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Abstract 
Atmospheric nitrogen fixation carried out by microorganisms has 
environmental and industrial importance, related to the increase of 
soil fertility and productivity. The present work proposes the 
development of a new high precision system that allows the 
recognition of amino acid sequences of the nitrogenase enzyme (NifH) 
as a promising way to improve the identification of diazotrophic 
bacteria. For this purpose, a database obtained from UniProt built a 
processed dataset formed by a set of 4911 and 4782 amino acid 
sequences of the NifH and non-NifH proteins respectively. 
Subsequently, the feature extraction was developed using two 
methodologies: (i) k-mers counting and (ii) embedding layers to obtain 
numerical vectors of the amino acid chains. Afterward, for the 
embedding layer, the data was crossed by an external trainable 
convolutional layer, which received a uniform matrix and applied 
convolution using filters to obtain the feature maps of the model. 
Finally, a deep neural network was used as the primary model to 
classify the amino acid sequences as NifH protein or not. Performance 
evaluation experiments were carried out, and the results revealed an 
accuracy of 96.4%, a sensitivity of 95.2%, and a specificity of 96.7%. 
Therefore, an amino acid sequence-based feature extraction method 
that uses a neural network to detect N-fixing organisms is proposed 
and implemented. NIFtHool is available from: 
https://nifthool.anvil.app/
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Introduction
Nitrogen is an essential nutrient for plants. Nitrogen fertilizers have the highest worldwide demand during agricultural
practices.1,2 Among the vast diversity of microorganisms, different bacterial taxa have developed the capacity to use
atmospheric nitrogen as a substrate to produce ammonia (NH4) through the biological nitrogen fixation (BNF) process.

3

BNF is the most critical pathway of incorporating N-NH4 inside the biosphere.
4 Estimating that only 10% of the total

nitrogen incomes proceed from atmospheric precipitation, the rest is through this biological process.5

The activity of the nitrogenase enzyme carry out the BNF. This enzyme is a molecular complex constituted by two
subunits: (i) the dinitrogenase reductase (NifH), which is an iron protein that participates in the electrons transport from
ferredoxins, to the (ii) dinitrogenase or molybdenum-iron-protein.3,6 Molybdenum-iron-protein (Mo-Fe) is the catalytic
site, which catalyses the N2 reduction using 16 ATP molecules as an energy source.7 Both units are encoded in the
nifHDK operon (genes encoding for the Fe/Mo-Fe nitrogenase protein complex) located on the bacterial chromosome or
plasmids, depending on the bacterial species8 (Figure 1). The principal role of NifH protein is donating electrons to
molybdenum-iron proteins (NifD/NifK), favouring N2 reduction. Efficient and quick identification of NifH proteins is of
relevant interest because Nitrogen engineering focuses on the development of new products during farming activities.9

Previous studies have focused on developing new informatics tools to identify nifH genes from different bacterial genera.
Frank et al. (2016) retrieved the sequences of the nifH genes in the genome of nitrogen-fixing microorganisms and
achieved the classification of the nifH sequence at different clusters.11 Likewise, Shinde et al. (2019) developed his nifH
genes classification model based on image processing and convolutional neural network.12 On the other hand, Frank
(2014) designed a tool with sufficient information to carry out phylogenetic cluster membership predictions from 32954
NifH protein sequences.13 These three studies obtained good results. However, their investigations did not produce a
computer tool.

Meher et al. (2018) developed nifPred, a machine learning (ML) software, to perform a sequence classification into NifH
or non-NifH proteins. This informatics tool converts multi-categorical sort of gene sequences into one of the six types of
the Nif proteins encoded by the nif operon using a high computational performance.14

Constant supervision is necessary to guide the program in all phases of the system, which causes the increment of
computational cost.15 Nowadays, some algorithms are registered in literature to make predictions of NifH proteins based
on gene sequences. However, there is still no tool to distinguish Nif proteins from amino acids sequences.

Figure 1. Nitrogenase complex. The nifHDK operon (genes encoding for the Fe/Mo-Fe nitrogenase protein
complex) codifies for the subunits of the nitrogenase enzyme, which catalyzes the reduction of the N2 to NH4 in
an ATP- dependent manner through the electron flux from the dinitrogenase reductase to the molybdenum-iron
(Mo-Fe) protein subunit. Modified from Ref. 10.
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Based on this background, the objective of this work was to develop an informatics tool that uses deep neural networks
with the lowest computer cost to play an essential role in the improvement of the BNF process research through the
identification of the NifH proteins among different bacterial genera in a reliable way.

Methods
The proposedmodel was developed into fivemain stages: (i) acquisition of raw data from the UniProt protein databank 16

(Universal Protein Resource, RRID:SCR_002380); (ii) feature extraction stage, which allows defining numerical vectors
as representation of amino acids (aa) sequences; (iii) development of a prediction model or classifier using a deep neural
network (DNN); (iv) K-fold Cross-validation to evaluate the model and (v) the identification of the predicted label of the
sequence (Figure 2).

