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Abstract

The advent of immunotherapy has undoubtedly changed the current standard for cancer 
treatment. Immunotherapy offers the possibility of achieving excellent results—a new 
alternative for patients with advanced-stage or relapsed disease. Nowadays, the progress 
made in tumour biology has led to multiple advances in clinical and translational cancer 
research. Many oncogenic pathways responsible for tumour growth and metastases have 
been described and, consequently, multiple new cancer therapeutic agents have been 
developed and are under current investigation. Due to this rapid increase in knowledge 
and pharmaceutical development, traditional clinical trials designs have encountered 
major limitations. The pharmacological differences (in toxicity profiles and effectiveness 
patterns) between immunotherapy and chemotherapy have caused traditional clinical tri-
als to evolve in order to meet this emerging need. This review focuses on the different 
options pertaining to clinical trial design that have arisen in the field of immuno-oncology, 
as well as the challenges of accurately interpreting traditional survival analyses within this 
novel area of cancer medicine.
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Introduction

Cancer research is a field that has consistently grown over time; the increase in 
knowledge has led to the development of multiple new target-specific therapeutic 
agents. Immunotherapy is a remarkable example. In 1891, William B. Coley inoculated 
Streptococcus pyogenes and Serratia marcenses in a patient with inoperable sarcoma and 
noted that the immunologic response generated destruction of the tumour cells in that 
patient. This was the first evidence supporting the widely suspected anti-tumour role 
played by the human immune system [1]. The observations by Dr. Coley lay the ground-
work for several transcendent discoveries in the field of immunology, including the 
advent of immune-checkpoint inhibitors [2]. In 2011, the Food and Drug Administration 
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(FDA) granted approval for the first immunotherapeutic drug: ipilimumab (Bristol Myers Squibb), for use in patients with advanced melanoma 
[3]. Today, the field of immuno-oncology continues to grow, with more impetus than ever, with the rise of several agents which have proven 
to be effective in the treatment of multiple malignancies. In addition to their efficacy, immunotherapy agents have also gained advantage 
due to their favourable toxicity profile, with less severe adverse effects due to their specific immunologic anti-tumour nature, compared to 
traditional cytotoxic schemes.

Unfortunately, and almost inevitably, these advances have caused significant increases in the cost of cancer care. Adams et al. estimated that 
the total cost of the process of research and development of new cancer drugs, including preclinical and clinical testing, is approximately 
$1 billion dollars. In addition, the capitalised preclinical, clinical, and total costs per new drug have exponentially increased over time, and 
although this increase is reflected in all the areas of healthcare, it is particularly magnified in the area of cancer medicine, where recent 
reports estimate a cost between $648 million–$2.7 billion USD [4, 5]. A possible explanation for the exceedingly high cost of bringing cancer 
drugs to the market, compared to other disease-type drugs, is in part due to the level of complexity and length of time required to conduct 
phase III cancer clinical trials [6]. These increasing costs could have led to a change in clinical trial design that looks for optimisation of indi-
cation and conduction. In the specific case of immunotherapy, a change of direction in the design of clinical trials was adamantly needed.

This is because for the first part, this group of therapeutic agents is very diverse; it includes checkpoint inhibitors, monoclonal antibodies, 
cancer vaccines and adoptive T-cell therapies [7]. Moreover, not all the agents have been shown to have efficacy across all the tumours and 
to complicate the matter even more, tumour heterogeneity drives different responses in patient subgroups, conditioning the degree of clini-
cal benefit observed in each individual patient. Another important consideration is temporality, while clinical benefit in patients receiving 
standard chemotherapy is generally observed during active treatment, this is not true for immunotherapy, where both effectiveness and 
toxicity are delayed, sometimes several months, after treatment [8]. Adding all these factors to high costs of development and approval, 
the need to design clinical trials that optimise indications, taking into consideration the mechanism of response, its variation according to 
genomic alterations and the specific adverse effects observed with these novel drugs was warranted.

