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A recent experiment proves the therapeutic effect of arm-in-arm walking, showing

that if an aged participant walks in close synchrony with a young companion, the

complexity matching effect results in the restoration of complexity in the former. A clear

manifestation of complexity restoration is a perfect synchronization. The authors of this

interesting experiment leave open two important problems. The first is the measure of

complexity that is interpreted as a degree of multifractality. The second problem is the

lack of a theoretical derivation of synchronization, which is experimentally observed with

no theoretical derivation. The main goal of this paper is to establish a physiological

foundation of these important results based on the recent advances on the dynamics

of the brain, interpreted as a system at criticality. Criticality is a phenomenon requiring

the cooperative interaction of units, the neurons of the brain, and is hypothesized as the

main source of cognition. Using the criticality-induced intelligence, we define complexity

as a property of crucial events, a form of temporal complexity, and we prove that the

perfect synchronization is due to the interaction between the two systems, with the

more complex system restoring the temporal complexity of the less complex system.

The phenomenon of temporal complexity is characterized by ergodicity breaking that has

made it difficult in the past to derive the perfect synchronization generated by complexity

matching. For this reason, we supplement the main result of this paper with a comparison

between complexity matching and complexity management.

Keywords: reinforcement learning, complex adaptation, complexity matching, control, complex periodicity,

biofeedback

1. INTRODUCTION: WALKING TOGETHER AS A FORM OF
THERAPEUTIC SYNCHRONIZATION

Walking in synchrony is a subject of significant interest for its therapeutic effects (Zivotofsky and
Hausdorff, 2007; Engelhard, 2018). A remarkably interesting result is illustrated in Almurad et al.
(2018), a sequel to the earlier work of Almurad et al. (2017). Senior individuals, with problems in
walking and balance, interpreted as a lack of physiological complexity, participated in a longitudinal
training program of synchronized walking, with young experimenters. The authors observed a
restoration of complexity in the senior participants after 3 weeks, and this effect persisted for at least
2 weeks beyond the end of the training program. Recovering complexity in walking was signaled
by synchronization between a senior patient and a youthful experimenter. Figure 1 illustrates the
synchronization effect that we intend to recover with simple computational rules by implementing
the complexity matching principle (CMP).
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FIGURE 1 | Experimental walking synchronization. The top panel shows two distinct gait trajectories for two human subjects walking together. The bottom panel

shows the same trajectories, but overlapping them to emphasize their synchronization. This figure is derived from Almurad et al. (2017), with permission.

The computational prescriptions that we adopt to recover
the experimental results of Almurad et al. (2017) and Almurad
et al. (2018) are based on neurophysiological arguments that
are expected to shed light into the connection between the
experimentally observed synchronization and brain dynamics.
The synchronizationmodel is reminiscent of the theory of phase-
locked modes of Kelso et al. (1987), which in turn, rests on the
theoretical perspective of synergetics (Haken, 1983) explained in
the book by Kelso (1995). However, the coupling between the two
interacting systems implies the cooperative action of many units,
the neurons of the brain. The present paper designs the phase
rearranging selected by one system to establish synchronization
with the other, as a consequence of a self-organization process,
again reminiscent of synergetics. However, here we draw special
attention to fitting the condition of temporal complexity and
ergodicity breaking. These two important conditions reflect
the recent experimental and theoretical work in the field of
neurophysiology, quoted herein to clarify the steps required
to reproduce the experimentally observed synchronization of
Almurad et al. (2017) and Almurad et al. (2018).

A relevant example of the connection between the model
adopted herein and the neurophysiology literature is the use of
subordination theory. Bohara et al. (2018) modeled the dynamics
of the brain in such a way as to establish a bridge between
the nearly coherent oscillations hypothesized by the observation

of brain waves and the rapid transition processes, which are
compelling results of the recent analysis of EEGs. Subordination
theory rests on the assumption that coherence is a property
of operational time, intimately related to the function of the
body. The transition from operational time to clock time is
accomplished by introducing crucial events, either visible or
invisible, so as to generate a frequency spectrum for time
series variability. The spectrum is characterized by 1/f noise in
remarkably good agreement with experimental observation.

