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Background: Inflammation and accumulation of macrophages are key features of unstable

atherosclerotic plaques. The ability of macrophages to take up molecular probes can be

exploited in new clinical imaging methods for the detection of unstable atherosclerotic

lesions. We investigated whether modifications of human serum albumin (HSA) could be

used to target macrophages efficiently in vitro.

Materials and methods: Maleylated and aconitylated HSA were compared with unmo-

dified HSA. Fluorescent or radiolabeled (89Zr) modified HSA was used in in vitro experi-

ments to study cellular uptake by differentiated THP-1 cells and primary human

macrophages. The time course of uptake was evaluated by flow cytometry, confocal

microscopy, real-time microscopy and radioactivity measurements. The involvement of

scavenger receptors (SR-A1, SR-B2, LOX-1) was assessed by knockdown experiments

using RNA interference, by blocking experiments and by assays of competition by mod-

ified low-density lipoprotein.

Results: Modified HSA was readily taken up by different macrophages. Uptake was

mediated nonexclusively via the scavenger receptor SR-A1 (encoded by the MSR1 gene).

Knockdown of CD36 and ORL1 had no influence on the uptake. Modified HSA was

preferentially taken up by human macrophages compared with other vascular cell types

such as endothelial cells and smooth muscle cells.

Conclusions: Modified 89Zr-labeled HSA probes were recognized by different subsets of

polarized macrophages, and maleylated HSA may be a promising radiotracer for radio-

nuclide imaging of macrophage-rich inflammatory vascular diseases.

Keywords: atherosclerosis, inflammation, macrophage, molecular imaging, scavenger

receptor, zirconium

Introduction
The coupling of imaging probes to albumin is a well-established strategy to

improve the performance of the probes in molecular imaging.1,2 Albumin has

several favorable characteristics as a drug/probe carrier because it is neither toxic

nor immunogenic. It has been explored as a carrier in the field of oncology, but it

may also be applied to imaging of atherosclerosis-related pathologies because the

half-life of the targeting ligand in the circulation is prolonged when it is coupled to

albumin.3 Three different types of albumin have been used for imaging and drug

applications: bovine serum albumin (BSA), human serum albumin (HSA) and

recombinant human albumin (rHSA) obtained from a methylotrophic yeast,
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Pichia pastoris.4 Modification of albumin through maley-

lation promotes its recognition by macrophages and its

uptake via macrophage scavenger receptors.5–14

Macrophages are the prevalent inflammatory cells in

all stages of atherosclerosis from disease initiation to late-

stage disease complications such as myocardial infarction

and ischemic stroke. This makes them strategic targets for

imaging vascular inflammation.15,16 One of their main

functions in this disease is the uptake and clearance of

modified low-density lipoproteins (LDLs) via scavenger

receptors.17

Scavenger receptors constitute a group of membrane

proteins18 involved in the uptake of molecules and

particles, eg, apoptotic cells, pathogens and modified

LDL.5,8,17 They are categorized into eight different

classes based on their structural architecture.19–23

Scavenger receptor class A (SR-A) is expressed mainly

by mature macrophages and has been implicated in

atherogenesis.18,24,25 The SR-A1 receptor alternatively

spliced into SR-A1.1 and SR-A1.2, is encoded by the

MSR1 gene and has a broad range of polyanionic

ligands,26,27 including modified LDLs and maleylated

or glycosylated albumin.28–30 SR-A1 expression is

absent in endothelial cells lining normal human blood

vessels,18 but is present within the fibrous cap of

human atherosclerotic plaques.31,32 SR-A expression

has also been detected in oxidized LDL (oxLDL)-sti-

mulated smooth muscle cells33 and endothelial cells

during oxidative stress.34 Other scavenger receptors

that have been shown to interact with LDL and play

a role in atherosclerosis include lectin-like oxidized

LDL-receptor (LOX-1) also named SR-E1 and encoded

by the ORL1 gene, scavenger receptor B2 (SR-B2)

encoded by the CD36 gene, and SR-A6 encoded by

the macrophage receptor with collagenous structure

(MARCO) gene.22,23,35

We hypothesized that modified, labeled albumin can be

taken up by macrophages in atherosclerotic lesions and

serve as a tracers for molecular imaging of inflammation

in atherosclerosis. We investigated two different modifica-

tions of HSA, maleylated (Mal-) and aconitylated (Aco-)

HSA, and studied their cellular interactions and the speci-

ficity and mechanisms of ligand uptake in different subsets

of macrophages and other vascular cell types. Our findings

establish a scientific foundation for the development of

new diagnostic tools that target macrophage-rich inflam-

mation in vascular diseases.