Types of biomarker-based designs

The design of clinical trials has been modified due to the advent of targeted therapy. Biomarkers play an important role in immunotherapy 
since they identify patients who are more likely to reap higher benefit from a particular therapy [9]. This approach renders biomarkers the 
basis for clinical trials with molecularly guided recruitment.

Enrichment or “targeted”

This type of design was first described by Simon and Maitournam [10]. Initially, only patients who are positive for a particular biomarker are 
recruited for the study. Thereafter, the population is randomised into experimental and control groups. This type of clinical trial is the perfect 
framework for the evaluation of treatment efficacy in a biomarker-positive subpopulation. Simon et al. [11] describe that this design is appro-
priate for phase II studies and it has been implemented in trials evaluating drugs for BRAF-mutated melanoma (vemurafenib) and ALK-positive 
lung cancer (crizotinib). Figure 1 shows the enrichment or targeted trial design.

Marker by treatment interaction

Plays an important role in the exclusion of patients according to their biomarker status, each subpopulation is randomised to the experimen-
tal versus control treatment group.

Modified marker strategy

Used in diseases with one or more approved therapies. The objective is to identify marker subpopulation with the most benefit to a 
specific therapy [12].
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Figure 1. Enrichment or targeted trial design.

Master protocols

Master protocols are next-generation clinical trial designs that evaluate the combination of several molecular markers and their targeted 
therapies. These protocols rose from the current need for innovative trials that allow simultaneous assessment of multiple treatments in one 
disease or one treatment in multiple diseases. It is one single protocol that addresses many questions with faster results and at a lower cost. 
The tumours from patients enrolled in these types of trials are analysed with next-generation sequencing and/or immunohistochemistry. The 
final purpose is to collect large amounts of data. Based on the results, patients are distributed to sub-studies [13]. The main advantage of 
these master protocols is the efficient patient population selection [14]. There are three different designs included within the master proto-
cols. Even though these designs vary greatly between one and other, they also share many features. For example, they require more planning 
efforts and, in that way, obtain high-quality data and increased trial efficiencies. Because of this, these novel designs of clinical trials can last 
longer but provide precise results [15].

These master protocols include the following designs:

1. Umbrella design: Patients with the same disease are recruited, later the different genetic alterations are identified, and different 
drugs are given to them according to their molecular characteristics. All the targeted agents are investigated “under the umbrella of one 
disease.” This design is time and cost-effective [15]. Also, these trials include multiple treatments and multiple biomarkers in the same 
study allowing randomised comparisons. An example from this design is “The Adjuvant Lung Cancer Enrichment Marker Identification and 
Sequencing—ALCHEMIST.” The aim of this study was to identify patients with early-stage lung cancer with EGFR and ALK mutations and 
to evaluate drug treatments targeted against these molecular alterations [16]. Figure 2 shows the umbrella design.

2. Basket design: Patients with the same genetic mutation are included regardless of the type of cancer they have. These trials are based 
upon the principle that drug effectiveness is dependent on their target and not on the tumour type. They are useful to study a single 
targeted therapy in the context of multiple diseases or disease subtypes. It allows the separate analysis of patients with different tumour 
types and identifies the effect of the drug on all the patients as one single group [15, 17]. Furthermore, it can help in the development 
and study of specific biomarkers in rare tumours. For example, the study of “Vemurafenib in multiple non-melanoma cancers with BRAF V600 
mutations” enrolled patients with BRAF V600 mutation-positive cancers that were not melanoma or papillary thyroid carcinoma [18]. One 
important limitation of basket designed-studies is the fact that in some cases the histological tumour type can be a better predictor of 
treatment response than the biomarkers themselves [19]. Figure 3 shows the basket trial design.
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3. Platform design: These studies may be designed as umbrella or basket trials but with the difference that these studies permit the inclusion 
or exclusion of new therapies or patient populations along the trial development. In other words, this type of study runs perpetually and 
changes the medication evaluated or patients. The idea is to mature treatment strategies for a pathology across populations or medica-
tions. Analyses, which per definition are interim analyses, determine the efficacy of an intervention and, therefore, lead to the inclusion 
or exclusion or molecules or patients [14].