The crucial events are characterized by a complexity index
µ, ranging from the value µ = 2, corresponding to the
greatest complexity, to the value µ = 3, at the border with the
region of ordinary statistical physics, thereby representing the
condition of least complexity and greatest pathology.We propose
a prescription to couple two different complex-periodic systems,
one representing a healthy person and the other representing
a sick patient. We prove that as a result of this coupling, the
healthy complex system transfers its temporal complexity and
its periodicity to the pathological system and the subsequent
transfer of information. As a result of this therapeutic process,
synchronization between the two systems emerges.

Note that the synchronization depicted in Figure 1 is the
result of an experiment while the results shown in Figure 6,
which are remarkably similar to those shown in Figure 1, is
the result of the coupling between a system with µ close to 3,
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representing the senior patient, and a system with µ close to
2, representing the young experimenter. Almurad et al. (2017)
and Almurad et al. (2018) make the plausible conjecture that
their experimental result is a manifestation of the phenomenon
of complexity matching, namely the phenomenon of maximal
transfer of information between two systems with the same
complexity. This special condition of information transfer is
made clear by the almost ideal synchronization, which is obtained
by increasing the complexity of the senior subject while the
complexity of the healthy youth remains unchanged. These
authors however leave open the definition of complexity that,
according to them, can be measured by multi-fractality.

In line with the theory of Mahmoodi et al. (1990) showing
that multifractality is generated by crucial events at criticality,
the main goal of the present manuscript is to prove that the
complexity index µ is the proper measure of complexity. To
make the significance of achieving this goal more apparent, we
supplement this result with a proper revision of the connection
between complexity matching and complexity management.

2. METHOD

To address the ambitious purpose of explaining
synchronization, we adopt subordination theory (Sokolov,
2002). This theory allows us to combine rhythm, which is a
fundamental property of biological processes (Winfree, 2001)
with non-rhythmic crucial events. The crucial events are
organization rearrangements, or renewal failures observed in
the brain (Paradisi et al., 2016) and are closely related to the
phenomena of intermittency (Metzler et al., 2014).

The time distance τ between consecutive crucial events is
described by a waiting-time probability density function (PDF)
ψ(τ ) with an inverse power law (IPL) structure:

ψ(τ ) ∝
1

τµ
(1)

with the IPL index in the interval:

1 < µ < 3. (2)

These crucial events are the source of aging and of non-stationary
correlation functions (Metzler et al., 2014), and aging is perennial
if µ < 2. Earlier research work shows that the human brain
operates in the region 2 < µ < 3 (Bohara et al., 2017), where
the first moment< τ > of the PDF ψ(τ ), is finite. Therefore, we
focus on this condition to establish a connection between renewal
events and rhythm. Rhythm is a property of the operational time
n (Sokolov, 2002) and corresponds to harmonic motion:

x(n) = cos(�n). (3)

Herein we refer to this harmonic motion by means of the
time period:

T =
2π

�
, (4)

as well as the frequency�.
In clock time, according to subordination theory, x(t) is given

by (Bohara et al., 2017) :

x(t) =

∞
∑

n=0

∫ t

0
dt′ψn(t

′)9(t − t′)cos�n, (5)

where ψn(t
′) is the PDF corresponding to the occurrence of

the n-th crucial events at time t′. From time t′ to time t no
further crucial event occurs. This constraint is established by
9(t − t′), with 9(t) being the survival probability associated to
the waiting–time PDF ψ(t). Note that x(t) of Equation (5) can be
interpreted as being the harmonic motion of Equation (3) made
complex through the transform n→ t.

A clear sign of the complexity of x(t) is that its power spectrum
is characterized (Bohara et al., 2017) by the IPL formula:

S(f ) ∝
1

f β
, (6)

where the spectral IPL index is:

β ≡ 3− µ. (7)

Note that when µ = 2, S(f ) of Equation (6) yields β = 1,
namely, the ideal 1/f -noise as found by Allegrini et al. (2009) to
be produced by a healthy human brain.

In Figure 2 we show one complex system driving another
and synchronization is achieved. Herein we explain how this
synchronization is realized through the study of two complex
systems, S1 and S2, with their respective frequencies and

FIGURE 2 | The curves show the x(t) of the driving system (blue), modeled by

a subordinated cosine wave with µ1 = 2.7 and �1 = 2π/200, which was

connected (uni-directional) with perturbation strength r2 = 0.1 to the driven

system (red), with µ2 = 2.3 and �2 = 2π/100. The connection is realized

using Equation (9). Ensemble size = 1.
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complexity parameters, �1, µ1 and �2, µ2. Note that here we
use the IPL indices as measures of the systems’ complexity.

