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Abstract: Despite the increased attention that has been given to the unmanned aerial vehicle (UAV)-
based magnetic survey systems in the past decade, the processing of UAV magnetic data is still a
tough task. In this paper, we propose a novel noise reduction method of UAV magnetic data based on
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), permutation
entropy (PE), correlation coefficient and wavelet threshold denoising. The original signal is first
decomposed into several intrinsic mode functions (IMFs) by CEEMDAN, and the PE of each IMF is
calculated. Second, IMFs are divided into four categories according to the quartiles of PE, namely,
noise IMFs, noise-dominant IMFs, signal-dominant IMFs, and signal IMFs. Then the noise IMFs are
removed, and correlation coefficients are used to identify the real signal-dominant IMFs. Finally,
the wavelet threshold denoising is applied to the real signal-dominant IMFs, the denoised signal
can be obtained by combining the signal IMFs and the denoised IMFs. Both synthetic and field
experiments are conducted to verify the effectiveness of the proposed method. The results show that
the proposed method can eliminate the interference to a great extent, which lays a foundation for the
further interpretation of UAV magnetic data.

Keywords: UAV magnetic survey; data processing; CEEMDAN; permutation entropy; correlation
coefficient; wavelet threshold denoising

1. Introduction

The past decade has seen a variety of applications conducted by unmanned aerial
vehicles (UAVs) in many fields, e.g., archaeology, remote sensing, geological prospecting,
and unexploded ordnance (UXO) detection [1]. Among these applications, the use of UAVs
for magnetic surveys is a booming branch of research [2]. UAV magnetic surveys can cover
a wider range with a higher efficiency compared with the traditional terrestrial magnetic
surveys, and are also easy to operate, have a low-cost, and have a good safety profile
compared with manned aircraft magnetic surveys [3]. In addition, UAV-based magnetic
surveys can also be carried out in areas that are difficult to access or that would pose a
potential hazard to operators (e.g., near active volcanoes), which means that some gaps in
traditional magnetic surveys can now be studied [4,5].

A substantial body of research has accumulated on the integration of UAV magnetic
survey systems; however, the processing of UAV magnetic data remains an open problem.
Several attempts have been made to process UAV magnetic data, e.g., Malehmir et al. [6]
used a median filter to process the spiky sample points, while data with severe noise
were excluded. However, the quality of the collected data has not been evaluated. Walter

Entropy 2021, 23, 1309. https://doi.org/10.3390/e23101309 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4513-4304
https://doi.org/10.3390/e23101309
https://doi.org/10.3390/e23101309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23101309
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23101309?type=check_update&version=2


Entropy 2021, 23, 1309 2 of 23

et al. [7] investigated the periodic variations caused by the swing of magnetometers,
spectral analysis and lowpass filter were applied to identify and remove the periodic signal,
yet the target signal may be removed if its frequency overlaps with the periodic signal. Mu
et al. [8] proposed a lowpass filter to remove the interference field; however, the cutoff
frequency and the order of the filter need to be determined according to a priori knowledge.
Similar methods were also used to process the multi-rotor UAV magnetic data, as described
in [9,10]. Liu et al. [11] proposed an adaptive cancellation of geomagnetic background
noise for magnetic anomaly detection. The system is regarded as a two-channel linear
time-invariant (LTI) system, where the first sensor records the background noise as a
reference, and the second sensor records the target signal and background noise at the
same time. It should be noted that if the system is a single channel (i.e., a magnetometer),
it will be difficult to use this method. Wang et al. [12] used higher-order statistics to
suppress the interference of Gaussian colored noise in magnetotelluric data. However,
if the noise is complex and no longer obeys Gaussian distribution, this method will not
be able to suppress interference effectively. In addition, this method requires redundant
data, which limits its further implementation. Overall, processing methods alone are
not enough, since the collected data are usually non-stationary and easily affected by
noise from many sources, e.g., interference generated by UAV platform, geological noise,
industrial frequency interference, and instrument noise.

Empirical mode decomposition (EMD), proposed by Huang [13], is an adaptive time-
frequency analysis method which is suitable for non-linear and non-stationary signals.
EMD analyzes the signal according to the characteristics of the signal itself and does not
need a basis function [14]. However, the boundary effects and mode mixing heavily im-
pact the effect of EMD. To overwhelm these problems, a noise-assistant analysis method,
i.e., ensemble empirical mode decomposition (EEMD), is proposed [15]. EEMD basically
overcomes the mode mixing; however, two new problems, the difference in intrinsic mode
function (IMF) numbers and the introduction of extra noise, have arisen. A complete
ensemble empirical mode decomposition with adaptive white noise (CEEMDAN) is pro-
posed to surmount these obstacles [16]. The CEEMDAN method can significantly reduce
the reconstruction error and requires fewer iterations compared with EMD and EEMD.
To date, CEEMDAN has been widely used in the field of non-linear and non-stationary
signal processing, e.g., biological signal processing [17,18], wind speed forecasting [19,20],
financial time series forecasting [21], gear fault diagnosis [22–24], underwater acoustic
signal denoising [25,26], and structural damage localization and quantification [27].