Material and methods
Probe preparation, FITC conjugation and

radiolabeling
Syntheses and characterization

HSA (Sigma-Aldrich, Saint Louis, MO, USA) was first cova-

lently coupled to fluorescein isothiocyanate (FITC, Sigma-

Aldrich) as previously reported7 or to para-isothiocyanatoben-

zyl deferoxamine (p-NCS-Bz-DFO; Chematech, Dijon,

France) using the following procedures. Briefly, FITC in anhy-

drous dimethyl sulfoxide (DMSO, Invitrogen, Carlsbad, CA,

USA; 10 mg/ml) was slowly added to a solution of HSA in

carbonate/bicarbonate buffer (20mg/ml, pH 9) to a molar ratio

of 9:1. It was then stirred for 2 h at room temperature in

darkness and purified on a Sephadex® G-50 (fine,

Sigma-Aldrich) desalting column and then freeze-

dried. Alternatively, p-NCS-Bz-DFO in anhydrous DMSO

(33 mg/ml) was slowly added to a solution of HSA in 0.1 M

tetramethylammonium phosphate (TMAP) buffer (20 mg/ml,

pH 9) to a molar ratio of 15:1 at room temperature. The final

pH was adjusted to 8.5 by addition of 2.5% (CH3)4NOH-

solution (Sigma-Aldrich) and then stirred for 47 h. The reaction

mixture was then purified on a Sephadex G-50 desalting col-

umn and freeze-dried. For conjugation with the cyclic anhy-

drides, maleic anhydride (MalA, Sigma-Aldrich)6 and cis-

aconitic anhydride (AcoA, Sigma-Aldrich) with the following

procedureswere used.HSA-DFOorHSA-FITCwas dissolved

(2 mg/ml) in TMAP, pH 9 and MalA was slowly added to a

molar ratio of 416:1, while stirring at room temperature and

maintenance of the pH at 8.5–8.7 by addition of 2.5%

(CH3)4NOH-solution. The reaction was considered complete

when the pH was stable. For conjugation with AcoA the solid

anhydridewas added to a solution ofHSA-DFO orHSA-FITC

(2mg/ml) in phosphate buffered saline (PBS), pH 8, at a molar

ratio of 433:1, during stirring at room temperature and main-

tenance of pH at 8.0–8.2 by additions of 3 M NaOH solution.

The reactionwas considered completewhen the pHwas stable.

The probes were then purified by dialyzing 4–5 times against

10 l of ultrapure water, sterile filtered through a 0.2 μm filter

and freeze-dried. The HSA, HSA-DFO, HSA-FITC, Mal-

HSA-DFO, Mal-HSA-FITC, Aco-HSA-DFO and Aco-HSA-

FITC were then analyzed by mass spectrometry (MS) to eval-

uate their molecular masses and the number of conjugated

FITC, DFO, Mal and Aco per HSA.

Mass spectrometry

Mass spectrometry (Bruker UltrafleXtreme MALDI TOF/

TOF with Smartbeam-II™ laser, using FlexControl software

Ahmed et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:143724

http://www.dovepress.com
http://www.dovepress.com


and FlexAnalysis [Bruker Daltonik, Bremen, Germany]) was

used to analyze the number of FITC, DFO, Mal and Aco

groups that were conjugated to HSA and to determine the

molecular masses of the final products. A sample preparation

of 0.5 μl of analyte (1 μmol/l in 30:70 acetonitrile:0.1%

trifluoroacetic acid [TA30]) was mixed with 0.5 μl 2,5-dihy-
droxybenzoic acid (20 mg/ml in TA30). The droplet on the

target plate was dried at room temperature before analysis

and the sample was analyzed by matrix-assisted laser deso-

rption ionization (MALDI) and the resulting ions analyzed

by time-of-flight (TOF) MS. By comparison of the average

molecular mass of the different HSA modifications with that

of pure HSA, the approximate average number of FITC,

DFO, Mal and Aco groups per HSA molecule could be

determined. The method accuracy was estimated as

±300 g/mol.

Dynamic light scattering (DLS)

The particle size and ζ-potential of the three DFO-labeled
probes were measured with a Zetasizer Nano (Malvern

Instruments, Malvern, UK). Two separate samples of

each probe were measured three times at 25 °C. For

size measurements, 40 μl of the sample (1 mg/ml in

ddH2O) was transferred to a microcuvette (ZEN2112)

and for ζ-potential measurements 0.8 ml of sample

(1 mg/ml in ddH2O) was transferred to a single-use cuv-

ette (DTS1061).

Radiolabeling with zirconium-89

Radiolabeling of HSA was performed according to the

method described by Vosjan et al.36 For labeling of

0.3 mg of R-HSA-DFO (R=Mal, Aco or nonmodified)

with 89Zr, a radioactivity dose of 80–100 MBq of 89Zr

(IV) in 1 M oxalic acid (Perkin Elmer, BV Cyclotron VU,

Amsterdam, The Netherlands) was used and neutralized

with 1 M sodium carbonate. The 89Zr-solution pH was

adjusted to 6.9–7.1 with 1 M C2H2O4 or 1 M Na2CO3 as

necessary and added to 300 μl solution of R-HSA-DFO

(1 mg/ml, 1 M HEPES, Thermo Fisher Scientific, Waltham

MA, USA) in a 2-ml Eppendorf tube. Incubation at 21 °C

and agitation at 450 rpm for 1 h followed. The radiotracers

were analyzed and purified using high-performance liquid

chromatography (HPLC, LC-10AD VP, Shimadzu, Kyoto,

Japan and a Superdex 75 10/300 GL column, 0.5 ml/min

in PBS, 210 nm) with radiodetector (Model 170

Radioisotope Detector, Beckman Instruments, Pasadena,

CA, USA). The fractions with the highest radioactivity

peak were collected for use in experiments.