At time t the subordination process yields for S1:

x1(t) = cos(�1n1(t)). (8)

and for S2:

x2(t) = cos(�2n2(t)). (9)

Of course, in the absence of coupling n1(t) 6= n2(t). Let us
assume that S1 is the driving and S2 the driven system. The
coupling is realized through the intelligent response of S2, which
tries to compensate for the difference between x1(t) and x2(t) by
rearranging the phase according to the prescription;

8(t + 1) = 8(t)− r2K(t)sign
{

sin(�2n2(t)+8(t))
}

, (10)

where the difference between the driven and driver systems is:

K(t) ≡ 2[x1(t)− x2(t)]. (11)

This means that the driven system is aware of whether the
difference1a(t) ≡ x1(t)−x2(t) is positive or negative. In addition

it also knows the gradient 1b(t) ≡ ∂x2/∂n2 ∝ −sin(�2n2(t),
namely the derivative of x2 with respect to operational time. The
complex driven system S2 increases or decreases its phase 8(t)
depending on the sign and magnitude of the product1a(t)1b(t).

Equation (10) is a generalization of the swarm intelligence
prescription adopted in earlier work (Turalska et al., 2009; Vanni
et al., 2011) and is the learning process in our algorithm which
enables the driven system to continuously adopt to the driving
system, thereby creating complexity matching between them. In
Figure 2 we illustrate the typical synchronization obtained by
assigning to the driving system µ1 = 2.7, �1 = 2π/200 and
to the driven system µ2 = 2.3,�2 = 2π/100.

Each panel of Figure 3 shows the spectra of the driving system
(black curve) and of the driven system before (red curve) and
after (blue curve) connection. Panels 3A,B refer to the cases
where both driving and driven systems have the same complexity
µ1 = µ2 = 2.5, but different periodicities. In panel 3A the
driving system has the lower periodicity (�1 = 2π/100 and
�2 = 2π/1, 000) while in panel 3B the driven system has the
higher periodicity (�1 = 2π/1, 000 and �2 = 2π/100). The
results depicted in these two panels reveal that the driven system
adopts the periodicity of the driving systems. The driven system
with higher periodicity shifts its periodicity to that of the driving

FIGURE 3 | The spectra of the driving system (black curve), driven system before connection (red curve), and driven system after connection (blue curve). (A)

µ1 = 2.5, �1 = 2π/100, µ2 = 2.5, �2 = 2π/1, 000, r2 = 0.1. (B) µ1 = 2.5, �1 = 2π/1, 000, µ2 = 2.5, �2 = 2π/100, r2 = 0.1. (C) µ1 = 2.1, �1 = 2π/100,

µ2 = 2.9, �2 = 2π/100, r2 = 0.1. (D) µ1 = 2.9, �1 = 2π/100, µ2 = 2.1, �2 = 2π/100, r2 = 0.1. L = 105. Ensemble size = 100.
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FIGURE 4 | The spectra of the driving system (black curve), driven system before connection (red curve) and driven system after connection (blue curve). (A)

µ1 = 2.1, �1 = 2π/100, µ2 = 2.9, �2 = 2π/1, 000, r2 = 0.1. (B) µ1 = 2.1, �1 = 2π/1, 000, µ2 = 2.9, �2 = 2π/100, r2 = 0.1. (C) µ1 = 2.9, �1 = 2π/100,

µ2 = 2.1, �2 = 2π/1, 000, r2 = 0.1. (D) µ1 = 2.9, �1 = 2π/1, 000, µ2 = 2.1, �2 = 2π/100, r2 = 0.1. L = 105. Ensemble size = 100.

system (3A). Panel 3B shows that the driven system with lower
periodicity adopts the periodicity of the driver, as well as, the
other embedded oscillation modes. The remaining two panels
of Figure 3 are cases where both driving and driven systems
have the same periodicity (�1 = �2 = 2π/100), but different
complexity indices. In Panel 3C the driver has higher complexity
(lower complexity index) (µ1 = 2.1 < µ2 = 2.9) while in Panel
3D the driver has lower complexity (higher complexity index)
(µ1 = 2.9 > µ2 = 2.1). These panels show that the less complex
system could adapt to both the complexity index and periodicity
of the more complex driven system (3C). By contrast, Panel 3D
shows that the more complex driven system does not adapt to the
complexity index and periodicity of the less complex driver.