To further study the characteristics of non-linear and non-stationary signals, permuta-
tion entropy (PE) and correlation coefficient (CC) are proposed to evaluate the complexity
of obtained IMFs, and identify whether the IMFs require denoising, as noted in several
previous studies [22,25,28,29]. In addition, wavelet threshold denoising is adopted as part
of the combined method [17,25,26]. To the best of our knowledge, there have been no
previous studies on UAV magnetic data denoising based on CEEMDAN. Moreover, the
determination of noisy IMFs is generally based on the artificial threshold, which is not only
difficult to achieve in practice, but also does not make full use of the characteristics of the
signal itself.

In this paper, a novel noise reduction method for UAV magnetic data is proposed
by taking advantage of CEEMDAN, PE, CC, and wavelet threshold denoising. The main
contributions of the proposed method are as follows:

1. The adaptive decomposition algorithm, i.e., CEEMDAN, is applied to multi-rotor
UAV magnetic data for the first time. The original data are decomposed into a set of
IMF components with different scales.

2. The IMFs are divided into four categories, i.e., noise IMFs, noise-dominant IMFs,
signal-dominant IMFs, and signal IMFs according to the quartiles of PE, which is
completely determined by the characteristics of the signal itself without setting a
threshold artificially.
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3. The real signal-dominant IMFs are identified using CC, while the wavelet soft thresh-
old denoising (WSTD) is applied to further suppress noise. Simulation results show
that the signal-to-noise ratio (SNR) of the signal can be improved by about 16–20 dB
after denoising by means of the proposed method.

This paper is organized as follows: Section 2 presents the relevant principles of
CEEMDAN, PE, CC, and wavelet threshold denoising; the proposed noise reduction
algorithm for UAV magnetic data is presented in Section 3; in Sections 4 and 5, the proposed
method is applied to both synthetic and real UAV magnetic data, respectively; Section 6
contains the conclusion of this paper.

2. Relevant Principles
2.1. Principles of EMD, EEMD, and CEEMDAN Algorithm

In this section, the mathematical principles of EMD, EEMD, and CEEMDAN are
introduced, and the specific implementation steps, diagrams, and pseudocodes are given
to better understand how these methods work.

2.1.1. EMD Algorithm

EMD can adaptively decompose the original signal s(t) into several IMFs and a
residue. The IMF meets the following two conditions: (a) the number of extremum points
and zero-crossing points must be equal or not exceed one, and (b) the mean value of the
upper envelope formed by the local maximum points and the lower envelope formed by
the local minimum points is zero. The procedure of EMD is summarized as follows [30]:

Step 1: Identify all the extremum points of the original signal s(t) and define the upper
and lower envelope u(t) and l(t), respectively, using a cubic spline interpolation.

Step 2: Calculate the mean envelope of the upper and lower envelope.

m(t) =
1
2
(u(t) + l(t)). (1)

Step 3: Subtract the mean envelope from s(t) to obtain the first intermediate signal.

I1(t) = s(t)−m(t). (2)

Step 4: If I1(t) satisfies the criteria of the IMF, then define IMF1 = I1(t), otherwise treat
I1(t) as the new signal and repeat the above procedure k times until Ik+1(t)
satisfies the IMF conditions. The acquisition of IMF usually requires several
iterations. To finish the iteration, the stopping criterion is defined as follows:

SD = ∑n
i=1
|Ik(i)− Ik+1(i)|2

I2
k (i)

, (3)

where n is the length of the intermediate signal. The iteration will be stopped
when SD < δ (in this study δ is set to 0.3).

Step 5: Let r1(t) = s(t) − IMF1, treat r1(t) as the new signal and repeat Step 1–4 to
obtain the next IMF, until rN(t) becomes either a constant or a monotonic function.
Finally, the original signal s(t) after EMD can be expressed as:

s(t) = ∑N
i=1 IMFi + rN(t), (4)

where N is the number of IMFs, and rN(t) is the final residue.

The pseudocode of EMD is described in detail in Algorithm 1. Figure 1 is the schematic
diagram of the main steps of EMD.
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Algorithm 1: EMD

Input: The original signal x.
Output: Several IMF and a residue, i.e., IMFi, (i = 1, 2, . . . , n) and r.
1: function EMD (x, ResidueThreshold, SDT)
2: IMF←0
3: i←0
4: N← length(x)
5: residue← ∞
6: while residue> ResidueThreshold do
7: i←i+1
8: xi ← x−∑i IMFi
9: SD ← ∞
10: while SD > SDT do
11: for j = 1→j = N do
12: [LocalMaxij, IndMaxij] ← max(xi)

13: [LocalMinij, IndMinij] ← min(xi)

14: end for
15: UpperEnvi ← spline(IndMaxi, LocalMaxi, 1 : length(xi))
16: LowerEnvi ← spline(IndMini, LocalMini, 1 : length(xi))
17: LocalMeanEnvi ← (UpperEnvi + LowerEnvi)/2
18: xi ← xi − LocalMeanEnvi

19: SD ← ∑
[
(xTemp−xi)

2

xTemp2

]
20: end while
21: IMFi ← xi
22: residue← mean(x−∑i IMFi)
23: end while
24: return IMF and residue
25: end function

Figure 1. Cont.
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Figure 1. The schematic diagram of the main steps of EMD.