LDL isolation and modification
LDL (ρ=1.019–1.063 g/ml) was isolated by sequential

ultracentrifugation from pooled plasma of healthy donors

as previously described.37 Briefly, after the first round of

ultracentrifugation, the chylomicrons and very low-density

lipoprotein fraction were discarded, and the density of the

LDL/high-density lipoprotein fraction was adjusted with

potassium bromide to roughly 1.063 g/ml. LDL was col-

lected after ultracentrifugation and cleared using PD-10

columns (GE Healthcare, Chicago, IL, USA) equilibrated

with PBS. LDL concentration was determined by Bradford

assay (Bio-Rad Laboratories, Hercules, CA, USA) and

subsequently modified as follows. Oxidized LDL

(oxLDL) was generated using CuSO4 (5 μmol/l per one

mg of LDL protein; 18 h; 37 °C). Malondialdehyde

(MDA)-generation and modification of LDL was per-

formed as previously described.38 MDA was generated

from malondialdehyde bis(dimethyl acetal) (Sigma-

Aldrich) by acid hydrolysis and 0.5 M MDA was incu-

bated with LDL at a ratio of 100 μl/mg LDL for 3 h at

37 °C. Acetylated LDL (acLDL) was generated as

described previously39 by diluting LDL in a 1:1 ratio

with saturated sodium acetate solution and the addition

of 1 μl acetic anhydride/mg LDL every 15 min for 1 h

with gentle stirring on ice. Modified LDL was cleared

once more by gel filtration using PD-10 columns; protein

concentration was determined by Bradford assay. LDL

preparations were stored at 4 °C and used within 4 weeks.

Cell culture and cytokine stimulation
THP-1 cells (ATCC®, TIB-202™, ATCC, Manassas, VA,

USA), a human monocytic leukemia-derived cell line, were

stimulated for 48 h with 0.1 µM phorbol 12-myristate 13-

acetate (PMA) (Sigma-Aldrich) to differentiate them into

THP-1 macrophages.40 For differentiation into foam cells,

THP-1 macrophages were further stimulated with 50 µg/ml

acLDL for 48 h and stained with Oil-Red-O (ORO) (Sigma-

Aldrich) to confirm lipid accumulation (online protocol:

http://faculty.virginia.edu/yanlab/Protocol.html). Primary

human macrophages were cultured as previously reported.41

Briefly, peripheral blood was obtained from healthy volun-

teers at the Blood Center of Karolinska University Hospital,

Stockholm, Sweden. Mononuclear cells in peripheral blood

were isolated using Lymphoprep™ gradient medium

(ρ=1.077 g/ml; Axis-Shield, Oslo, Norway) according to

the manufacturer’s instructions and seeded at a density of

5×106 cells/ml. Nonadherent cells were removed by
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rigorous washing after 1 h then adherent cells were cultured

for 6 days in RPMI1640 supplemented with 50U/ml peni-

cillin, 50 g/ml streptomycin (Invitrogen), 10% fetal bovine

serum and 20 ng/ml macrophage colony stimulating factor

(M-CSF; R&D Systems, Minneapolis, MN, USA). The

medium was refreshed on day 3. On day 6, macrophages

were detached by scraping and reseeded in 96-well plates at

a concentration of 5×104 cells per well and polarized over

24 h to M1 by addition of 20 ng/ml interferon-γ (Peprotech,
Rocky Hill, NJ, USA) and 10 ng/ml lipopolysaccharide

(Enzo Life Sciences, Farmingdale, NY, USA), to M2

using 20 ng/ml interleukin-4 (BioLegend, San Diego, CA,

USA) and 10 ng/ml M-CSF (R&D Systems) or kept in M-

CSF to produce M0. Pooled human umbilical vein endothe-

lial cells (HUVECs) (CC2519A, Lonza, Basel, Switzerland)

were cultured up to passage 4 in endothelial cell medium-2

(EGM-2 BulletKit; Lonza). Human carotid smooth muscle

cells (HCtSMCs) (Cell Applications, San Diego, CA, USA)

were cultured up to passage 7 in human smooth muscle cell

media (Cell Applications). Cells were maintained at 37 °C

in a 5% CO2, 95% air humidified atmosphere.

RNA silencing
To downregulate scavenger receptors in macrophages,

THP-1 were first differentiated into macrophages for

48 h with PMA. Cells were washed with PBS, and

medium without serum was added to the cells.

Predesigned siRNAs (Silencer_1 MSR1 siRNA ID#

s8987, Silencer_2 MSR1 siRNA ID# s8989, Silencer_1

CD36 siRNA ID# s2646, Silencer_2 CD36 siRNA ID#

s2647, Silencer_1 OLR1 siRNA ID# s9842, Silencer_2

OLR1 siRNA ID# s9843 and a negative control siRNA;

all purchased from Thermo Fisher Scientific) were pre-

pared and diluted to 100 nM in medium without serum.

Cells were transiently transfected using HiPerfect

(Qiagen, Venlo, The Netherlands). The transfection

complexes were added dropwise onto the cells and

incubated for 6 h. Then, RPMI1640 medium containing

20% serum and antibiotics was added for 48 h. After

48 h, cells were washed twice with PBS and collected

either for RNA and protein extraction or for further

experimental evaluation.

Quantitative PCR
Quantitative PCR (qPCR) was performed as described

previously.42 Briefly, RNA was extracted from cell cultures

with QIAzol Lysis Reagent (Qiagen) and reverse-transcribed

using a High Capacity RNA-to-cDNA kit (4387406, Applied

Biosystems). PCR amplification was performed in 96-well

plates using a 7900 HT real-time PCR system (Applied

Biosystems) and TaqMan® Universal PCR Master Mix

(Applied Biosystems) and TaqMan® Gene Expression

Assays (hCD36 [#4351372, Assay ID: Hs01567188_g1],

hSRA [#4331182, Assay ID: Hs00234007_m1], hLOX-1

[#4331182, Assay ID: Hs01552593_m1], Applied

Biosystems). Samples were measured in duplicate. For ana-

lysis, results were normalized to an equal mass of total RNA

and to the Ct values of ribosomal protein lateral stalk subunit

P0 (RPLP0) housekeeping control (#4331182, Assay ID:

Hs99999902_m1, Applied Biosystems). The relative amount

of target gene mRNA was calculated by the 2–ΔΔCt method

and results are presented as fold change compared with base-

line expression.