The panels of Figure 4 show the four general conditions where
the driving and driven systems have different parameters for both
complexity and periodicity. The results of these figures follow the
same patterns as those of Figure 3. Notice there are also signs of
the extra oscillation modes between the driving and the driven
frequency illustrated in Figures 3B, 4B,D.

Of great importance for the therapeutic effect of walking
together is the condition where S1 is influenced by S2 in the
same way. We refer to this condition as back–to–back, also
known as bi-directional information exchange. To realize the

back–to–back condition, as we shall subsequently see that we
need to introduce the new parameter r1, which defines the
intensity of the influence of S2 on S1. The panels in Figure 5

show the cases where two systems are connected back–to–back.
The systems with lower complexity (µ2 = 2.9) improved their
complexity from µ1 = 2.9 to µ1 = 2.1 and both systems adopted
a frequency between the initial effective frequencies.

Here we have to stress that the perturbing system is quite
different from the external fluctuation that was originally adopted
to mimic the effort generated by a difficult task (Corell, 2008;
Grigolini et al., 2009). In that case, according to Heidegger’s
phenomenology (Dotov et al., 2010) the transition from ready-to-
hand to unready-to-handmakes the IPL index µ depart from the
1/f -noise conditionµ = 2 (Corell, 2008; Grigolini et al., 2009) so
as to reach the Gaussian border µ = 3 and to go beyond it. Here
the perturbation is characterized by an intense periodicity, and
while it does not change the complexity of the perturbed network
very much, it does transfer its own periodicity.

The theory developed herein may shed light on the crucial
role of cooperation. Recent psychological research on collective
intelligence (Woolley et al., 2010) shows that cooperative
interactions between the members of a group may improve the
global intelligence of that group. To realize a condition that is
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FIGURE 5 | The spectra of the two systems at isolation (S1 : black and S2 : red curves) and after being connected back to back (blue and green curves, respectively).

(A) µ1 = 2.1, �1 = 2π/100, µ2 = 2.9, �2 = 2π/100. (B) µ1 = 2.1, �1 = 2π/1, 000, µ2 = 2.9, �2 = 2π/100. (C) µ1 = 2.1, �1 = 2π/100, µ2 = 2.1,

�2 = 2π/1, 000. (D) µ1 = 2.1, �1 = 2π/100, µ2 = 2.9, �2 = 2π/1, 000. r1 = r2 = 0.1. L = 105. Ensemble size = 100.

close to that of the paper of Woolley et al. (2010), we study the
case where S1 is influenced by S2 in the same way S2 is influenced
by S1. As a result of this mutual interaction, we haveµ1 → µ′

1and
µ2 → µ′

2. When µ1 < µ2 we expect the shifted complexity
indices to lie in the interval:

µ1 < µ1′ < µ2′ < µ2. (12)

Figure 5 shows that µ′
1 ≈ µ1, thereby suggesting that the system

with higher complexity does not perceive its interaction with the
other system as a difficult task, which would force it to increase
its own µ (Corell, 2008; Grigolini et al., 2009), while the less
complex system has a sense of relief. We interpret this result as
an important property that should be the subject of psychological
experiments to shed light on the mechanisms facilitating the
teaching and learning process.

The term “intelligent” that we use herein is equivalent to
assessing a system to be as close as possible to the ideal
condition µ = 2, corresponding to the ideal 1/f noise. In
this sense, two very intelligent systems are the brain and heart
that, when healthy, share the property of a µ being close to
2. The present paper, therefore, provides a rationale for (an
explanation of) the synchronization between heart and brain

time series (Pfurtscheller et al., 2017) and shows that the concept
of resonance, based on tuning the frequency of the stimulus to
that of the system being perturbed, may not be appropriate for
complex biological systems. Resonance is more appropriate for
a physical system, where the tuning has been adopted over the
years for the transport of energy, not information. The widely
used therapies resting on bio-feedback (Lin and Li, 2018), are
the subject of appraisal (Papo, 2019), and the present results may
contribute to making therapeutic progress by establishing their
proper use.