The effect of EMD is easily affected by mode mixing, i.e., signals of different feature
scales appear in the same IMF, or signals with the same feature scale are dispersed into
different IMFs [31]. This problem not only decreases the decomposition efficiency but also
degrades the subsequent denoising performance.

2.1.2. EEMD Algorithm

The EEMD algorithm is proposed to eliminate the mode mixing of EMD. The proce-
dure of EEMD is summarized as follows [17,26]:

Step 1: Different Gaussian white noise signals with zero mean and unit variance ni(t) are
added to the original signal s(t) to obtain a set of new signals

si(t) = s(t) + ni(t), i = 1, 2, . . . , P. (5)

Step 2: Decompose each si(t) by EMD to obtain IMFik, where k = 1, 2, . . . , N denotes the
number of IMFs.

Step 3: Average the IMFik to obtain the EEMD mode

IMFk =
1
P ∑P

i=1 IMFik. (6)

The pseudocode of EEMD is described in detail in Algorithm 2.

Algorithm 2: EEMD

Input: The original signal x, the amplitude of the added Gaussian noise σ, and the number of
ensemble trials m.
Output: Several IMF and a residue, i.e., IMFk, (k = 1, 2, . . . , p) and r.
1: function EEMD (x, σ, m)
2: IMF←0
3: r← 0
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4: for i = 1 → i = m do
5: ni ← N(σ ∗ std(x), 1)
6: xi ← x + ni
7: EMD (xi)
8: r ← mean(rm)
9: end for
10: for k = 1 → k = p do
11: IMFk ← mean(IMFi,k)
12: end for
13: residue← r
14: return IMF and residue
15: end function

The flow chart of EEMD is shown in Figure 2.

Figure 2. The flow chart of EEMD.

2.1.3. CEEMDAN Algorithm

Since the number of ensemble average is finite, a reconstruction error still exists in
the result of EEMD. CEEMDAN can effectively overcome the mode mixing, with the
reconstruction error and computational cost significantly reduced. The procedure of
CEEMDAN is summarized as follows [25,26,32]:

Step 1: The white noise ε0ni(t) is added to the original signal s(t), and the first IMF of
CEEMDAN is obtained by calculating the ensemble average:

IMF1 =
1
N ∑N

i=1 E1(s(t) + ε0ni(t)), (7)

where En(∗) is defined as the nth mode component of EMD.
Step 2: The first residual component can be obtained

r1(t) = s(t)− IMF1. (8)
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Step 3: Construct the new signal

s1(t) = r1(t) + E1(ni(t)), (9)

and decompose it by EMD. The second mode component can be obtained:

IMF2 =
1
N ∑N

i=1 E1(r1(t) + E1(ni(t))). (10)

Step 4: The nth residual signal and the (n+1)th IMF can be obtained according to the
process of Step 3

rn(t) = rn−1(t)− IMFn(t), (11)

IMFn+1 =
1
N ∑N

i=1 E1(rn(t) + En(ni(t))). (12)

Step 5: Repeat Step 4 until the residual signal is no longer decomposed. The original
signal can be expressed as

s(t) = ∑K
n=1 IMFn + r(t), (13)

where K is the number of IMFs by CEEMDAN, and r(t) is the final residual mode.

The pseudocode of CEEMDAN is described in detail in Algorithm 3.

Algorithm 3: CEEMDAN

Input: The original signal x, the amplitude of the added Gaussian noise σ, and the number of
ensemble trials m.
Output: Several IMF and a residue, i.e., IMFk, (k = 1, 2, . . . , p) and r.
1: function CEEMDAN (x, σ, m)
2: IMF←0
3: residue← 0
4: for i = 1 → i = m do
5: ni ← N(σ ∗ std(x), 1)
6: xi ← x + ni
7: IMFi ← E1 (xi)
8: IMF1 ← 1

m ∑i IMFi
9: end for
10: r1 ← x− IMF1
11: for k = 2 → k = p do
12: IMFk ← mean(E1(rk−1 + E1(ni)))
13: rk ← rk−1 − IMFk
14: end for
15: r ← rp
16: return IMF and residue
17: end function
18:
19: function E1(x)
20: IMF ←EMD (x)
21: IMF1 ← IMF(1, :)
22: return IMF1
23: end function

The flow chart of CEEMDAN is shown in Figure 3.
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Figure 3. The flow chart of CEEMDAN algorithm.

