV and EGFR datasets, while
other datasets were solely used for evaluating the final model. As for the CNN architecture,
it contains convolutional and classification (or regression) parts. The local feature learning
part has 3 convolutional layers. According to the literature [11,12,25,26], the kernel sizes of
the convolution layers were 5, 2, and 5. Given the hyperparameter search, the numbers of
the produced filters were 15, 30, and 60, respectively. The kernel sizes of the convolution
were 5, 2, and 5, and the numbers of the produced filters were 15, 30, and 60, respectively.
Batch normalization was used after each convolutional layer. After the pooling operation,
the data went through two fully connected layers as the classification (or regression)
part for which the output layer consisted of two neurons for classification tasks (or one
neuron for regression). The hyperparameter and architecture optimization are shown in
the next section. Early stopping was performed to avoid overfitting. More specifically,
the r2 of the test dataset was monitored. When the r2 decreases more than 2 times, the
stopping is triggered (the threshold is 0.005 or 0.01). The SVM modeling applied on latent
representation was analyzed according to the previous work. Meanwhile, Random Forest
(RF) was implemented in scikit-learn for the modeling based on ECFP.

3.5. Training and Evaluation

The end-to-end from scratch method was used for CNN training. As for the CRNN,
the training for some datasets encountered no convergence. Referring to the literature
about CRNN modeling for electrocardiogram classification [26], 3-phase protocol was used.
In phase 1, the GRU part was blocked and the weight in the CNN and dense layers was
updated. Then, the GRU part was unfrozen, and other parts were fixed. Finally, 3 parts
were trained jointly. Meanwhile, if the size of the dataset is small, the batch size can be less
than 128. Meanwhile, if the size of the dataset is equal to or larger than 300, the batch size
is 128, which shows the best performance in grid search. When the batch size is smaller
than 300 and larger than 100, the batch size is 64. When the batch size is equal to or smaller
than 100, the batch size is 24.

The area under the receiver characteristic curve (ROC-AUC) values and coefficients of
determination (r2) were used for the classification and regression tasks, respectively. Except
for the ET and PCE datasets, others were randomly split into a training and test set using
the sklearn package. Then, the 5-fold cross-validation was performed to compare with the
performance by the aforementioned methods in which the testing dataset was kept apart
from the hyperparameter fine tuning to avoid potential overfitting. Due to the small size of
the datasets, ET and PCE modeling showed large standard mean errors compared with the
r2. In order to ensure the test set lays within the domain of applicability of the model, a
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k-mean clustering algorithm was used to divide the datasets into the training (80%) and
test (20%) sets [54].

3.6. Transfer Learning

The source dataset was first trained using the CRNN model by 5-fold cross-validation.
Then, the best performance model was selected and saved for the transfer learning use.
Three transfer learning methods were used here. The first one is based on the conventional
method. The pretrained model was loaded. After loading the target data, the convolutional
part was frozen, and other parts were trained. Finally, the convolutional part was unfrozen,
and the whole network was fine-tuned. The second way follows the same process in the
beginning. However, the difference was that there is no unfreezing for the convolutional
part. In other words, the local feature learning part was not tuned in the knowledge transfer
process. As for the third method, the GRU part was frozen in the whole training process.

4. Conclusions

We demonstrate a convolutional and recurrent neural network and transfer learning
model (CRNNTL) for both QSAR modeling and knowledge transfer study. As for the
CRNN part, it integrates the advantages of both convolutional and recurrent neural net-
works as well as the data augmentation method. Our method outperforms or competes
with the state-of-art ones in 27 datasets of drug or material properties. We hypothesize
that the excellent performance results from improvement of the ability of global feature
(atomic arrangement) extraction by the GRU part. Meanwhile, the ability of local feature
(types of atoms and functional groups) extraction is maintained by the CNN part. This
assumption was strengthened by training and testing isomer-based datasets. Even though
more parameters need to be trained when the data size is not large, the performance of
CRNN is almost 10% higher than that of traditional CNN because of the outstanding ability
of global feature learning. In drug and material discovery, high-proportioned isomers and
derivatives need to be tested for their properties. Therefore, our model provides a new
strategy for molecular QSAR modeling in various properties.

With regard to the transfer learning part, effective knowledge transfer from a larger
dataset into a small one can occur for QSAR modeling in both drug and material properties.
When considering binding site similarities, up to 30% improvement was achieved by
CRNNTL between different bioactivity datasets. In addition, a considerable increase was
shown for the transfer learning between the larger dataset for luminescent molecules and
the smaller one for OLED materials. Accordingly, transfer learning could facilitate the
QSAR performance when considering the correlation between datasets. Hence, CRNNTL
could be a potential method to overcome the data scarcity for QSAR modeling.

At last, CRNNTL showed high versatility by testing the model on different latent
representations from other types of autoencoders. We anticipate that the performance of
QSAR modeling by our method could be further improved by the latent representation
generated from the AEs, which is more suitable for molecules in material science. Accord-
ingly, we expect that CRNNTL could pave the pathway for drug and material discovery in
the big data era.

Supplementary Materials: The following are available online. Figure S1: The architecture of VAE,
Figure S2: The architecture of the AAE, Table S1: The performance using different number of
convolutional layers, Table S2: The standard mean errors of CRNN and AugCRNN method for
regression datasets of drug properties, Table S3: The standard mean errors of CRNN and AugCRNN
method for classification datasets of drug properties, Table S4: The standard mean errors of CRNN
and AugCRNN method for classification datasets of material properties, Table S5: The result of
transfer learning compared with learning from scratch method, Table S6: Transfer learning result by
CNN, Table S7: The best result of transfer learning by freezing different parts of the neural network,
Table S8: The QSAR performance by the latent space derived from the AAE, Table S9: The QSAR
performance by the latent space derived from the DDC VAE, Table S10: Transfer learning result by
CNN.
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Abbreviations

QSAR: quantitative structure–activity relationship; ECFPs: extended-connectivity fingerprints;
AEs: autoencoders; VAE: variational autoencoders; AAE: adversarial autoencoders; CNN: con-
volutional neural network; GRU: gated recurrent unit; SMILES: Simplified Molecular Input Line
Entry Specification; SVM: support vector machine; RF: random forest; AUC-ROC: area under the
receiver characteristic curve; r2: coefficients of determination; CRNN: convolutional neural network;
AugCRNN: CRNN with data augmentation method; Absmax: absorption peak position; Emmax:
emission peak position; logε: extinction coefficient in logarithm, σabs: bandwidth in full width at
half-maximum; ET1: the triplet energy level of the molecule; PCE: power conversion efficiency.
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