3. SUPPORTING INFORMATION

3.1. Walking Together
To facilitate the appreciation of the similarity between the
complexity matching prescription observed herein and the
walking synchronization of the paper of Almurad et al. (2017),
we invite the readers to examine the experimental results of
Figure 1. We used numerical results, of the same kind as
those illustrated in Figure 2 of the text, properly modified
to connect the two trajectories back–to–back. To make the
qualitative similarity with the results of the experiment of
the paper of Almurad et al. (2017) more evident, we adopt
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FIGURE 6 | The blue and red curves show the duration times between the

strides of x(t) of two systems, being connected back to back; corresponding

to the spectra of Figure 4B: µ1 = 2.1, �1 = 2π/1, 000, µ2 = 2.9,

�2 = 2π/100, r1 = r2 = 0.1. Ensemble size = 1.

the same prescription as that used by Almurad et al. We
interpret the time interval between consecutive crossings of
the origin, x = 0, as the time duration of a stride of x(t).
Figure 6 illustrates the result of this procedure. This remarkably
good qualitative agreement between Figures 1, 6 supports the
efficiency of the complexity matching approach used herein. This
procedure can also be used to explain the synchronization
between the heart and brain found empirically by
Pfurtscheller et al. (2017).

3.2. Beyond Complexity Management
We also show how the method of the present paper works when
applied to experimental data to evaluate the cross-correlation
between the driven and the driving complex networks, going
beyond the limitations of the research work on complexity
management (Aquino et al., 2011; Piccinini et al., 2016).
Complexity management is very difficult to observe. It is
based on ensemble averages, thereby requiring the average over
many identical realizations (Aquino et al., 2011). In the case
of experimental signals of physiological interest, for instance,
on the brain dynamics, taking an ensemble average is not
possible. The theory presented herein makes it possible to
evaluate the correlation between the driving and the driven
system using a single realization of the time series. We
stress that while complexity management (Aquino et al., 2011)
does not affect the IPL index µ of the interacting complex
networks, the theory of this paper, as shown by Figure 4, affords
important information on how the cooperative interactionmakes
the unperturbed values of µ change as a consequence of
the interaction.

Panel 7A illustrates the maximum value of the cross-
correlation function Cmax vs. periodicity of the driver and the
driven systems connected, uni-directionally, r2 = 0.025, while
keeping their complexity index equal: µ1 = µ2 = 2.5. High
values of Cmax corresponds to the strong adaptability of the
driven system to the driving system. This figure shows that when
the driven system has the periodicity similar to that of the driver,
its adaptation is maximum. Panel 7B shows the cross-correlation
function, Cmax vs. complexity index of the driver and driven
systems connected, uni-directionally, r2 = 0.025, while keeping
their periodicity equal:�1 = �2 = 2π/50. Notice that there is no
ensemble averaging done in producing Figure 7. A driven system
with lower complexity (higher µ) adapted more to the driving
system than does a driven system with higher complexity.

Figure 8 shows the recurrent plots which provide a way to
visualize the changes in the periodic nature of the driven system
before and after being connected to the driving system. In Panels
8A,B the colors indicate the value of x1(t1)× x1(t2) and x2(t1)×
x2(t2) for the driver (with µ1 = 2.9, T1 = 1, 000) and driven
(with µ2 = 2.1, T2 = 100) systems, respectively. Panel 8C shows
the cross–recurrence between the driving and driven systems
after connection (r2 = 0.1). Panel 8C shows that the driven
system adapted the complex periodicity of the driving system
and in addition gained some extra oscillation modes in between
(corresponding to panel 8B).

4. COMPLEXITY, INFORMATION, AND
CONCLUSIONS

In the recent literature on self-organization (see e.g., Gershenson
and Fernández, 2012), the emergence of complexity is interpreted
as corresponding to information reduction. Variety increases
with a complex system performing multitask actions and
decreases with a complex system focusing on a single task
(Bar-Yam, 2004). More recent work confirms this property in
sociological systems (Zhang et al., 2018), while it is well-known
that it holds true for physiological processes (Peng et al., 1995;
Struzik et al., 2004). The hypothesis of self-organization has been
known and used in biology for nearly half a century (Eigen, 1971;
Thompson and McBride, 1974) [see also Chapter 5 of Eigen’s
important book Eigen (2013)].

4.1. Information Reduction
The entropic approach used to deal with crucial events is the
Kolmogorov-Sinai (KS) entropy hKS (Ignaccolo et al., 2001),
which is well-described by the formula

hKS = z(2− z)ln2, (13)

where z ≡
µ
µ−1 . Equation (13) indicates that the KS entropy

vanishes at z = 2 and it remains equal to 0 in the entire
infinite interval 2 < z < ∞ (µ < 2). Allegrini et al.
(2003) noticed that z = 1, corresponding to µ = ∞, is
the condition of total randomness, namely, the case where an
infinitely large amount of information is necessary to control
the system. The condition z = 1.5, corresponding to µ =
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FIGURE 7 | (A) Dependence of Cmax (as a measure for synchronization) on the periodicity of the drive and driven systems. µ1 = µ2 = 2.5. r2 = 0.025, L = 5× 107.