2.2. Permutation Entropy

PE was initially introduced by Bandt and Pompe [33] as a tool for measuring the
complexity of time series, the advantages of PE are its simplicity, fast calculation, better
robustness, and strong anti-noise ability, which make it suitable for the feature extraction
of non-linear data. The specific steps of PE are summarized as follows [23,29]:

Step 1: The first step in the calculation of permutation entropy requires extracting ordinal
information from the time series. Given a time series X = {x1, x2, . . . , xN}, K
reconstructed time series can be obtained as:

{
x1, x1+τ , . . . , x1+(m−1)τ

}
...{

xj, xj+τ , . . . , xj+(m−1)τ

}
...{

xK, xK+τ , . . . , xK+(m−1)τ

}
, (14)

where m and τ represent the embedding dimension and time delay, respectively.
K = N − (m− 1)τ.

Step 2: For the jth reconstructed component, rearrange it in ascending order:

xj+r0 ≤ xj+r1 ≤ . . . ≤ xj+rm−2 ≤ xj+rm−1 , (15)

Step 3: The permutation of (15) is defined as:

πj = (r0, r1, . . . , rm−2, rm−1). (16)
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Step 4: If the probabilities of each permutation are Pπ1 , Pπ2 , . . . , PπK , respectively. The PE
of time series X is defined as

Hpe(m) = −∑m!
i=1 Pπi log2Pπi . (17)

Step 5: PE can be normalized as

0 ≤ HPE(m) =
Hpe(m)

log2m!
≤ 1. (18)

A simple example may help to clarify this concept. Assume a time series X= (1,5,3,4,2),
the embedding dimension m is set to 3 and the time delay τ is set to 1. Three reconstructed
time series can be obtained as: (1,5,3), (5,3,4), and (3,4,2). According to (16), the permutation
for (1,5,3), (5,3,4), and (3,4,2) is (0,2,1), (1,2,0), and (2,0,1), respectively. The normalized per-
mutation entropy can be obtained as: PE = − 1

log23!

(
1
3 log2

1
3 + 1

3 log2
1
3 + 1

3 log2
1
3

)
= 0.6131.

PE indicates the degree of randomness of the time series, i.e., the smaller the PE is, the
simpler and more regular the time series is. The embedding dimension m and the time
delay τ are two key parameters that affect the value of PE. In this paper, we set m = 3
and τ = 1 according to a previous study [29]. The pseudocode of PE is described in
Algorithm 4.

Algorithm 4: PE [34]

Input: The time series x, the embedding dimension m.
Output: PE (x, m).
Define: (πm)k is the k-th permutation of πm, time delay τ = 1.
1: function PE (x, m)
2: PE←0
3: N←length (x)
4: c← {0}m!
5: p← {0}m!
6: πm ← {0, 1, . . . , m− 1}
7: Πm ←

{
πm, (πm)1, . . . , (πm)m!−1

}
8: for j = 0→ j = N−m do
9: xm

j ←
{

xj, xj+1, . . . , xj+m−1

}
10: sort

(
xm

j , πm
)
→
(

ym
j , πm

j

)
11: for i = 0→ i = m!− 1 do
12: if πm

j == Πm
i then

13: ci = ci + 1
14: break
15: end for
16: end for
17: for k = 0→ k = m!− 1 do
18: pk ← ck

(N−m−1)
19: if pk > 0 then
20: PE = PE + (−pklog2 pk)
21: end if
22: end for
23: return PE
24: end function

2.3. Correlation Coefficient

The correlation coefficient is a dimensionless index that is widely applied in multi-
variate statistics to represent the relationship between two groups of variables [28]. Its
value ranges from −1 to 1. The larger the absolute value of the correlation coefficient is,
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the stronger the correlation between the two variables is. For the two groups of variables x
and y, the correlation coefficient ρxy is defined as follows [35]

ρxy =
cov(x, y)√

cov(x, x)·cov(y, y)
, (19)

where cov(x, y) is the covariance of x and y, cov(x, x) and cov(y, y) are the variance of x
and y, respectively. Therefore, the correlation coefficient can be expressed as

ρxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2·∑n
i=1(yi − y)2

, (20)

x =
1
n

n

∑
i=1

xi, y =
1
n

n

∑
i=1

yi. (21)

2.4. Wavelet Threshold Denoising

The wavelet transform is an effective time-frequency analysis tool which has the
characteristic of multi-resolution and has been widely used for signal processing [36,37].
For a one-dimensional noisy signal,

s(t) = f (t) + e(t), t = 0, 1, . . . , n, (22)

where s(t), f (t), and e(t) are defined as the noisy signal, real signal, and Gaussian noise
signal, respectively. The specific steps of wavelet-based denoising are as follows [25]:

Step 1: Proper wavelet basis function and decomposition level are selected to conduct
wavelet decomposition on the noisy signal s(t).