Experimental processes were carried out using an Intel Core i5-8100 processor machine, feature extraction process and
neural network codewerewritten in Python v. 3.8 language (RRID:SCR_008394), and the classifier was implemented on
Anvil Works.17

Acquisition and preprocessing of raw data
The binary classification of the protein sequenceswas arranged under two types of labels: 1 (NifH) and 0 (non-NifH). The
raw dataset was constructed by NifH and non_NifH protein sequences extracted from database UniProt18 in the FASTA
format up toMarch 10th 2021.18 NifH and non-NifH sequences were retrieved by searching for ‘NifH, nifH proteins’ and
‘non-NifH, non-nifH proteins’, respectively, considering the following parameters: organism identification, gen name,
proteins names, and length. Uniprot provided 52942 NifH proteins and 5763 non-NifH at the end of the search.

CD-HIT software (RRID:SCR_007105) analysed the raw dataset19 to remove redundant sequences with 90% similarity
to avoid undesirable biases. Next, positive, and negative sequences, 4939 and 4953, respectively, were obtained after the
cleaning process. Sequences were filtered for lengths greater than 50 aa and shorter than 1173 aa, the maximum length of
NifH sequence. These values were set up for two reasons: (i) the upper limit because non-nifH sequences are greater than
1173 aa and (ii) shorter sequences than a defined upper limit are padded with zeros until the limit is reached that

Figure 2. Description of the methodology applied in this work. i) Data acquisition, ii) Feature extraction,
iii) Modeling of deep learning, iv) K-fold Cross-validation and v) prediction and providing information. Dinitrogenase
reductase = NifH.
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guarantees the conversion of aa sequences into numeric vectors during the embedding layers (feature extraction stage).
For instance, for a maximum value defined as 2000, a 125 aa sequence would have to be completed with 1875 zeros; for a
sequence of 1750 aa, it would only be necessary to complete it with 250 zeros. The redundancy of a large amount of zeros
can be a factor leading to undesirable bias.20 Thus, 4911 NifH and 4782 non-NifH protein sequences were obtained after
filtration of limits to build the final dataset of 9693 sequences (Figure 3).

Feature extraction
This step results in 328-feature numeric vectors representing each of the sequences. The values were obtained through
two different processes, k-mers, which are related to the presence of specific groups, and embedding vectors, related to the
location of the amino acids in the sequence.

k-mers

This analysis allows the sequence representation based on the presence of specific groups called k-mers, where k is
the length of that group.21 For example, 5-mers represents a specific group of 5 amino acids. This stage begins with the
generation of a list of the most common k-mers within the NifH dataset. Considering 5-mers, for each sequence of the
dataset of 4939NifH proteins, all the different 5-mers are obtained and their quantities are counted. Then, all the 5-mers in
the entire dataset are identified and the k-mers with the highest frequency are defined, which form the general list (GL) of
5-mers where the order of each value is relevant. To generate a numerical vector for a certain sequence, GL is compared
with that sequence and according to the presence of theGL 5-mers in the sequence, ‘1’ is recorded for presence and ‘0’ for
absence according to the order of the GL22 (Figure 4).

For instance, in the sequence ‘GAHYTGGTPLNFH’ nine 5-mers can be identified, some examples of the 5-mers are
GAHYT, AHYTG, HYTGG, PLNFH. If the GL of 5-mers were made up of 5 k-mers, for example: AGHLP, PLNFH,
HJKLP, YTGGT and TGHHT the resulting vector for the example sequence would be [0, 1, 0, 1, 0]. The length of the
vector is five because the length of theGL is five. According to the order, eachGL 5-mer is searched in the sequence and if
the 5-mer is present, 1 is recorded. In the example, the vector has ‘1’ at position 2 because PLNFH is present in the
sequence and is the second most common of the GL.

Embedding features

This section was performed as described previously by Shadab et al. (2020) and comprised the carrying on: (i) input
sequences, (ii) embedding vectors, and (iii) convolutional layers23 (Figure 4).

Figure 3. Correlation of the sequences number with the number of the amino acid (aa). The curves show the
correlation between the number of sequences and thenumber of amino acids of dinitrogenase reductase (NifH) and
non-NifH proteins.
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Input sequences

Protein sequences have different lengths depending on the number of aa. Deep learning requires the same length for all
sequences.24,25 The maximum size determined from the data had a value of 1173. Each number sequence with a length
less than this value goes through a filling process, and the sequence was filled with the number “0” (token) until the
maximum size is achieved (Figure 4). These zero vectors do not affect the output of the subsequent layers, and M was
defined as the length of the input sequence.23,24 In addition, the aa count per chain was performed, and this set presented a
minimum of 50, a maximum of 1173, and an average of 278.43 (Figure 3).

Embedding vectors

Padded data were passed throughout an embedding layer to get a dense vector. This layer is used to transform discrete
inputs into points in a vector space, called embedding vectors (L is the length of this vector).23 Each aa of the protein
sequences, both in the training and test sets, had a specific integer number, and the result of the encoding phase is the

Figure 4. Description of feature extraction. This process comprised some sequential steps: 1) Input of the amino
acid (aa) sequences, 2) extraction, and 3) development of the convolutional layer. WhereM is the length of the input
sequence and L is the length of the embedding vector.
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integer number vectors. For instance, in the sequence ‘ACLKIGAL’, a possible encoding would be ‘1-4-6-8-13-15-1-6’
(Figure 4). This algorithm randomly assigns the digits butmaintains the same number for a specific aa. The order in which
the numbers are assigned could be a relevant aspect regarding the model's performance. However, it has been proved that
order does not influence the result.23,25 The final output of the embedding layers is a uniform matrix of size L�M.