Immunoblotting
Immunoblotting was performed as previously described.43

In brief, total protein lysates (25–30 μg/lane) were prepared
in 4× Laemmli buffer supplemented with β-mercaptoetha-

nol (Bio-Rad) and preheated (at 90 °C) for separation by

sodium dodecyl sulfate–polyacrylamide gel electrophoresis

in 4–20% gels (Bio-Rad). Polyvinylidene difluoride mem-

branes (Hybond TM-P, GE Healthcare) were probed with

anti-human SR-AI/MSR monoclonal mouse IgG2b, anti-

human CD36/SR-B3 monoclonal mouse IgG1 (R&D

Systems), anti-human LOX-1 monoclonal mouse IgG2aκ
(EMD Millipore, Merck, Burlington, MA, USA) at a dilu-

tion of 1:500 overnight. Horseradish peroxidase (HRP)-

labeled goat anti-mouse (Invitrogen) was used as secondary

antibody at a dilution of 1:5000 and incubated with samples

at room temperature for 45 min. Anti-human β-actin HRP-

conjugated antibody (Alpha Diagnostic International, San

Antonio, TX, USA) was used as a loading control at a

dilution of 1:20,000. Proteins of interest were detected

using Amersham ECL Prime Western Blotting Detection

Reagent (GE Healthcare).

Flow cytometry
Cells were incubated with FITC-conjugated probes in 6-

well Costa Corning plates. THP-1 macrophages were incu-

bated with FITC-labeled probes alone or in combination

with modified LDL particles. After 1 h incubation with the

probe, cells were washed and stained with live–dead stain-

ing solution (LIVE/DEADTM Fixable Aqua Dead Cell

Stain Kit, for 405 nm excitation, Invitrogen) for 15 min

at 4 °C. The reaction was stopped by washing with 1%

BSA followed by PBS. Cells were fixed with 4%
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formaldehyde (FA, Agar Scientific, Stansted, Essex, UK)

at room temperature for 20 min and then washed and

scraped off the plastic for flow cytometry analysis.

Analyses were performed on a BD LSRFortessa™ (BD

Biosciences, Franklin Lakes, NJ, USA). For THP-1

macrophages, each condition was measured in triplicate

and the experiment repeated at least once. For human

macrophages, six donors were used, each of which was

measured in duplicate.

Real-time imaging
For real-time uptake studies, cells were incubated as

described in the figure legends with 0.1 μM of either

FITC-labeled Mal-HSA or FITC-labeled HSA for the

indicated time. Uptake was monitored with IncuCyte

(Essen BioScience, Ann Arbor, MI, USA) using a 20×

objective, and phase-contrast and green-fluorescence

images were recorded. Each condition was measured in

triplicate and nine images per well were acquired. The

experiment was repeated at least once. The total green

object integrated intensity (green calibration unit × area,

or GCU × μm2) was normalized to the measured cell

confluence of each image, and the average was plotted

against time.

Immunofluorescence microscopy
Immunofluorescence staining was performed as previously

described.43 In brief, THP-1 macrophages were plated in

Ibidi μ-slide VI0.4 chambers (Ibidi GmbH, Martinsried,

Germany). Cells were incubated with 0.1 μM FITC-conju-

gated probes for 3 h at 37 °C in a 5% CO2, 95% air humidi-

fied atmosphere. Cells were washed and fixed with 4% FA

for 15 min. After fixation, cells were permeabilized with

0.1% Triton X-100/PBS for 5 min at room temperature,

followed by blocking with 5% goat serum/PBS for 1 h at

room temperature. Primary LAMP-2/CD107b antibody

(H4B4) (Novus Biologics, Littleton, CO, USA), was diluted

in 2% goat serum and incubated with cells for 1 h at room

temperature. After incubation, cells were washed and incu-

bated with goat anti-mouse Alexa Fluor 568 (1:500) second-

ary antibody or rhodamine Phalloidin, TRITC (1:500)

(Thermo Fisher Scientific) for 30 min at RT. Cells were

mounted in Vectashield antifade mounting medium with

DAPI for nuclear staining (Vector Laboratories,

Burlingame, CA, USA). Z-stack images, with a slice thick-

ness of 1 μm, were acquired with a Leica TCS SP5 confocal

microscope (LeicaMicrosystems,Wetzlar, Germany) using a

60× oil immersion objective. Each condition was measured

in duplicate and experiments were repeated at least three

times.

Receptor blocking studies
Class A scavenger receptor blocker dextran sulfate

(100 μg/ml) and actin inhibitor cytochalasin D (10 μM)

(Sigma-Aldrich) were used to block phagocytosis in THP-

1 macrophages. Cells were preincubated with these inhi-

bitors for 30 min prior to the addition of modified HSA

probes. Cells were incubated for 3 h at 37 °C in a 5% CO2,

95% air humidified atmosphere. Then, cells were washed

and fixed with 4% FA for 15 min and mounted with

Vectashield Antifade mounting medium containing DAPI

and imaged with a confocal microscope as described

above. Each condition was measured in duplicate. Five

images per well were acquired, and experiments were

repeated at least once. The analyses were performed

using the Fiji ImageJ cell counter plugin.