Step 2: The thresholds are estimated according to appropriate threshold selection criteria
for the high-frequency coefficients at different decomposition scales.

Step 3: The low-frequency coefficients of decomposition and the threshold high-frequency
coefficients are used to reconstruct signals.

The key to wavelet threshold denoising is the selection of the wavelet basis function
and the threshold function. The db4 wavelet basis function and a soft threshold method
are selected in this paper.

3. The Proposed Method for UAV Magnetic Data Denoising

A denoising algorithm for UAV magnetic survey data based on CEEMDAN, PE, CC,
and WSTD is proposed in this paper. The proposed method is based on the premise that
there is a significant difference in complexity between the target signal and noise, so PE can
be used to measure whether the IMF is dominated by target signal or noise. To avoid the
influence of unreasonable threshold setting on subsequent processing, IMFs are divided
into four categories by the quartiles of PE. The real signal-dominant IMFs are further
confirmed by CC, and the noise is further suppressed by WSTD. The flow chart of the
proposed method is shown in Figure 4. The specific procedures are summarized as follows:

Step 1: The original signal s(t) is decomposed into several IMFs by CEEMDAN and
arranged from high frequency to low frequency.

Step 2: Calculate the PE of all IMFs, the PE sequence is arranged in ascending order, and
the extremum and the quartiles of the PE sequence are found, namely MINpe, Q1,
Q2, Q3, and MAXpe.

Step 3: Execute the judgement procedure: (1) if PE falls in the interval of
[
MINpe, Q1) ,

the corresponding IMFs are considered as signal IMFs and are preserved; (2) if
PE falls in the interval of [Q1, Q2) , the corresponding IMFs are defined as signal-
dominant IMFs; (3) if PE falls in the interval of [Q2, Q3) , the corresponding IMFs
are defined as noise-dominant IMFs; (4) if PE falls in the interval of

[
Q3, MAXpe

]
,

the corresponding IMFs are defined as noise and are removed.
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Step 4: The CCs between signal (noise)-dominant IMFs and the real signal which is con-
stituted by signal IMFs are obtained. The median of the absolute value sequence
of CCs is recorded as Mcc, and the IMFs corresponding to the CC greater than Mcc
are defined as the real signal-dominant IMFs.

Step 5: WSTD is applied to the real signal-dominant IMFs. The wavelet basis function
and the decomposition level are db4 and 4, respectively.

Step 6: The denoised signal can be obtained by combining the signal IMFs and the de-
noised IMFs.

Figure 4. The flow chart of the proposed denoising algorithm for UAV magnetic data.

4. Synthetic Signal Denoising Experiment
4.1. Acquisition of Synthetic Signal

Generally, the target signal of UAV magnetic surveys can be considered as a magnetic
dipole, since the distance between sensors and the target is usually 2.5 times greater than
the maximum dimension of the target [38]. The magnetic anomaly field generated by the
target can be calculated by:

B =
µ0

4π

[
3(m·r)r

r5 − m
r3

]
, (23)

where µ0 is the permeability in vacuum, m is the dipole moment of the target, r is the
displacement vector from the target to the measurement point, and r = |r|. As illustrated
in Figure 5, the target center is located 1.5 m below the coordinate origin, with a magnetic
moment m = (−1.35, 0.12,−0.78)A·m2. The length of the survey line is 30 m, with a
sampling interval of 0.02 m. The distance between the magnetic sensor and the ground is
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2 m, and the speed of the UAV is 2 m/s. The geomagnetic field intensity is 56,000 nT, while
the declination and inclination of geomagnetic field are −6◦ and 59◦, respectively.

Figure 5. The magnetic target detection model.

The projection of the magnetic field generated by the target in the direction of the geo-
magnetic field is the real signal; in addition, the geomagnetic field, UAV’s interference field,
equipment noise, and power frequency interference constitute the actual signal. Gaussian
white noise with different SNRs is added to the real signal as simulated synthetic signals.

4.2. Evaluation of Different Denoising Methods

To clearly verify the denoising effectiveness of the proposed method, two combined
noise reduction methods, i.e., EMD-PE-WSTD and EEMD-PE-WSTD, are chosen to compare
with the proposed CEEMDAN-PE-CC-WSTD method. The former two methods use EMD
and EEMD to decompose the original signal into several IMFs, then the noise IMFs are
identified and removed using the quartile of the calculated PE. Both noise-dominant and
signal-dominant IMFs are denoised using WSTD. Finally, the processed signal is obtained
by combining the signal IMFs and the denoised IMFs. For EEMD and CEEMDAN-based
methods, the amplitude of the added noise and the number of ensemble trials are 0.12 and
50, respectively. For the synthetic signal with a SNR of −10 dB, the decomposition results
using EMD, EEMD, and CEEMDAN are shown in Figure 6. For each set of IMFs, results of
PE can be obtained, as shown in Table 1.

Table 1. The PEs of each set of IMFs obtained by EMD, EEMD, and CEEMDAN methods.

