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High expression of Endogenous 
Retroviruses from intrauterine life 
to adulthood in two mouse models 
of Autism Spectrum Disorders
Chiara Cipriani1, Laura Ricceri2, Claudia Matteucci1, Alessia De Felice2, Anna Maria 
Tartaglione2, Ayele Argaw-Denboba1, Francesca Pica1, Sandro Grelli1, Gemma Calamandrei2, 
Paola Sinibaldi Vallebona1,3 & Emanuela Balestrieri1

Retroelements, such as Human Endogenous Retroviruses (HERVs), have been implicated in many 
complex diseases, including neurological and neuropsychiatric disorders. Previously, we demonstrated 
a distinctive expression profile of specific HERV families in peripheral blood mononuclear cells from 
Autistic Spectrum Disorders (ASD) patients, suggesting their involvement in ASD. Here we used two 
distinct ASD mouse models: inbred BTBR T+tf/J mice and CD-1 outbred mice prenatally exposed to 
valproic acid. Whole embryos, blood and brain samples from the offspring were collected at different 
ages and the expression of several ERV families (ETnI, ETnII-α, ETnII-β, ETnII-γ, MusD and IAP), 
proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and Toll-like receptors (TLR3 and TLR4) was 
assessed. In the two distinct mouse models analysed, the transcriptional activity of the ERV families 
was significant higher in comparison with corresponding controls, in whole embryos, blood and brain 
samples. Also the expression levels of the proinflammatory cytokines and TLRs were significantly higher 
than controls. Current results are in agreement with our previous findings in ASD children, supporting 
the hypothesis that ERVs may serve as biomarkers of atypical brain development. Moreover, the 
changes in ERVs and proinflammatory cytokines expression could be related with the autistic-like traits 
acquisition in the two mouse models.

Endogenous Retroviruses (ERVs), the major subset of retrotransposons, are the relics of ancestral retroviral infec-
tion to germline cells, stably integrated into the host cellular DNA, which comprise about 8% of the genome in 
humans and over 10% in mice1,2. Even if the transposition of retroelements is deemed responsible for the evolu-
tion and the genomic instability3, the vast majority of human ERVs (HERVs) sequences are biochemically inert 
and silenced by host cellular machineries. Their activity is tightly regulated during the life cycle of each individual, 
and the active propagation and random insertion into genomic DNA leads to gene alterations, with consequent 
uncontrolled expression and possible involvement in various diseases including cancer4, autoimmune5 and neu-
rological and psychiatric disorders6–8. HERVs contribution to human diseases has been associated also to the 
interplay with immune system9. Among the neuro-developmental disorders, we observed altered expression of 
selected HERV families in children with Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum 
Disorders (ASD)10–12. The complex aetiology of ASD is still largely unknown, as both genetic susceptibility and 
environmental factors are involved, with epigenetic changes possibly playing a major role during early brain 
development13,14. It has also been described that immunological alterations seem to be involved in the patho-
physiology of ASD15,16, since several ASD risk genes encode components of the immune-system17. Furthermore, 
a possible relationship between maternal immune activation and defects in fetal development was proposed, 
although a causal link has not been proved yet18.