For blocking of SR-A1, we used primary human mono-

cytes differentiated into M0, M1 and M2 macrophages as

described earlier. Cells were preincubatedwith amousemono-

clonal anti-human SR-A1/MSR1 blocking antibody (4 μg/ml)

or mouse monoclonal IgG1 isotype control (4 μg/ml) (R&D

systems) and compared with cells incubated with 0.1 μM
probe for 1 h without prior blocking. Cells were analyzed

using IncuCyte time-lapse imaging every 30 min for 24 h

with a 20× fluorescence imaging microscope. Each condition

was measured using cells from three donors and technical

triplicates, and nine images per well were acquired at each

time point. The experiment was repeated at least once.

Radiotracer experiments evaluated by

gamma counter
For each condition, 1 ml (1 MBq/ml, ~0.1 μM) of the 89Zr-

labeled probe (radiotracer) was added to THP-1 macro-

phages and incubated for different times. Radiotracer

uptake was also evaluated after oversaturation of receptors

by preincubation with 1 mg “cold” probe without 89Zr for

15 min, prior to addition of the radiotracer for 1 h. After

incubation, supernatant and washes were saved. Cells were

scraped off the wells, counted and analyzed for radiotracer

uptake in a gamma counter (Wallac™ Wizard 3” 1480,

Perkin Elmer). Gamma counter measurements were decay

corrected and expressed as radioactivity uptake per

100,000 cells. Each condition was measured in triplicate

and experiments were repeated at least once.
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Statistical analysis
SPSS (version 24 for Macintosh) was used to test normal-

ity using the Shapiro–Wilk test and distribution of data

was also evaluated by histograms, Q–Q plots and checked

for skewness. GraphPad Prism (version 7 for Macintosh)

was used to test differences between two groups by

Student’s t-test, and those between more than two groups

by analysis of variance (ANOVA); significant differences

were tested using Dunnett’s or Tukey’s post hoc tests.

Linear regression was applied to test relationships. Two-

tailed P-values are reported and unless stated otherwise, a

P-value <0.05 was considered significant.

Ethics approval
No ethics permits were necessary for this work. Peripheral

blood was obtained from healthy volunteers at the Blood

Center of Karolinska University Hospital, Stockholm,

Sweden.

Results
Probe characterization
The purified probes were analyzed by MS (MALDI-TOF),

yielding an average m/z: [M+] HSA 66 799; HSA-FITC4

68 146; HSA-DFO5 70 155; Mal51-HSA-FITC4 73 321;

Mal65-HSA-DFO5 76 770; Aco28-HSA-FITC4 72 177;

Aco50-HSA-DFO5 77 385.

Sizes and ζ-potentials of HSA-DFO5, Aco50-HSA-DFO5

andMal65-HSA-DFO5weremeasured usingDLS; the average

probe size was 3.8 nm for HSA-DFO5, 7.9 nm for Aco50-

HSA-DFO5 and 9.9 nm forMal65-HSA-DFO5 and the average

ζ-potential in MilliQ-water was –24.7 mV for HSA-DFO5, –

6.6 mV for Aco50-HSA-DFO5 and –31.6 mV for Mal65-HSA-

DFO5. A schematic drawing of the HSA probes is presented in

Figure S1.

Cellular uptake and cellular distribution
To investigate the uptake of modified and unmodified HSA,

three different concentrations of the probes were tested in

THP-1 macrophages. Both chemical modifications of HSA

increased the cellular uptake after 1 h incubation in THP-1

macrophages even at the lowest concentration (P<0.001)

(Figure 1A). Overall Mal-HSA showed better uptake than

Aco-HSA in each tested concentration. For further experi-

ments, the lowest concentration was used to avoid nonspe-

cific uptake of the probe. Interestingly, Mal-HSA probes

were localized in granular-shaped structures inside the cyto-

plasm of cells (Figure 1B). To examine the biological fate

of the probes after cellular uptake, we co-stained for lyso-

somes. Z-stacked images showed colocalization of LAMP-2

and the FITC-labeled Mal-HSA probe (Figure 2).

Moreover, since the aim of these studies was to investigate

probes targeted to macrophages localized in atherosclerotic

plaques, we conducted a series of experiments in lipid

overloaded macrophage foam cells in vitro. For this, we

incubated THP-1 macrophages with acLDL and after 48 h

incubation; cells showed the typical cytoplasmic lipid dro-

plets accumulation (Figure 3C). We monitored Mal-HSA

uptake over 24 h using real-time microscopy. We first noted

that the uptake of modified HSA increased over the entire

duration of the experiment without reaching a peak.

Interestingly there was a significant difference between the

uptake of Mal-HSA-FITC by THP-1 foam cells compared

to THP-1 macrophages (P<0.0001), although both cell

types recognized the probe. Uptake of unmodified HSA

was undetectable even after 24 h (Figure 3).

Receptor specificity
Next, we investigated the involvement of scavenger recep-

tors in the modified HSA uptake by macrophages. RNA

interference was used to silence the genes encoding the

three main scavenger receptors in macrophages, SR-A1

(encoded by MSR1), SR-B2 (encoded by CD36) and LOX-

1 (encoded by ORL1). Knockdown was confirmed at the

RNA and protein levels (Figure S2). Two siRNA constructs

were tested per scavenger receptor, and samples were ana-

lyzed for RNA and protein expression (Figure S2). For

further studies, siRNA construct number one was used for

MSR1 and CD36, and siRNA construct number two was

applied for ORL1 silencing. Uptake of modified HSA mea-

sured by flow cytometry was significantly reduced only when

MSR1 was knocked down (P<0.01) (Figure 4). WhenMSR1

was silenced, uptake of modified HSA probes decreased by

30%. Silencing of CD36 and ORL1 had no significant effect

on receptor-mediated uptake of modified HSA (Figure 4).