Methods IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

EMD 0.9977 0.8768 0.7172 0.5895 0.5004 0.4510 0.4247 0.4105 0.3720 /

EEMD 0.9958 0.8792 0.7162 0.5934 0.5030 0.4556 0.4218 0.4030 0.3793 /

CEEMDAN 0.9950 0.9156 0.8249 0.7149 0.5881 0.5066 0.4781 0.4386 0.4093 0.3444
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Figure 6. The decomposition results of the −10 dB synthetic signal by (a) EMD; (b) EEMD; and
(c) CEEMDAN.

For each decomposition method, IMFs are divided into four categories according to
the corresponding quartiles of PEs, as shown in Table 2. Noise IMFs are first identified
and removed. For the EMD and EEMD-based method, both noise-dominant and signal-
dominant IMFs (IMF3–IMF7) are denoised using WSTD. For the CEEMDAN-based method,
signal IMFs constitute the real signal, and CCs of the remaining IMFs and the real signal
are obtained, as shown in Table 3. The median of the absolute value of CC sequence is
0.0232, and the IMFs corresponding to the CC greater than this value are selected as the
real signal-dominant IMFs, e.g., IMF7 and IMF8 are selected in this case. Then, the real
signal-dominant IMFs are denoised by WSTD, and the denoised signal can be obtained by
combining the denoised IMFs and the signal IMFs.

Table 2. Four categories of IMFs obtained by EMD, EEMD, and CEEMDAN methods.

Methods Noise IMFs Noise-Dominant IMFs Signal-Dominant IMFs Signal IMFs

EMD IMF1, IMF2 IMF3, IMF4, IMF5 IMF6, IMF7 IMF8, IMF9

EEMD IMF1, IMF2 IMF3, IMF4, IMF5 IMF6, IMF7 IMF8, IMF9

CEEMDAN IMF1, IMF2, IMF3 IMF4, IMF5 IMF6, IMF7, IMF8 IMF9, IMF10

Table 3. Correlation coefficients between each IMF and the real signal of the CEEMDAN-
based method.

Mode IMF4 IMF5 IMF6 IMF7 IMF8

Correlation Coefficient 0.0232 −0.0114 0.0048 0.0599 0.6502
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To clearly compare different methods, SNR and root mean square error (RMSE) are
used to evaluate the denoising performance. SNR shows an energy relationship between
signal and noise, which is an intuitive method to evaluate the effect of the denoised signal
by analyzing whether the SNR is improved. RMSE shows the difference between the
denoised signal and the real target signal; the smaller the RMSE, the better the denoising
effect. The formulas of SNR and RMSE are, respectively, given as follows

SNR = 10log10

(
∑n

i=1 s2(i)

∑n
i=1[s(i)− ŝ(i)]2

)
, (24)

RMSE =

√
1
n ∑n

i=1[s(i)− ŝ(i)]2, (25)

where s(i) is the original signal, ŝ(i) is the denoised signal, and n is the number of sam-
pling points.

Figure 7 shows the synthetic signal with−10 dB SNR and the denoised signal based on
EMD-PE-WSTD, EEMD-PE-WSTD, and CEEMDAN-PE-CC-WSTD methods. The denoised
results of synthetic signals with the SNR of −10 dB, −5 dB, 0 dB, and 5 dB are shown in
Table 4. As can be seen from Figure 7 and Table 4, the three denoising methods all can reduce
noise, and the proposed CEEMDAN-PE-CC-WSTD method has a better performance than
the other two methods. There are two main reasons to explain these results: (1) all three
methods can effectively suppress noise, indicating that the quartile of PE can indeed classify
IMFs into four categories according to the dominance of signal and noise, and (2) the real
signal-dominant IMFs are further confirmed by the median of CC, and hence the noise in the
original signal is further suppressed. It should be noted that both the classification of IMFs
and the confirmation of real signal-dominant IMFs are realized through the characteristics
of the signal itself, and there is no need to set a threshold artificially. The use of the quartile
of PE and the median of CC makes this method completely adaptive for the analysis of
noisy signals.

Figure 7. Cont.



Entropy 2021, 23, 1309 16 of 23

Figure 7. The time domain waveform before and after noise reduction of a synthetic signal
with a SNR of −10 dB. (a) The original signal and the target signal; (b) the denoised signal
by EMD-PE-WSTD; (c) the denoised signal by EEMD-PE-WSTD; and (d) the denoised signal by
CEEMDAN-PE-CC-WSTD.
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Table 4. The denoising results of synthetic signals using different methods.