As in humans, in the mouse species many families of ERVs have been identified including the most active 
intracisternal A-particle elements (IAPs)19,20 and Type II early transposons (ETns)21. IAPs are able to transpose 
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through retroviral mechanisms in the cisternae of the endoplasmic reticulum22 and can influence the transcrip-
tional profile of nearby genes, providing functional promoter elements and modulating local epigenetic landscape 
through changes in DNA methylation and histone modifications23. ETn elements are non-coding retroviral-like 
sequences, classified into ETnI and ETnII subtypes24. ETnII subtype carries long terminal repeats (LTR) and com-
prises mouse type D retrovirus (MusD), containing gag-pro-pol genes but lacking the env gene25, and ETnII-α, 
ETnII-β e ETnII-γ26. IAPs, and ETnII elements are responsible for about 10% of mouse spontaneous mutations by 
inserting into genes21. With the aim to support our previous observation that autistic behaviour in humans was 
associated with a distinctive transcriptional profile of some HERV families, detectable in peripheral blood mon-
onuclear cells (PBMC) from ASD patients10,11, we assessed in whole embryos and, from the offspring at different 
time after birth, in blood and brain samples the IAPs and ETns expression in two distinct mouse models of ASD: 
BTBR T+tf/J inbred mice (referred as BTBR here-in) and CD-1 outbred mice treated in utero with the anticon-
vulsant and histone deacetylase inhibitor valproic acid (VPA). BTBR is an idiopathic model of ASD, displaying 
several behavioural traits relevant to ASD, such as impairments in social and communication domains, reduced 
cognitive flexibility and high levels of repetitive behaviours27–29 in comparison to the inbred C57BL6/J strain, 
considered as standard control strain for BTBR. CD-1 outbred mice, treated in utero with VPA, show behavioural 
ASD-like alterations including early motor hyperactivity30, social deficits and cognitive impairments31,32. Of note 
the use of VPA as antiepileptic medication during pregnancy, is associated with a significantly increased risk of 
somatic anomalies, ASD and other developmental disabilities in the offspring31,33,34. Multiple mechanisms are 
called upon to explain the therapeutic effects of VPA as well as its developmental neurotoxicity: direct interfer-
ence with GABAergic neurotransmission, interaction with neural remodelling and neurogenesis, modulation of 
folate metabolism and free radicals’ production35–37. In rodent models, through epigenetic mechanisms prenatal 
VPA alters expression of several genes and proteins implicated in brain and immune system development38,39.

Finally, we also evaluated the transcriptional activity of proinflammatory cytokines (IL-1β, IL-6, TNF-α) and 
Toll-like receptors (TLR3 and 4), main actors of innate immunity, in whole embryos and, from the offspring at 
different time after birth, in blood and brain samples to investigate on the hypothesised link between the ERVs 
transcriptional activity and the immune system.

Results
High levels of ERVs expression in BTBR mice from intrauterine life till adulthood.  The tran-
scriptional activity of ETnI, ETnII-α, ETnII-β, ETnII-γ, MusD and IAP genes were analysed in whole embryos 
explanted at gestational day (GD) 10.5 and in blood and brain samples obtained at post natal day (PND) 1, 7, 23 
and 120 from BTBR and C57BL6/J mice, by real time-PCR. The data obtained are represented as box plots in 
Fig. 1.

The expression levels of all ERV genes were higher (p ≤ 0.002) in BTBR (panels A–F, red box plots) than in 
C57BL6/J embryos (white box plots) and were maintained also after the birth, at all the age points examined, in 
blood (panels A’–F’) as well as in brain tissue (panels A”–F”). Particularly, the transcriptional activity of all ERV 
genes analysed was significantly higher at all age points in blood samples from BTBR mice (red box plots) than 
in age matched C57BL6/J mice (white box plots) (p ≤ 0.038), with the exception of ETnII-γ gene at PND 7 (panel 
D’). In C57BL6/J mice, except for ETnII-γ (which showed maximal expression at PND 7) the highest expression 
levels of genes analysed were found at PND 120 (p ≤ 0.008, PND 1, 7 and 23 vs PND 120). In BTBR mice the same 
age-dependent profile was evident (p ≤ 0.050, PND 1, 7 and 23 vs PND 120), but levels of expression attained at 
PND 120 were strikingly higher.

In brain samples from BTBR mice (red box plots), the transcriptional activity of all ERVs analysed was signif-
icantly higher than C57BL6/J mice at all age points (white box plots) (p ≤ 0.028). In C57BL6/J mice the highest 
levels of expression of ETnI, ETnII-β, MusD and IAP were observed at PND 120 (PND 1 vs PND 120 p ≤ 0.028), 
while those of ETnII-α and ETnII-γ at PND 7 (PND 1 vs PND 7 p ≤ 0.050). BTBR similarly reached the high-
est levels at PND 120, statistically different in the comparison with those found at PND 1, PND 7 and PND 23 
(p ≤ 0.028), except for ETnII-γ (PND 1 vs PND 120) and ETnI, ETnII-α (PND 7 vs PND 120). See Supplementary 
Table S1 for median values of ERVs expression and Table S3 for p-values for all the possible comparisons.