(B) Dependence of Cmax on the complexity index of the drive and driven systems. T1 = T2 = 50, r2 = 0.025, L = 5× 107. Ensemble size = 1.

FIGURE 8 | Recurrent plots. The x and y axes are time. The colors in the panels correspond to the values of x1(t1)× x1(t2) (A; driving system), x2(t1)× x2(t2) (B; driven

system before connection) and x1(t1)× x2(t2) (C; cross-recurrence between the driving and the driven system after connection). Drive system: µ1 = 2.9, T1 = 1, 000.

Driven system: µ2 = 2.1, T2 = 100, r2 = 0.1.

3, makes the sequence of crucial events compressible, namely,
it reduces the amount of information necessary to control the
system, and finally, the KS entropy vanishes when µ < 2. This is
a region characterized by the diverging value of the mean waiting
time< τ >.

The recent generalization to the mechanism of self–organized
criticality given by self–organized temporal criticality (SOTC)
(Mahmoodi et al., 2017) generates crucial events with µ < 2,
and, albeit a form of self–organization yielding values of µ in the
interval 2 < µ < 3 is not yet known, we make the plausible
conjecture that complex processes that are experimentally proven
to generate crucial events in this interval as well as in the interval
1 < µ < 2, are the result of a process of self-organization. The
condition z > 2 (µ < 2) is where Korabel and Barkai (2009)
had to modify Equation (13) leaving this expression unchanged
for 1 < z < 2 and making it increase from the vanishing value
with z > 2. Actually, KS entropy is a Lyapunov coefficient, and
Korabel and Barkai defined the Lyapunov coefficient for z > 2, by
comparing the rate of departure between two trajectories moving
from very close initial conditions to tµ−1, rather than to t, as
correctly done for z < 2. This means that the region z > 2
(µ < 2) is not fully deterministic, but the amount of information
necessary to control the system is drastically reduced.

4.2. Requisite Variety
Ivanov et al. (1999) noticed that healthy heartbeats have
variability that makes it impossible to adopt the conventional
method of analysis of anomalous scaling based on the stationary
assumption. Consequently, they made the assumption of a
scaling fluctuation that led them to adopt a multifractal
approach. Their proposal turned out to be extremely successful
and was adopted to distinguish healthy heartbeats from heart
failure heartbeats (Ivanov et al., 1999). Allegrini et al. (2002)
examined the data from the same cohort of patients studied
in Ivanov et al. (1999) using the crucial events defined herein
and found that healthy patients have a µ very close to 2,
which makes the KS entropy vanish. They also conjectured
that self-organization generating crucial events may also be
the generator of multifractality. This last conjecture has been
fully confirmed in the recent work of Bohara et al. (2017) and
Mahmoodi et al. (1990).

Of remarkable importance for the requisite variety issue is the
work by Struzik et al. (2004), emphasizing the transition from 1/f
noise to 1/f 2 noise as a manifestation of variability suppression.
Healthy heart physiology is based on the balance between
the conflicting action of the sympathetic and parasympathetic
nervous systems, thereby resulting in the ideal 1/f noise for
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healthy individuals and in the 1/f 2 noise for pathological
individuals. This condition is examined herein with the help of
Figure 1. The SOTC time series of the paper of Mahmoodi et al.
(2017) yields µ < 2. We examined the case of µmoving into the
interval 2 < µ < 3 using subordination to regular oscillatory
motion, a phenomenological way of combining crucial events
and periodicity. We believe that SOTC can be extended to this
condition, and have confidence that future work will realize this
important goal. We see that for f → 0, the IPL spectra Sp(f ) ∝
1/f β , has β = 3− µ. The ideal condition of 1/f noise is realized
when µ = 2. The transition from 1/f noise to white noise is
realized by increasing µ from the ideal value µ = 2 to the value
µ = 3 and beyond. In the presence of periodicity, though, the
1/f noise region can also be affected by moving the periodicity
peak from right to left, in such a way as to make the 1/f 2 noise
the dominant contribution to the spectra in accordance with the
experimental observation of Struzik et al. (2004).