Results of experiments using pharmacologic inhibition

of receptor-mediated uptake confirmed these findings.

Blockage of class A receptors using dextran sulfate

resulted in a modest but significant 16% decrease in the

uptake of Mal-HSA by THP-1 macrophages (P<0.05), and

interference with phagocytosis by cytochalasin D reduced

uptake of Mal-HSA probe by approximately 36% com-

pared with vehicle (P<0.05) (Figure S3).

In competition studies using modified LDL particles

that bind preferentially to different scavenger receptors

(oxLDL→CD36, MDA-LDL→SR-A),44 a significant
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(P<0.05) decrease in uptake by macrophages was observed

when modified HSAwas incubated together with MDA-LDL

but not when it was incubatedwith oxLDL (Figure 5) or native

LDL (Figure S4). Together, these data suggested that SR-A1 is

themajor receptor involved in uptake ofMal- or Aco-modified

HSA by macrophages.

Cellular uptake of radiolabeled probes
To allow their possible clinical application in radionuclide

imaging, probes were labeled with 89Zr and the time course

of their uptake by THP-1 macrophages evaluated.

Radiotracer uptake was measured using a gamma counter

and counts were adjusted for the number of cells, radioactive

decay and added activity (1 MBq). Results were consistent

with those for FITC-labeled probes, indicating that it is the

carboxyl group modification that contributes to the phagocy-

tosis, not the HSA or FITC. The uptake of radiotracers with

modified HSA increased with incubation time (Figure 6A).

Preincubation with 1 mg of nonradiolabeled modified HSA

probes significantly (P<0.01) reduced radiotracer uptake by

THP-1 macrophages (Figure 6B), indicating a limit to the

uptake of the modified HSA radiotracers. Because Mal-HSA
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Figure 1 Evaluation of probe uptake in THP-1 macrophages.

Notes: (A) Flow cytometry analysis of uptake of three different concentrations (0.1 μM, 1 μM and 5 μM) of FITC-conjugated probes. Significantly higher uptake of Mal-HSA-

FITC and Aco-HSA-FITC than of HSA-FITC by THP-1 macrophages was observed for all tested concentrations. Uptake of Mal-HSA showed significantly higher FITC MFI

than that of Aco-HSA at all tested concentrations. The FITC MFI increased significantly with increasing concentrations of each probe P<0.0001. The results are pooled data

from two independent experiments (triplicate wells). Data are presented as mean FITC MFI ± SD. ****P<0.0001 for Mal-HSA vs HSA; ###P<0.001, ####P<0.0001 for Aco-

HSA vs HSA; §§§§P<0.0001 for Mal-HSA vs Aco-HSA (ordinary two-way ANOVA (factors: treatment and concentration) and Tukey’s multiple comparison test). (B) Confocal
Z-stack maximum intensity projection images; left panel: (0.1 μM) HSA-FITC incubation, right panel (0.1 μM) Mal-HSA-FITC. Images show probes (FITC green), actin staining

(phalloidin, TRITC red), cell nuclei staining (DAPI, blue).

Abbreviations: HSA, human serum albumin; MFI, median fluorescence intensity.
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Abbreviation: HSA, human serum albumin.
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performed better than Aco-HSA in several experimental

protocols we decided to use only Mal-HSA for human pri-

mary macrophage studies.

Uptake in primary human macrophages
Probe uptake was also studied in cytokine-polarized

macrophages. Different subsets of macrophages were

able to recognize Mal-HSA, and its uptake was signifi-

cantly (P<0.0001) higher in M0 and M2 human macro-

phages than in M1 human macrophages (Figure 7).

Interestingly, uptake was fastest in M0 but reached a

plateau after 2 h, while uptake in M2 increased constantly

over the experimental period. Blocking SR-A1 using a

specific anti-SR-A1 antibody resulted in a reduction in

probe uptake by M0 and M2 macrophages of 40–50%,

consistent with previous results (Figure 8).

We also tested probe uptake by other types of vascular

cells. Almost no uptake of the modified HSA probe was

observed with either cultured primary HCtSMCs or

HUVECs (Figure 9). There was no obvious effect of probe

incubation on the morphological features of these cells.

Discussion
In this study, we present two modifications of HSA that

promote its uptake by macrophages via scavenger

receptor-mediated pathways, especially those mediated
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by the SR-A1 receptor. We showed that the Mal-HSA

probe was recognized by different subsets of macro-

phages, and demonstrated the potential utility of 89Zr-

labeled HSA radiotracers for imaging of inflammation

in atherosclerosis.

All the FITC-, DFO-,Mal- andAco-moieties bindmainly

to the approximately 60 available lysyl amine groups, but can

also bind to other available amine groups, eg, arginyl. It has

previously been shown that the targeting efficiency increased

with increasing numbers of maleylated amine sites.6,7,45

Therefore, to ensure the highest possible uptake by macro-

phages, we aimed for fully maleylated or aconitylated HSA.