High levels of cytokines and Toll-like receptors were found in embryos and in blood and brain 
from BTBR mice.  In the same samples we evaluated the expression levels of IL-1β, IL-6, TNF-α, TLR3 and 
TLR4 genes, by real time-PCR, and the data obtained are represented as box plots in Fig. 2. Whole embryos 
explanted at GD 10.5 and blood and brain samples at PND 1 and PND 7 were taken into account.

The expression levels of cytokines and TLRs were higher in whole embryos from BTBR mice (panel A–E, red 
box plots) than in C57BL/J control groups (white box plots) (p ≤ 0.003) and the high levels observed were main-
tained after the birth both in blood (panel A’–E’, red box plots) (p ≤ 0.032) and in brain samples (panel A”–E”, red 
box plots) (p ≤ 0.028) (see Supplementary Table S2 for median values of cytokines and TLRs expression levels 
and Table S3). Interestingly, only in BTBR embryos, positive correlations between the expression levels of ERVs, 
cytokines and TLRs were found (see Supplementary Table S4). Particularly, positive correlation was revealed 
between the expression of IL-1β and ETnII-β and MusD (p ≤ 0.047); IL-6 and MusD (p = 0.021); TNF-α and 
ETnII-β, ETnII-γ, and MusD (p ≤ 0.047); TLR3 and ETnI (p = 0.047).

Prenatal VPA exposure induced the expression of most ERVs analysed in embryos and in blood 
and brain samples from CD-1 mice.  The transcriptional activity of the same ERV genes mentioned above 
were analysed in whole embryos explanted 3 and 24 hours following VPA treatment at GD 10.5 and in blood and 
brain samples obtained at PND 1, 7, 23 and 120, by real time-PCR. The data obtained are represented as box plots 
in Fig. 3.



www.nature.com/scientificreports/

3Scientific REPorTS |  (2018) 8:629  | DOI:10.1038/s41598-017-19035-w

In whole embryos (panel A–F) higher transcriptional activity of most ERVs analysed at both time points 
after VPA treatment (blue box plots), was evident in comparison with corresponding values of whole embryos 
obtained from vehicle-treated dams (white box plots) (p ≤ 0.042), except for ETnII-β (panel C) and ETnII-α 
(panel B) genes at 3 hours and 24 hours post treatment, respectively (Tables S1 and S3).

The Spearman analysis revealed in vehicle embryos the presence of positive correlations between all ERVs 
expression levels (p ≤ 0.046); conversely, several of the correlations were lost after VPA treatment. However, both 
at 3 and 24 hours after VPA treatment, the positive correlations among the expression levels of two clusters of 
ERVs, including ETnI, ETnII-α and ETnII-β (p ≤ 0.046) and ETnII-γ, MusD and IAP (p < 0.001), were main-
tained (see Table S5).

After birth, the results showed that in the blood tissue (panel A’–F’), prenatal exposure to VPA, increased 
significantly the transcriptional activity of ERV families (blue box plots) at PND 1 and PND 7 (except for ETnI 
at PND 7, panel A’), compared to age-matched control groups (white box plots) (p ≤ 0.006). Moreover, in the 
VPA mice the highest levels of all ERVs were observed at PND 1 while a remarkable reduction of transcriptional 
activity was observed at PND 7 (p ≤ 0.050).

Figure 1.  Transcriptional activity of ETnI, ETnII-α, ETnII-β, ETnII-γ, IAP and MusD genes in whole embryos 
and, from the offspring, in blood and brain samples obtained from BTBR and C57BL6/J mice. The ERVs 
expression profile in whole embryos (panel A–F) at gestational days 10.5, in blood (panel A’–F’) and brain 
(panel A”–F”) samples at post natal day 1, 7, 23 and 120 from BTBR (red box plots) and C57BL6/J (white box 
plots) mice, was examined by real time-PCR; depicting mild (black dot) and extreme (asterisk) outliers for each 
group were showed. In BTBR embryos and in blood and in brain samples, the expression levels of all ERVs, were 
significantly higher with respect to C57BL6/J mice.
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In brain samples (panel A”–F”) from VPA-treated mice (blue box plots), the transcriptional activity was 
instead always higher than age-matched control groups (white box plots) (p ≤ 0.010), in which ERVs show very 
low levels of expression that remain stable across ages (Tables S1 and S3).