Survival analysis in immunotherapy

Survival analysis is one of the main statistical tools used in oncology nowadays. It is used to determine differences between treatments 
and/or interventions. It mathematically demonstrates an existing difference among two or more treatment groups as of the occurrence of 
an expected event, such as death or progression, in determined follow-up time. This, in turn, is called time-to-event analysis. 

Figure 2. Umbrella trial design.

Figure 3. Basket trial design.

https://doi.org/10.3332/ecancer.2019.936


Re
vi

ew

ecancer 2019, 13:936; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2019.936  5

In patient follow-up, there are some issues that can potentially cause many traditional statistical tools to lose validity. First, the absolute 
follow-up of subjects is very difficult to assure. Either in a cohort or an intervention group, an expected but unknown quantity of patients 
will be lost to follow-up. This dropout can occur at any moment and can potentially lead to incorrect conclusions. The statistical paradigm in 
these cases could be either to include them in the analysis and assume dropout as an event, increasing the odds of encountering type 1 error; 
or exclude them in the follow-up, and therefore lose power and risk getting a type 2 error. A middle ground for both perspectives is usually 
undertaken. This approach is called censoring and takes the patients into account for analysis until the dropout time is achieved and, after 
that moment, they are excluded. Since this dropout occurs after study initiation, it’s correctly called right censoring [20]. Additionally, since the 
dropout is expected to occur randomly, it should not be related to prognosis. This is a core principle behind the Kaplan–Meier estimator (KM-
Estimator). Proposed by Edward L. Kaplan and Paul Meier in 1958, it is one of the most widely used methodologies in survival analysis. Briefly, 
it calculates the probability of presenting the event given the number of individuals at risk at a defined moment. It also adjusts for censored 
observations. Results of this estimator are plotted in a survival graph in which each observation of event is presented in a ladder curve [21].

Another aspect to have in mind is the behaviour of the event presentation at follow-up. Normally, when modelling time-to-event data, 
survival functions, or the functions that model the probability of event occurrence in a determined time frame, should be known. Since 
the conduction of cohort or clinical study is designed to establish the survival behaviour of a set of patients, these functions, a priori, are 
therefore unknown. To compensate for this uncertainty, an assumption on the occurrence of events is made. This is known as the propor-
tional hazard rate assumption. The idea behind this concept is to model occurrence as exponential functions (i.e., exponential model) in both 
groups. This relates to the effect in hazards as constant in time for each individual group through follow-up [22]. This assumption becomes 
crucial, especially in the study design given that it is required to express the effect size of intervention for sample size estimation and the 
interpretation of the KM-estimator [23].

Finally, in order to objectively define differences between survival curves and treatment groups the log-rank test is traditionally employed. 
It is based on the same assumptions as the KM-estimator, and therefore both are analysed together in the study. It behaves similarly to an 
X2 test. The principle lies in establishing a difference between expected and observed values on the times of the events. The sum of these 
individual differences equals the value of the statistic on an X2 distribution. After assigning a p value with regard to the degrees of freedom, 
the null hypothesis can, or cannot, be rejected [24].

Since the introduction of immunotherapy into oncology in recent years, results and the representation of survival curves and their corre-
sponding statistical considerations have had some problems with the previously mentioned methodology. Ipilimumab, the first monoclonal 
antibody to be proven to be effective in unresectable/metastatic melanoma revealed fascinating results in terms of survival behaviour. 
After 10 years of follow-up, a pooled analysis of 1861 patients yielded a median overall survival (OS) of 11.4 months. Interestingly, after 
achieving a plateau at around 3 years, around 22% of patients remained alive for the rest of the follow-up. Additionally, the behaviour of 
the ipilimumab-treated patients was similar to chemotherapy-exposed ones in the first 4 months, with a separation of the curves following 
that period [25].