Mal-HSA was taken up slightly more efficiently than Aco-

HSA, possibly because of the saturation of the available

amine binding sites on HSA.2,46 Increasing the number of

targeting motifs might improve the targeting efficacy of Aco-

HSA. Other factors that may influence uptake are the size and

ζ-potential of the probe. The latter depends on the particle

charge, ionic strength and pH of the solution. Further, the

accessibility of the targeting motifs that trigger phagocytosis

is dependent on the macroscopic morphology of the HSA, ie,

the folding of the protein of the different probes.8

We used human albumin-based probes based on the

hypothesis that they would be more biocompatible for

human molecular imaging applications than the previously

reported Mal-BSA-based probes. Our findings add to pre-

viously reported studies on Mal-BSA probes by us and

others,6–11,13,47 and provide new information about the

binding of the SR-A receptor to Mal-HSA compared

with Mal-BSA.11 This and other reports indicate that SR-
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Notes: (A) Uptake of modified HSA probes by THP-1 macrophages was already detectable at 15 min and increased over time. All modified probes 89Zr-Mal-HSA and 89Zr-
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§§§§P<0.0001 for Mal-HSA vs Aco-HSA (ordinary two-way ANOVA (factors: treatment and time) and Tukey’s multiple comparisons test). (B) In vitro blocking: Uptake of
89Zr-Mal-HSA and 89Zr-Aco-HSA decreased approximately 60% and 40%, respectively, after 15 min blocking followed by 1 h probe incubation. No significant differences

were observed between HSA and HSA-block. (ns=nonsignificant **P<0.01, ***P<0.001 (unpaired t-test with Welch’s correction). The results shown in (A) and (B) are
pooled data from two independent experiments (triplicate wells). Data show mean percentage uptake of added radioactivity per 100,000 cells and SD.

Abbreviation: HSA, human serum albumin.
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Figure 7 Flow cytometry analysis of probe uptake in three different types of polarized macrophages.

Notes: M0 and M2 take up Mal-HSA probes significantly better than M1 after 1 h probe incubation. No significant differences were observed between M0 and M2 cells

incubated with Mal-HSA-FITC. The results represent data from six donors in technical duplicates. Data are presented as mean FITC MFI and SD. ****P<0.0001 (ordinary

two-way ANOVA (factors: treatment and cell phenotype) and Tukey’s multiple comparison test).

Abbreviations: HSA, human serum albumin; MFI, median fluorescence intensity.
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A receptors are involved in Mal-HSA uptake,8,11 and our

experiments using specific siRNA and blocking antibody

against SR-A1 suggest that SR-A1 is the main receptor for

specific uptake of Mal- and Aco-HSA by cultured macro-

phages. These findings were supported by the experiments

with MDA-LDL, which competes for binding to the same

receptor (SR-A1),11,47,48 and significantly decreased the

uptake of Mal- and Aco-HSA. Although SR-A1 seems to

be the main route of cellular uptake of modified HSA, a

possible limitation is that we cannot exclude nonspecific

uptake, and other receptors may also be involved in recep-

tor-mediated uptake of both Mal-HSA and Aco-HSA.11,49

The silencing experiments resulted in an ~80% reduction

of SR-A1 protein expression, but only a ~30% decrease in

Mal-HSA uptake could be seen, indicating contribution

from phagocytosis or macropinocytosis. Results from the

Cytochalasin D inhibition also support this assumption.

However, neither CD36/SR-B2 nor ORL1/LOX-1 detecta-

bly contributed to Mal-HSA uptake, and Mal-HSA did not

appear to compete with oxLDL.

Finally, the relatively low probe concentration required

for robust detectable uptake (0.1 μM in vitro) and its

sorting into the endolysosomal compartment support the

hypothesis that uptake is receptor mediated.

Amixed population of differently polarizedmacrophages

is present throughout the course of atherosclerotic plaque

evolution.31 Our data suggest that different subsets of pri-

mary human macrophages recognize Mal-HSA, indicating

the probe’s potential to target lesional macrophages. In vitro

polarized M2 and M0 macrophages incorporate FITC-

labeled probes significantly more efficiently than M1 macro-

phages. This finding was predicted because typi-

cal M1 macrophages downregulate SR-A1 expression

(Available from: https://www.ncbi.nlm.nih.gov/geoprofiles/

32432046. Accessed December 28, 2018). Importantly, the

classification of macrophages as M1/M2 is theoretical and

based on in vitro experiments and does not represent the

diversity of macrophages in atherosclerotic plaques.50 Of

interest, we also observed probe uptake by LDL-preloaded

THP-1 cells. This might support the utility of our probe for

both early and late diagnostic targeting of the features of

plaques present at different stages of atherosclerosis.

Normal endothelial cells and smooth muscle cells

(SMCs) do not express SR-A1,18,25 restricting their ability
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Figure 8 Receptor blocking. Evaluation of Mal-HSA-FITC uptake over time by human primary macrophages measured by real-time microscopy.

Notes: (A) M0, (B) M1 and (C) M2 polarized macrophages preincubated with either vehicle control (dashed line), anti-SR-A1 blocking antibody (red), or IgG1 isotype

control (continuous line). (D) Comparison of the uptake capability of differently polarized macrophages. The results represent data from three donors in technical triplicates

(9 images/well and timepoint) and are presented as mean and SEM. In (A–C): *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 for vehicle vs anti-SR-A1; #P<0.05, ##P<0.01,
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(repeated measures two-way ANOVA (factors: treatment and time) and Tukey’s multiple comparison test).

Abbreviations: HSA, human serum albumin; GCU, green calibration unit.
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to take up Mal-HSA, and expression of SR-A1 is reported

to be strongly but not exclusively associated with macro-

phages (Available from: www.immgen.org. Accessed

December 28, 2018). However, other monocyte-derived

antigen-presenting cells such as mast cells and dendritic

cells51 and transdifferentiated SMCs in atherosclerotic

plaques have been linked to SR-A1 expression.33

Transdifferentiated SMCs also accumulate modified LDL

cholesterol via scavenger receptors and evolve into foam

cells.52–54 Further, it has been reported that lesional macro-

phages proliferate via a SR-A1-mediated response,55 and

that the number of macrophages in atherosclerotic lesions

is indicative of vulnerability of plaques.56–58 Overall, these

data suggest that targeting of SR-A1, which is expressed

by the main effector cell populations within atherosclerotic

plaques, might improve assessment of plaque instability by

radionuclide imaging.