Prenatal exposure to VPA modified cytokines and Toll-like receptors expression already 3 hours 
after treatment as well as after the birth.  In the same samples in which ERVs transcriptional activity 
was analysed, we evaluated the expression levels of IL-1β, IL-6, TNF-α, TLR3 and TLR4 genes, by real time-PCR. 
The data are represented as box plots in Fig. 4. Whole embryos explanted 3 and 24 hours following VPA injection 
at GD 10.5 and blood and brain samples at PND 1 and PND 7 were taken into account.

In embryos 3 hours post treatment with VPA (panel A–E, blue box plots), we observed a significant increase 
of IL-1β expression (p ≤ 0.005); after 24 hours, also IL-6 and TNF-α expression levels were higher compared to 

Figure 2.  Expression levels of IL-1β, IL-6, TNF-α, TLR3 and TLR4 genes in whole embryos and, from the 
offspring, in blood and brain samples obtained from BTBR and C57BL6/J mice. The cytokines and TLRs 
expression in whole embryos (panel A–E) at gestational days 10.5, in blood (panel A’–E’) and brain samples 
(panel A”–E”) at post natal day 1 and 7 from BTBR (red box plots) and C57BL6/J (white box plots) mice, was 
examined by real time-PCR; depicting mild (black dot) and extreme (asterisk) outliers for each group were 
showed. In the BTBR embryos and in blood and brain samples, higher levels of cytokines and Toll-like receptors 
expression than in age-matched C57BL/J controls were detected.
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those observed in the embryos from vehicle-treated CD-1 dams (white box plots) (p ≤ 0.042) (see Tables S2 and 
S3). The correlation analysis highlighted a positive correlation between expression of IL-6 and EtnII-γ (p = 0.029) 
in embryos 3 hours post treatment with VPA (see Table S6).

In blood samples (panels A’–E’) the highest levels of expression of the cytokines and the TLR4 were found in 
the VPA-treated groups (blue box plots), at all ages considered (p ≤ 0.041).

In brain (panels A”–E”), levels of cytokines and Toll-like receptors transcriptional activity, were also higher 
in VPA-treated groups (blue box plots) than in age-matched control groups (white box plots) (p ≤ 0.005) and 
positive correlations between the expression of IL-1β and most of the ERVs, were evidenced by Spearman test in 
each treatment group (VPA group: ETnII-α, ETnII-γ, MusD and IAP, p ≤ 0.037; control group: ETnI, ETnII-α, 
ETnII-γ, MusD and IAP, p ≤ 0.020) (see Table S6).

Figure 3.  Transcriptional activity of ETnI, ETnII-α, ETnII-β, ETnII-γ, IAP and MusD genes in whole embryos 
and, from the offspring, in blood and brain samples obtained from VPA- and vehicle-treated CD-1 mice. The 
ERVs expression profile in whole embryos (panel A–F) explanted 3 and 24 hours post the treatment, in blood 
(panel A’–F’) and brain (panel A”–F”) samples obtained at post natal day 1, 7, 23 and 120, was examined by 
real time-PCR and represented as box plots, depicting mild (black dot) and extreme (asterisk) outliers for each 
group. In whole embryos higher transcriptional activity of all ERVs analysed in VPA groups (blue box plots) 
than in vehicle groups (white box plots) was evident, at both time points. In blood, VPA-treated mice (blue box 
plots) showed higher transcriptional levels of all ERVs than in age-matched controls (white box plots), at post 
natal day 1 and 7, while in brain at each age points.
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Discussion
Here we show for the first time in two distinct models of ASD [BTBR T+tf/J (BTBR) inbred mice and CD-1 out-
bred mice treated in utero with VPA] that the transcriptional activity of six different ERV families (ETnI, ETnII-α, 
ETnII-β; ETnII-γ, MusD and IAP) is significantly higher than in corresponding control mice (C57BL/J and CD-1 
untreated mice, respectively), i.e. in whole embryos at about half of gestation (GD 10.5) and in blood and brain 
tissues at different postnatal ages.