4.3. Lack of Difficult Task Perception
The results of Figure 5 showing µ1′ ≈ µ1, as earlier stated,
suggest that the system with higher complexity does not perceive
the interaction with the less complex system as a difficult
task. This is an indication that the dynamical model adopted
in this paper works at a merely physiological level with no
direct influence on behavior. Further research work is necessary
to go beyond the limits of the model of this paper. An
interesting example of a valuable direction to follow to realize
this extension is afforded by the recent work of Tognoli et al.
(2018). The authors of this illuminating paper adopt a multiscale
neurocomputational model of social coordination that enables
exploration of social self–organization at all levels, from neuronal
patterns to people interacting with each other. The theoretical
background is afforded by the synergetics of Haken (1983) that
is based on the contraction over fast irrelevant variables thereby
addressing criticality with no attention to the ergodicity breaking
role of crucial events. The present paper shows that crucial events
should be taken into account.

We believe that in principle this extension can be realized
by adopting the payoff arguments of Mahmoodi et al. (2017)
in SOTC. In the model of the present paper, the less complex
systems have more events and consequently more chances to
adapt their phases to the more complex system. Therefore,
the less complex network matches the trajectory of the more
complex network with no need to go beyond the physiologic
level. If the two systems were connected in a way that the
payoff of each system depended also on the performance of the
other, then the more complex could increase its µ to help the
less complex to decrease its µ, but together they could reach
maximum performance. This may have the effect of explaining
the earlier mentioned results on the collective intelligence of
Woolley et al. (2010).

Adopting the distinction between neurophysiologic and
sociologic level (Tognoli et al., 2018), interpreted as two distinct
complex systems, we should be able to take into account the
perception of task difficulty, going beyond the limitations of
the model adopted herein. A remarkable example of a problem
that would be settled using this extension of the model of the

present paper is given by Tuladhar et al. (2018). Tuladhar et al.
analyzed the heartbeats of subjects practicing meditation and
found that this has the effect of generating additional coherence
and increasing the executive control, while moving µ from low
to high values, a property adopted in the earlier work of Allegrini
et al. (2009) to explain the Corell effect (Corell, 2008), interpreted
as a consequence of the perception of task difficulty. Adopting a
proper extension of the present model, the improved executive
control would be interpreted as the behavioral and neurologic
systems reaching the level of maximum performance.

Another important problem requiring further theoretical
advances is the persistence of complexity restoration. From a
theoretical point of view, this is an open problem. In fact, the
actions of the system with less complexity are determined by
subordination to harmonic processes with the transition from
operational to clock time being determined by a waiting–time
PDF with a fixed value of the complexity parameter µ. On the
basis of the statistical analysis of real EEG′s and EKG′s this
parameter has been assigned a value close to 2 to simulate healthy
systems and close to 3 to simulate systems affected by pathologies.
These values of µ are the result of a dynamic interaction between
the units of the complex systems. The papers of Turalska et al.
(2009) and Vanni et al. (2011) show that the intelligent behavior
of a system is determined by a control parameter K, the strength
of the interaction between the system’s units. To assess the
persistence of complexity restoration we would need a theory
where K is not fixed but may change according to the interaction
with the environment. The SOTC of Mahmoodi et al. (2017) is
based on the assumption that the search for an optimal payoff
has the effect of changing the control parameter K, with the
pathological behavior being determined by a top-down rather
than bottom-up approach to complexity. Therefore, a theory to
assess the persistence of the recovery would require an extended
form of SOTC, which balances the top-down with the bottom-up
effects. On the other hand, the experimental results of Almurad
et al. (2018) on the rehabilitation protocol indicate that there
may be a form of persistence making the new training process
easier and faster. But this is not firmly proved, requiring further
experiments. Therefore, we are inclined to conclude that the
assessment of this important issue will be the result of further
research work, at both experimental and theoretical level.