High specificity to target, low immunogenicity and toxi-

city are key requirements for imaging probes. HSA as well as

maleylated albumin has been reported to have a low toxicity

profile.2,3,7 Both Mal-HSA and Aco-HSA have shown high

specificity to target. Other important features are the contrast-

to-noise ratio of the radiolabeled probe as well as the stability

of the 89Zr-DFO complex in vivo, which must be further

optimized for clinical practice. However, DFO is the most

commonly used chelator for 89Zr-complexation and good

manufacturing practice (GMP)-compliant 89Zr is already

commercially available, enabling the introduction in clinical

routine.59 The positron emitter 89Zr is widely used in pre-

clinical and clinical studies within the field of cancer medi-

cine in conjugation to antibodies as a radionuclide for

immuno-positron emission tomography (PET),59,60 and

might have potential for vascular imaging applications.61–63

Molecular imaging of inflammation in atherosclerosis by
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Figure 9 Evaluation of Mal-HSA-FITC uptake by different cell types. Fluorescence microscopy images of Mal-HSA-FITC probes (green) incubated for 3 h with (A) THP-1

macrophages, (C) HUVECs (EC), and (D) HCtSMCs (SMC). (B) Mal-HSA-FITC uptake by different cell types plotted against time. The results represent data from technical

triplicates (9 images/well and timepoint) and are presented as mean and SEM. Data show significantly increased uptake of modified HSA probes by THP-1 cells compared

with HUVEC (****P<0.0001) and HCtSMCs (####P<0.0001) at 2.5 h and 3 h. None of the cell types recognized HSA-FITC (data not shown) (repeated measures two-way

ANOVA (factors: cell type and time) and Tukey’s multiple comparison test).

Abbreviations: HSA, human serum albumin; GCU, green calibration unit.
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targeting macrophages could help identify vulnerable pla-

ques and monitor the effect of treatment. Development of

new target-specific radiotracers could help direct individual

patient-tailored diagnostics and treatment. This could shed

light on the suitability of therapeutic interventions and iden-

tify patients who would benefit from newly developed anti-

inflammatory drugs. 89Zr provides a long half-life of 78.41 h

compared with other clinically available PET tracers, and is

beneficial when imaging molecular processes in case of

slowly-accumulating radiopharmaceuticals.59,64 However, a

longer half-life is a potential limitation as it means higher

radiation dose, which may limit the dose that could be

administered for certain applications. An interesting future

possibility is to modify albumin-based probes for use in dual-

imaging applications, such as PET/magnetic resonance ima-

ging (MRI), by radiolabeling and coupling paramagnetic

gadolinium to the amine groups.13 We plan to evaluate the

applicability of the modified probes as targeted tracers for in

vivo radionuclide imaging of inflammation in atherosclerotic

plaques as a step toward increasing the accuracy of prediction

of vulnerable plaques and risk assessment.

Conclusion
Mal-HSA is taken up by different types of polarized

macrophages. The cellular interaction is mainly driven by

receptor-mediated uptake, primarily involving SR-A1

receptors. Both Mal- and Aco-HSA are promising probes

for targeting macrophage scavenger receptors. The probes

have potential as carriers of metal ions, enabling nuclear

imaging and/or MRI applications, eg, PET/MRI of macro-

phage-rich vascular inflammation.
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Figure S2 Receptor silencing. (A–C) represent comparisons of qPCR data and fold changes in siRNA levels for MSR1, CD36 and ORL1 for two different silencers per gene.

Data showed a 60–80% reduction compared with siNeg control. (D–F) show immunoblotting data for the same siRNAs. (G–I) Band intensities were measured in Fiji ImageJ.

Notes: Bar charts show the decrease in protein expression levels after silencing presented as arbitrary units (AU) and normalized for loading controls. The results are

pooled data from two independent experiments (technical duplicates) with mean and SD. *P<0.05, **P<0.01, ****P≤0.0001 (ordinary one-way ANOVA and Dunnett’s

multiple comparison test (siRNA compared with siNeg)).

Abbreviation: siNeg, siNegative.
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Figure S3 Blocking of phagocytic activity. Confocal images of THP-1 macrophages incubated with Mal-HSA-FITC for 3 h and pretreated with (A) vehicle, (B) DexS or (C)

Cyt-D for 30 min.

Notes: Nuclear staining DAPI (blue), FITC-conjugated Mal-HSA (green). (D) Data showed a significant decrease in cellular uptake of FITC-labeled Mal-HSA probes

pretreated with DexS or Cyt-D. No uptake of FITC-labeled HSA probes was observed (results not shown). Results shown are pooled data from technical duplicates (5

images/well) presented as mean and SD. *P<0.05 (unpaired t-test with Welch’s correction).

Abbreviations: DexS, dextran sulfate; Cyt-D, cytochalasin D.
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Figure S4 Flow cytometry analysis of FITC-conjugated probe uptake in the presence of increasing concentrations of native LDL.

Notes: Data are presented as mean FITC MFI and SD. No significant competition was observed with native LDL (x=0.1 μM) (ordinary one-way ANOVA).

Abbreviation: MFI, median fluorescence intensity.
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