Figure 4.  Expression levels of IL-1β, IL-6, TNF-α, TLR3 and TLR4 genes in whole embryos and, from the 
offspring, in blood and brain samples from VPA- and vehicle- treated CD-1 dams. The cytokines and TLRs 
expression in whole embryos (panel A–E) explanted 3 and 24 hours post the treatment, in blood (panel A’–E’) 
and brain (panel A”–E”) samples obtained at post natal day 1 and 7 from VPA- and vehicle- treated CD-1 dams, 
was evaluated by real time-PCR and represented as box plots, depicting mild (black dot) and extreme (asterisk) 
outliers for each group. Prenatal exposure to VPA at gestational day 10.5 increased cytokines expression in 
embryos (blue box plots), already from 3 hours post treatment than in controls (white box plots). In blood and 
in brain, also the expression levels of TLRs were higher in VPA mice (blue box plots) than in controls (white box 
plots).
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Current results are in agreement with our previous data showing a distinctive expression profile of some 
human HERV families in blood samples from two different cohorts of young autistic patients10,12 and support the 
hypothesis that ERVs could be implicated in ASD.

In parallel, here we also report higher expression levels of IL-1β, IL-6 and TNF-α proinflammatory cytokines 
and TLR3 and TLR4, in the same whole embryos and in blood and brain samples from BTBR mice and 
VPA-treated mice. All together these data suggest that high levels of ERVs expression and inflammatory tran-
scriptional profile are related, or at least proceed in parallel, with the autistic-like traits in the two mouse models.

Interestingly, the ERVs transcriptional activity was higher in BTBR than in C57BL6/J whole embryos and 
these high expression levels were maintained after the birth; in blood and in brain tissue of BTBR mice, ERVs 
transcriptional activity was higher in comparison to age-matched C57BL6/J mice at all considered ages, suggest-
ing a long lasting activation of ERVs that could have an effect on brain functions throughout the life span.

Although the BTBR strain is a consolidated model for autistic-like behavioural signs, it has the weakness of 
being an inbred strain, thus lacking a univocal specific control strain, essential to compare transcriptional profiles. 
To circumvent this limitation we extended our analysis to another extensively validated mouse model of ASD, 
consisting in CD-1 outbred mice in utero exposed to the valproic acid (VPA), an established anti-convulsant 
drug whose use during pregnancy has been robustly associated with an increased risk of developing ASD in 
children33,34. VPA is a histone deacetylase inhibitor able to modulate HERVs expression, depending on cell type40. 
Notably, in embryos the treatment induced the increase of ERVs expression suggesting a rapid and direct effect 
of the VPA injection. In the vehicle group, positive correlations between all ERVs expression levels were found, 
supporting the physiological activity of the ERVs during embryogenesis as already described41. Worthy of note, 
after VPA treatment, several correlations were lost suggesting that in VPA-induced mouse model of ASD, the 
acquisition of the autistic-like traits could be linked to the dysregulation of ERVs activity, occurring during intra-
uterine life.