Finally, we conclude by stressing that the surprisingly accurate
synchronization of the walking together process ought not to be
confused with either chaos synchronization or resonance. In fact,
chaos synchronization requires finite Lyapunov coefficients and
resonance requires frequency tuning. Complex systems with µ
very close to the ideal condition µ = 2, where the traditional
Lyapunov coefficient vanishes, have the effect of transferring their
temporal complexity to systems with higher values of µ. The
numerical results show that, although communication through
frequencies still exists (bottom panel of Figure 5), the action of
crucial events is more important for the transfer of intelligence.
Our theoretical approach is based on the essential role of crucial
events. The crucial events with µ becoming closer to µ = 2 are
generators of multifractality, as pointed out in the work of Bohara
et al. (2017) and Mahmoodi et al. (1990). Thus, our prediction
that the walker with µ close to 2 attracts the µ of the walker close
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to the Gaussian region µ = 3 can be interpreted as transmission
of multifractality from the healthy to the pathological walker in
a surprising agreement with the recent experimental result of
Almurad et al. (2018).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

KM modeled and performed the computations. PG and BW
supervised the findings of this work. All authors provided the

critical feedback and helped to shape the research, analysis,
and manuscript.

FUNDING

This work was supported by US Army Research Office, grant
number: W911NF1901.

ACKNOWLEDGMENTS

PG and KM thank the US Army Research Office for
supporting this work through grant W911NF1901. This
manuscript has been released as a pre-print at arXiv
(Mahmoodi et al., 2018).

REFERENCES

Allegrini, P., Benci, V., Grigolini, P., Hamilton, P., Ignaccolo, M., Menconi, G.,

et al. (2003). Compression and diffusion: a joint approach to detect complexity.

Chaos Solit. Fract. 15, 517–535. doi: 10.1016/S0960-0779(02)00136-4

Allegrini, P., Grigolini, P., Hamilton, P., Palatella, L., and Raffaelli, G. (2002).

Memory beyond memory in heart beating, a sign of a healthy physiological

condition. Phys. Rev. E 65:041926. doi: 10.1103/PhysRevE.65.041926

Allegrini, P., Menicucci, D., Bedini, R., Fronzoni, L., Gemignani, A., Grigolini, P.,

et al. (2009). Spontaneous brain activity as a source of ideal 1/f noise. Phys. Rev.

E 80:061914. doi: 10.1103/PhysRevE.80.061914

Almurad, Z. M., Roume, C., Blain, H., and Delignières, D. (2018). Complexity

matching: restoring the complexity of locomotion in older people through

arm-in-arm walking. Front. Physiol. 9:1766. doi: 10.3389/fphys.2018.01766

Almurad, Z. M., Roume, C., and Delignières, D. (2017). Complexity

matching in side-by-side walking. Hum. Mov. Sci. 54, 125–136.

doi: 10.1016/j.humov.2017.04.008

Aquino, G., Bologna, M., West, B. J., and Grigolini, P. (2011). Transmission of

information between complex systems: 1/f resonance. Phys. Rev. E 83:051130.

doi: 10.1103/PhysRevE.83.051130

Bar-Yam, Y. (2004). Multiscale variety in complex systems. Complexity 9, 37–45.

doi: 10.1002/cplx.20014

Bohara, G., Lambert, D., West, B. J., and Grigolini, P. (2017). Crucial events,

randomness, and multifractality in heartbeats. Phys. Rev. E 96:062216.

doi: 10.1103/PhysRevE.96.062216

Bohara, G., West, B. J., and Grigolini, P. (2018). Bridging waves and

crucial events in the dynamics of the brain. Front. Physiol. 9:1174.

doi: 10.3389/fphys.2018.01174

Corell, J. (2008). 1/ f noise and effort on implicit measures of racial bias. J. Pers.

Soc. Psychol. 94, 48–59. doi: 10.1037/0022-3514.94.1.48

Dotov, D. G., Nie, L., and Chemero, A. (2010). A demonstration of the

transition from ready-to-hand to unready-to-hand. PLoS ONE 5:e9433.

doi: 10.1371/journal.pone.0009433

Eigen, M. (1971). Selforganization of matter and the evolution of biological

macromolecules. Naturwissenschaften 58, 465–523. doi: 10.1007/BF006

23322

Eigen, M. (2013). From Strange Simplicity to Complex Familiarity: A Treatise on

Matter, Information, Life and Thought. Oxford: OUP.

Engelhard, E. S. (2018). Being together in time: body synchrony in couples’

psychotherapy. Arts Psychother. 60, 41–47. doi: 10.1016/j.aip.2018.06.003

Gershenson, C., and Fernández, N. (2012). Complexity and information:

Measuring emergence, self-organization, and homeostasis at multiple scales.

Complexity 18, 29–44. doi: 10.1002/cplx.21424

Grigolini, P., Aquino, G., Bologna,M., Luković, M., andWest, B. J. (2009). A theory
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