Synthetic Signal SNR (dB)
EMD-PE-WSTD EEMD-PE-WSTD CEEMDAN-PE-CC-WSTD

SNR (dB) RMSE SNR (dB) RMSE SNR (dB) RMSE

−15 1.8589 1.0292 2.2460 0.9763 5.0386 0.7119

−10 4.6860 0.7414 6.3507 0.6089 8.9959 0.4501

−5 9.7694 0.4209 10.1386 0.3929 11.7111 0.3348

0 15.8008 0.2060 16.0741 0.1989 18.0401 0.1596

The WSTD alone is applied to the synthetic data with different SNRs, using two
different wavelet basis functions, db4 and sym4, respectively. The decomposition level
is from 3 to 7. WSTD results are shown in Table 5. It can be seen that the effect of
WSTD depends heavily on the selection of wavelet basis function and the number of
decomposition levels. In addition, SNR of denoised signal reaches a maximum when the
decomposition level increases to a certain value. The best result of WSTD reaches the level
of the EMD-PE-WSTD and EEMD-PE-WSTD method. However, it is worth noting that
for the method in Table 4, we do not optimize the wavelet basis function and the number
of decomposition level. Therefore, as suggested by Tables 4 and 5, it is expected that our
proposed method has a better performance than the WSTD method.

Table 5. The denoising results of synthetic data using (a) the db4 wavelet basis function and (b) the
sym4 wavelet basis function.

Synthetic Signal
SNR (dB)

Parameter
Decomposition Level

3 4 5 6 7

(a)

−15
SNR (dB) −9.0441 −5.0242 −1.8074 −0.1183 −2.5242

RMSE 3.5698 2.2473 1.5518 1.2801 1.9425

−10
SNR (dB) −5.1317 −1.5402 0.5767 4.6652 2.5986

RMSE 2.2885 1.5221 1.2003 0.7631 0.9763

−5
SNR (dB) −0.1303 2.8317 5.2383 7.9447 5.9407

RMSE 1.2872 0.9214 0.7047 0.5235 0.6713

0
SNR (dB) 6.4871 9.5743 12.3324 15.9599 14.2816

RMSE 0.5995 0.4217 0.3090 0.2056 0.2911

(b)

−15
SNR (dB) −9.0618 −5.3393 −1.7060 −0.3396 −2.2779

RMSE 3.5771 2.3302 1.5339 1.3131 1.6716

−10
SNR (dB) −4.8593 −1.6571 1.1933 4.9753 2.7228

RMSE 2.2181 1.5437 1.1197 0.7329 0.9217

−5
SNR (dB) −0.5454 2.9740 4.9339 7.6819 5.5914

RMSE 1.3495 0.9066 0.7306 0.5450 0.7421

0
SNR (dB) 6.5718 9.2495 12.5654 16.8108 14.4053

RMSE 0.5937 0.4379 0.3018 0.1897 0.2830

5. UAV Magnetic Survey Experiment Verification
5.1. The Multi-Rotor UAV Magnetic Survey System

A multi-rotor-based UAV-magnetometer system was deployed for the purpose of near-
surface targets detection, where the parameters of the system can be found in [8]. However,
the magnetometers were semi-rigidly mounted below the UAV, which could not meet the
requirements of vertical take-off and landing (VTOL), and the potential impact risk of
magnetometers also existed [8,39]. To surmount these obstacles, a magnetic survey system
based on a six-rotor UAV was developed, as shown in Figure 8. This system consisted
of two cesium optically pumped magnetometers (OPMs) and a fluxgate magnetometer
to record the total magnetic intensity (TMI) data and the vector magnetic intensity (VMI)
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data, a differential GPS to provide the location information of the UAV, a data acquisition
module, and a power module. The two OPMs were rigidly mounted below the center
of the UAV by a boom, with a vertical distance of 0.45 m. The TMI and VMI data were
synchronized by the pulse per second signal, with a sampling frequency of 160 Hz. The
technical specifications of the multi-rotor magnetic survey system are given in Table 6.

Figure 8. The six-rotor UAV magnetic survey system.

Table 6. The technical specifications of the multi-rotor UAV magnetic survey system.

Module Technical Index Specifications

UAV

Flight speed 14 m/s, maximum air speed; 2–4 m/s, recommend speed
Mass of payload 10 kg, maximum payload; 5 kg, standard payload
Takeoff weight 19 kg, standard

Endurance 35 min with a payload of 5 kg

Magnetic
sensors

Cesium OPM Operating range: 10,000 nT to 105,000 nT
Noise sensitivity: 0.3 pT/sqrt (Hz) @ 1 Hz

Fluxgate magnetometer Operating range: ± 100 µT
Noise sensitivity: 4 pT/sqrt (Hz) @ 1 Hz

Power Data acquisition module 3200 mAh lithium polymer batterie; voltage: 24 V

5.2. Evaluation of UAV-Borne Magnetic Survey Results after Denoising

Experiments were carried out in Sichuan, China for the detection of near-surface
buried targets. A segment pipeline made of steel was used as the target with a buried
depth of 3 m, a length of 2 m, and a diameter of 0.15 m. A 12 m × 16 m rectangular area
was selected as the survey area, and the target was buried near the center of the survey
area. The pre-programmed flight profiles ran along the north–south direction, with a line
spacing of 0.5 m. Once the flight profiles were programmed, the multi-rotor UAV magnetic
system was able to automatically perform survey tasks, including take-offs and landings.
The flight altitude was set to 3.5 m above ground level (AGL), with a flight speed of 2 m/s.
Figure 9 shows the flight profiles of the UAV. The origin of the local cartesian coordinates
was the starting point of the flight. Profiles above the survey area can be obtained after
cutting off the undesired and curved flight data (see Figure 9).
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Figure 9. The flight profiles of the UAV and the survey area. The dotted rectangle represents the
buried pipeline target.