At variance from BTBR, the transcriptional activity of all ERVs was significantly higher in blood of 
VPA-treated animals compared to untreated controls only at PND 1, and the subsequent decrease may be attrib-
uted to the rapid turnover of blood cells. Conversely, in brain samples from VPA-treated mice the transcriptional 
activity of ERVs was significantly higher than in controls at each age point, and reached the highest values at PND 
120. Indeed, the brain is a stable tissue characterized by slow/absent cellular turnover, and data obtained suggest 
that here VPA induces a permanent increase of ERVs expression, with a profile comparable to what observed in 
BTBR mice. The different time course of ERVs expression in the two different district in VPA treated offspring 
suggests that PBMCs can be reliable biomarkers also for brain atypical development at early life stages, provided 
metabolic specificities of the peripheral and central nervous system (CNS) district are considered. Moreover, 
ERVs transcriptional activity levels were substantially comparable in the two different control groups (C57BL6/J 
and CD-1) in embryos (p = 0.112) as well as in blood (p ≥ 0.196) and in brain samples (p ≥ 0.571). These obser-
vations strongly suggest the view that abnormally increased ERVs expression is associated with derailed brain 
development and with the acquisition of the autistic-like phenotype in the offspring. ERVs are usually repressed 
by two main mechanisms, DNA methylation occurring mostly in germ cells42–44 or various histone modifications 
occurring mostly in zygotes45–47. During the implantation stage these transient histone marks are again replaced 
by DNA methylation. Thus, histone modifications are usually responsible for the temporary repression of ERVs 
in transient stem cell populations, whereas DNA methylation is responsible for the more stable and permanent 
repression in further committed and differentiated cell populations48–50, such as brain cells. These findings also 
support the usefulness of multiple ASD mouse models, particularly to i) analyse in greater detail the prenatal 
phase, that is certainly crucial according to several recent ASD risk factor analysis51, ii) obtain selective infor-
mation concerning the brain district, mostly inaccessible in human studies and, at the same time iii) to evaluate 
potential translational value of peripheral biomarkers.

Several robust etiopathological hypotheses for ASD include epigenetic events occurring in the prenatal period, 
when somatic and germ cells undergo a global remodelling that regulates cell differentiation and tissues specifica-
tion52,53. Recently, in mice, it was found that the ERVs transcription regulation and expression silencing in neural 
progenitor cells is controlled in the first days of embryogenesis by TRIM28 (Tripartite motif-containing protein 
28); only when TRIM28 is deleted the expression of ERVs is up-regulated46,54; further studies are needed to clar-
ify the role of TRIM28 in ERVs upregulation observed in these two ASD mouse models, and to assess potential 
TRIM28 alterations in neurodevelopment.

The present study also reports increased expression in utero as well as in early postnatal development of some 
cytokines and Toll-like receptors in both ASD models. Epidemiologic studies provide evidence that maternal 
exposure to infections, stress or medications, greatly increases the risk for ASD in offspring55,56, by altering the 
immune status of the fetal brain and the fetal immune system57. Rodent models have definitively played an impor-
tant role in establishing the maternal immune activation (MIA) as a causal factor, mediated by cytokines, for 
ASD-like symptoms in offspring58–61.

Actually, our results point to an immune dysregulation characterized by high levels of proinflammatory 
cytokines, such as IL-1β, IL-6 and TNF-α, already from intrauterine life in both models. The immune modifica-
tions were then maintained early after birth in both blood and brain samples from BTBR and VPA-treated mice, 
in agreement with human observations from autistic individuals62–64. Of note, in BTBR embryos several positive 
correlations were found between the expression of some ERV genes and the proinflammatory cytokines analysed, 
suggesting that ERVs activation and immune deregulation proceed in parallel.

As for BTBR, our results are consistent with the recent characterizations of this inbred mouse strain, revealing 
an inflammatory and immune profile higher than that of C57BL6/J control strain65,66, similarly to what observed 
in ASD children. In particular, brain levels of IL-6 transcriptional activity are very high in this mouse strain; inter-
estingly, IL-6 appears to be a mediator of MIA effects upon brain development, because of its inhibitory effect on 
DNA methylation, possibly resulting in permanent epigenetic alterations of genes67.
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As for VPA mice, HDACs inhibitory effects and epigenetic mechanisms of VPA could underlie its long-lasting 
consequences35. A rapid transient increase in histone acetylation has been described in the mouse embryonic 
brain, already two and four hours after VPA exposure at embryonic day 12.5, back to normal levels 12 hours 
after30. In this model, IL-1β transcriptional levels are high, both in blood and brain samples, in line with the role 
described for this cytokine in the MIA to produce ASD-like phenotype in the offspring67. Of note, the similarity 
between the two ASD models in developmental cytokine expression suggest that toxic mechanisms associated to 
oxidative stress may be implicated in their atypical neurobehavioural development. This would be in agreement 
with the known role of VPA on oxidative metabolisms68 that could run in parallel or trigger epigenetic modifi-
cations. Such hypothesis is worth to be investigated in future in vivo studies assessing protective interventions.