These findings showed a drastic difference compared to the traditional chemotherapy trials. Moreover, the behaviour of the curves 
demonstrated that the proportional hazards rate assumption is not met. This is the case since in the initial months, hazards rates remain pro-
portional, but as time progresses, hazard for the event also diminishes. Additionally, other results of immunotherapy trials have even shown 
an early crossing of the curves, complicating matters even more [26]. These phenomena have become known as either long term survivors, 
delayed treatment effect and functional cure.

These concepts are better explained with Figure 4.

Further issues arise when designing future immune-oncology studies. Since the main differences are going to be seen in the long-term sur-
vivor’s group, an adequate number of patients should be randomised in order to guarantee a significant difference in this aspect, increasing 
the size of the sample. Additionally, the implementation of a model different from the aforementioned exponential should be warranted. One 
possible solution for this latter aspect is the use of a better-fitted model: the Weibull. This model has several advantages, including the fact 
that it represents hazards as a function of time, correcting for the disproportionality of hazard rates. Furthermore, it also offers the inclusion 
of covariates and describes long-tailed distributions, representative of long term survivors [27].
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Figure 4. In the presented image, two cohorts of patients with metastatic non-small cell lung cancer, one treated with standard chemotherapy and the 
second with immunotherapy and their correspondent % of overall survivors are presented. Each step along the staircase-like curve represents events, in 
this case, deaths. The yellow triangles are the censored observations. Curve intersection is observed at around 9 months (Disclaimer: This figure is original 
of the authors and was submitted for publication as part of an original article in another journal. No copyright transference has been made at this point).

Moreover, estimation of a traditional endpoint such as OS or progression-free survival (PFS) also seems to be inadequate. Taking the previous 
example of metastatic melanoma, OS for ipilimumab and dacarbazine-treated patients reached a median of 11.2 months compared to 9.1 
months in the dacarbazine monotherapy group [28]. When comparing median OS, the magnitude of effect doesn’t seem dramatic, since the 
true effect is observed in long-term survivors. Furthermore, the log-rank test becomes inadequate for assessing statistical differences, since 
this test gives each observation an equal weight in the final statistic calculation, thus, in turn, cutting short the effect on long term survivors. 
A possible alternative is the usage of weighted log-rank tests. These tests put weights of importance on observations based on their moment 
of occurrence during follow-up, correcting for the loss in statistical power. The Fleming–Harrington test was proposed as an alternative. As 
a core characteristic, it possesses two parameters that can be tuned to match specific weight allocation on the survival curves. Inherently, 
a problem presents when giving a priori values to these parameters since the point of curve divergence cannot be estimated prior to the 
conduction of the study [27]. All in all, these problems, and specifically, the underestimation of the magnitude of effect by traditional survival 
outcomes state the necessity for other endpoints different to OS and PFS per se.

Milestone survival defined as the cross-sectional evaluation of survival at predefined moments is an alternative. Evaluating the percentage of 
patients alive at two years, in the case of melanoma and ipilimumab, should in theory be representative of long-term survivors. Key aspects 
for this issue rely on defining the milestones at the study’s design, conduction of follow-up to the milestone, and finally, preventing if possible 
interim analysis, since the desired effects will present later, and therefore be missed [22, 27]. Limitations to this approach include the effects 
of censored observations as well as its inability to describe the behaviour of the survival curves [29]. Additionally, since there is no consensus 
on the specific points in time to be set as milestones, this lies on the investigator´s preference. Normally, such endpoints are set for OS and 
PFS at 6, 9, 12, or 24 months. As a way to offer robustness in the analysis, milestones should be indicated before the conduction of the study 
in the clinical trial statistical analysis plan. 

Conclusions

In summary, immunotherapy has not only introduced interesting concepts both in terms of biological effects and therapeutic changes but 
also in statistics and clinical trial design, conduction and interpretation. Although not ideal, milestone survival might be considered as a valid 
strategy to demonstrate differences in survival. Further implementation of other statistical methods and consensus are still required to reach 
a final conclusion on definitive methods.
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