The two-dimensional magnetic map of the survey area can be obtained by interpo-
lating the original data, as shown in Figure 10a. The characteristics of the target signal
were masked due to the original signal containing a lot of random noise. The denoised
data of each flight profile were obtained using EMD-PE-WSTD, EEMD-PE-WSTD, and the
proposed CEEMDAN-PE-CC-WSTD method, and the corresponding results of magnetic
maps are shown in Figure 10b–d, respectively.

Figure 10. Cont.
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Figure 10. Magnetic map of the survey area by interpolating (a) the original data; (b) the denoised data by EMD-PE-WSTD;
(c) the denoised data by EEMD-PE-WSTD; and (d) the denoised data by CEEMDAN-PE-CC-WSTD. The dotted rectangle
represents the buried pipeline target.

To evaluate the quality improvement of magnetic maps after denoising, we introduce
two parameters, i.e., peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [40].
The target area (East–West: −12 m to −6 m, South–North: 16 m to 25 m) of Figure 10 was
selected, and the reference magnetic map of the target area can be obtained using the low-
frequency electromagnetic field simulation software, ANSYS Maxwell 19.0. Information
about the geomagnetic field (e.g., inclination and declination) can be obtained according
to the International Geomagnetic Reference Field (IGRF) model. The results of PSNR
and SSIM of different denoising methods are shown in Table 7. As shown in Table 7, the
results obtained by the proposed method have the largest PSNR and SSIM, therefore, the
effectiveness of the proposed method is proved.

Table 7. Results of PSNR and SSIM of different denoising methods.

Parameters Original Data EMD-PE-WSTD EEMD-PE-WSTD CEEMDAN-PE-CC-WSTD

PSNR (dB) 18.8058 29.2036 30.1307 33.6262
SSIM 0.5701 0.8600 0.8622 0.8766

Considering the quasi-static characteristics of the target signal, the complexity of the
flight profile data can reflect the noise level on the other hand, i.e., the flight profile data
with lower PE means less noise. The results of the PE of the data of each flight profile before
and after noise reduction are shown in Figure 11. The average PE of the original data,
denoised data using EMD-PE-WSTD, EEMD-PE-WSTD, and CEEMDAN-PE-CC-WSTD
methods are 0.9904, 0.4970, 0.4679, and 0.4231, respectively. Data denoised by the proposed
method have the lowest average PE among the three methods, which indicates that the
complexity of the data is significantly reduced, and the noise is greatly suppressed.
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Figure 11. Results of PE of each flight profile data before and after noise reduction.

6. Conclusions

In this paper, a novel noise reduction method for multi-rotor UAV magnetic survey
data based on CEEMDAN, PE, CC and WSTD is proposed. The CEEMDAN method
is used to decompose the raw magnetic data into a series of IMFs with different scales.
The quartile of PE is applied to divide the IMFs into four categories, i.e., the noise IMFs,
noise-dominant IMFs, signal-dominant IMFs, and signal IMFs. Correlation coefficients
are introduced to identify the real signal-dominant IMFs, and WSTD is applied to the real
signal-dominant IMFs. Finally, the denoised signal can be obtained by combining the signal
IMFs and the denoised IMFs. The proposed method is validated through experiments on
both simulated synthetic signals and multi-rotor UAV magnetic survey data. The denoised
data obtained by the proposed method are qualitatively and quantitatively analyzed and
compared with EMD-PE-WSTD and EEMD-PE-WSTD methods. The results show that
the proposed CEEMDAN-PE-CC-WSTD method can significantly suppress the noise and
obtain a clearer target signal, which is very beneficial to the follow-up data interpretation.
Our future work will include further verification of the proposed method via more UAV
magnetic survey applications.
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Abbreviations

AGL Above ground level
CC Correlation coefficient
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
EEMD Ensemble empirical mode decomposition
EMD Empirical mode decomposition
IGRF International Geomagnetic Reference Field
IMF Intrinsic mode function
OPMs Optically pumped magnetometers
PE Permutation entropy
PSNR Peak signal-to-noise ratio
RMSE Root mean square error
SNR Signal-to-noise ratio
SSIM Structural similarity
TMI Total magnetic intensity
UAV Unmanned aerial vehicle
UXO Unexploded ordnance
VMI Vector magnetic intensity
VTOL Vertical take-off and landing
WSTD Wavelet soft threshold denoising
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