Finally, it has been widely described that during pregnancy maternal exposure to pathogens and unspeci-
fied damage signals induce innate immunity through interaction with TLRs, particularly with TLR3 and TLR4. 
Transcriptional activity of these TLRs in whole embryos from BTBR mice and in blood and brain from the both 
models is higher than in corresponding controls. This is in line with reports in schizophrenia, bipolar disorder 
and autism69–71.

The positive correlations between the IL-1β expression and most of the ERVs, in brain samples from both con-
trols and VPA-treated mice, suggest an association between the ERVs and this single proinflammatory cytokine, 
but further studies are needed to deeply evaluate causal links between them.

Putative pathogenic effects mediated by ERVs in neurological and psychiatric conditions in humans have been 
already described72. ERVs may alter cellular function in the developing brain by means of multiple mechanisms, 
including modulation of DNA stability and transcription, alteration of cell signalling pathways, and activation of 
immune system8. Definitive proof that ERVs are the cause - and not an epiphenomenon- of neurodevelopmental 
disorders is still lacking, although data here reported support their involvement in ASD, and indicate a promising 
research avenue for novel diagnostic markers and even, potential early therapeutic approaches for ASD in the 
future.

Methods
Animals.  Mice were either bred in Istituto Superiore di Sanità (ISS), Rome, Italy (BTBR and C57BL6/J, orig-
inal breeders from Jackson, Maine and Charles River France, respectively) or purchased (CD-1 dams and sires, 
Harlan, S. Pietro al Natisone, Italy). Mice were housed in polycarbonate breeding cages with a 12hr light-dark 
cycle (light on 8:00 pm-8:00 am) and with free access to food and water. The VPA mice were produced by treating 
outbred pregnant CD-1 female mice with a single dose of VPA (500 mg/kg, sc) at gestational day (GD) 10.5. Time 
and dose of administration were selected among those not inducing maternal toxicity or frank malformations 
at birth but causing behavioural alterations resembling the ASD phenotype (73 for a comprehensive review). For 
these experiments, control mice were CD-1 mice whose pregnant mothers had been injected with saline at GD 
10.5. VPA solution was prepared by dissolving VPA in 0.9% saline to a final concentration of 150 mg/ml.

The animals were analysed from intrauterine life to adulthood at different age points. To this purpose, 5 BTBR 
and 3 C57BL6/J dams were sacrificed at GD 10.5 to obtained 10 and 8 whole embryos, respectively. Blood and 
brain samples (at least 6 samples, from 3 or more different litters at each age points) were obtained from mice at 
postnatal day (PND) 1, 7, 23 and 120.

VPA- and vehicle-dams were sacrificed 3 and 24 hours after injection and whole embryos were collected: 26 
samples from 3 different VPA-treated dams 3 hours after treatment and 20 VPA- and 16 vehicle-embryos from 3 
dams 24 hours after treatment. Blood and brain samples from VPA- and vehicle treated offspring (at least 8 sam-
ples, from 3 or more different litters at each age points) were obtained from mice at PND 1, 7, 23 and 120.

Ethical statement.  This study was carried out in accordance with the Italian Animal Welfare legislation 
(D.L. 26/2014) that implemented the European Committee Council Directive (2010/63/EU); the experimental 
protocol 223-B/2011 was approved by Italian Ministry of Health.

Tissue collection.  The animals were euthanized and whole embryos were explanted. Blood samples were 
collected in heparinized tubes and stored at −80 °C and brains were removed from the skull, immediately frozen 
in dry ice and stored at −80 °C until use.

RNA extraction from whole embryos and blood and brain samples.  Total RNA isolation from 
whole blood samples was performed using NucleoSpin RNA Blood kit (Machenery-Nagel, Dueren, Germany) 
according to the manufacturer’s instructions and starting from 200 µl. When the volume of the sample was less 
than 200 µl it was added with phosphate-buffered saline. RNA isolation from whole embryos and brain samples 
was performed using NucleoSpinTriPrep (Machenery-Nagel) according to the manufacturer’s instructions and 
starting from 30 mg or less of tissue. Contaminating DNA was removed by a DNase treatment and all RNA sam-
ples were stored at −80 °C until analysis was performed.

RT- Real time PCR.  DNase-treated RNA obtained from whole embryos, blood and brain samples was 
reverse-transcribed into cDNA using Improm-II Reverse Transcription System (Promega, Fitchburg, Wisconsin, 
USA) according to the manufacturer’s protocol. For the reaction, 250 ng of RNA obtained from whole embryos 
and brain samples and an amount of RNA corresponding to 5 µl of initial blood sample, were used. The tran-
scriptional levels of six ERV families (ETnI, ETnII-α, ETnII-β, ETnII-γ, MusD and IAP), three proinflammatory 
cytokines (IL-1β, IL-6 and TNF-α) and two Toll-like receptors (TLR3 and TLR4) were quantitatively assessed by 
Real-time PCR. The assays were performed in a Bio-rad instrument (CFX96 Real-Time System, Biorad, Hercules, 
California, USA) using SYBR Green chemistry (iTaq Universal SYBR green Supermix, Biorad) with specific 
primer pairs26,74,75. To set-up the real time reaction a serial dilution (10-fold) was done to calculate efficiencies 
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and correlation coefficient, by formula [efficiency = 10 (−1/slope)] and all primer pairs used showed an efficiency 
ranging 0.96 to 0.98.

Real time PCR reaction included 0.20 µl of cDNA, forward and reverse primers at 150 nM each for ERVs and 
at 300 nM each for proinflammatory cytokines and for TLRs, 10 µl of iTaq Universal SYBR green Supermix, in 
a total volume of 20 µl. The reaction was conducted for 1 cycle at 95 °C for 3 minutes, then for 40 cycles at 95 °C 
for 45 seconds and at 60 °C for 1 minute. Each sample was analysed in triplicate and a negative control (no tem-
plate reaction) was included in each experiment, to check out any possible contamination. The housekeeping 
glyceraldehyde 3-phosphate dehydrogenase gene (GAPDH) was used to normalize the results26. Each experi-
ment was completed with a melting curve analysis to confirm the specificity of amplification and the lack of any 
non-specific product and primer dimer. Quantification was performed using the threshold cycle (Ct) comparative 
method: the relative expression was calculated as follows: 2−[∆Ct (sample)−∆Ct (calibrator) = 2−∆∆Ct, where ∆Ct (sam-
ple) = [Ct (target gene) − Ct (housekeeping gene)]. In BTBR mice, for the analysis in whole embryos, the ∆Ct 
(calibrator) was the mean of ∆Ct of all embryos from C57BL6/J at GD10.5 while for the analysis of the blood and 
brain samples, the ∆Ct (calibrator) was the mean of ∆Ct of all brain or blood samples from C57BL6/J at PND1.

In VPA mouse model, for the analysis in whole embryos, the ∆Ct (calibrator) was the mean of ∆Ct of all 
vehicle-treated embryos obtained 24 hours after the treatment, while for the analysis of the blood and brain sam-
ples was the mean of ∆Ct of all brain or blood samples from vehicle-treated CD-1 mice at PND 1.

Real time PCR results were represented by box plots, depicting mild (black dot) and extreme (asterisk) outliers 
for each group.

Statistical analysis.  The Mann Whitney U test was used to compare the ERVs’, proinflammatory cytokines’ 
and TLRs’ transcriptional levels, analysed by quantitative real-time PCR, in whole embryos, blood and brain 
samples obtained from BTBR strain and related controls (C57BL6/J), offspring of VPA-treated (VPA group) and 
vehicle-treated dams (control group), respectively. To determine any correlation of different parameters, the 
Spearman’s rho correlation coefficient was calculated. Statistical analyses were carried out using SPSS software 
(version 20.0). Statistical significant comparisons were considered when p < 0.050.

Data availability statement.  All data generated or analysed during this study are included in this pub-
lished article.
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