Convolutional layer

A trainable convolutional layer was added, and its input was a uniform matrix (embedding vectors). This layer applied
convolution using 128 trainable filters, each with a size of L�31. The result was 128 feature maps, each of the same size.
To reduce overfitting and capture noise, we used amax-pooling (window size of 3�3) to subsample these feature maps.23

Finally, this feature map was flattened into a 1�1 dimensional matrix, where each matrix represents the features of the
input sequence (Figure 4). These features were used to train the classifiers.

The advantage of this method relies on the results of the classification model that can be back-propagated to the
convolution and embedding layers.23,25,26 These layers were trained to extract better features.

Dataset methodologies
This stage allows the determination of the the most efficient dataset to perform the training and evaluation of the neural
network. For this purpose, different methodologies are used to create the datasets. Two techniques for feature extraction
were considered, themethodologies will focus on the combination of these techniques and the number of features that are
extracted. Due to the embedding vectors (EV) has 128 fixed features, the variation of dataset methodologies depends on
the length of k-mers and number of k-mers in the GL. Some datasets were EV, 3-mers (100 features) + EV, 7-mers
(300 features) + EV, 3-mers (100 f) + 5-mers (100 f) + EV, and so on. Some datasets were created by combining k-mers
and EV, but others were created by combining two different k-mers and EV. Table 2 shows the different methodologies
analysed. After a series of analysis with the dataset methodologies to determine the most optimal number of features to
compose the numeric vectors the feature extraction stage results in vectors of 328 numeric values corresponding to
100 5-mer features, 100 features of 7-mers, and 128 values of embedding vectors (Figure 4).

Deep neural network
For the prediction of the identity of the aa sequence, a Deep Neural Network (DNN) was designed. Its input corresponds
to the representation of the sequences (array of 328 numbers) and the output is the class of each sequence: 1 (NifH) and
0 (non-NifH). This DNN was written in Python v.3.8 using the following libraries: i) Pandas (RRID:SCR_018214),27

ii) Keras,28 iii) Scikit-learn (RRID:SCR_002577),29 iv) NumPy (RRID:SCR_008633),30 and v) Matplolib.31 First, the
hyperparameters of our model were related to the learning algorithm level: training of 40 epochs at 6 seconds, using a
batch size of 40 and a learning rate of 6x10-5. Second, hyperparameters related to structure and topology were the layers.
The deep learning model consisted of 12 layers, excluding the input and output layers (Figure 5).

The model established the number of neurons in each defined block of layers, being 128 neurons for the first two layers,
64 neurons for the following four layers, followed by 32 neurons for the next four layers, and finally, two neurons at the
last two. The number of neurons was placed according to the input parameters and the architecture of the DNN.32 There
were four layers in the neural network corresponding to the dense, activation, dropout, and batch normalization

Figure 5. Visualisation of thedeepneural network architecture. It was composedof four blocks, and the number
of neurons for each block was 128, 64, 32, and 2, from the first to last one, respectively.
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layers.26,33 Four layers were used: (i) four dense layers, (ii) three activation layers, (iii) three dropout Layer, and (iv) two
batch normalisation layers. The detailed configuration and order of layers of the proposed DNN model are shown in
Table 1.

k-fold cross validation
To evaluate the classification accuracy of the several dataset methodologies considered to train the neural network
(Table 2), the k-fold cross-validation techniquewas performed. k-fold cross-validation divides datasets into k-subsets and

Table 2. Performance metrics (precision, recall, F1-score, accuracy, and loss) calculated for each dataset
methodology.

Methodology

Statistical parameters (%)

Precision Recall F1-score Accuracy Loss

Embedding Vectors (EV) 93 93 93 92.82 20.96

3-mers (100 features) + EV 95 96 95 95.46 17.34

3-mers (200 features) + EV 96 96 96 95.58 21.42

3-mers (300 features) + EV 96 96 96 95.71 19.32

5-mers (100 features) + EV 95 95 95 95.38 13.54

7-mers (100 features) + EV 96 96 96 95.5 13.51

7-mers (200 features) + EV 95 95 95 95.38 16.14

7-mers (300 features) + EV 96 96 96 95.38 15.43

15-mers (100 features) + EV 95 95 95 94.97 15.45

15-mers (200 features) + EV 94 94 94 94.39 16.71

20-mers (100 features) + EV 94 94 94 93.69 18.96

20-mers (200 features) + EV 93 93 93 93.48 19.12

3-mers (100 f) + 5-mers (100 f) + EV 96 96 96 95.71 19.17

3-mers (100 f) + 7-mers (300 f) + EV 96 96 96 96.04 16.78

3-mers (300 f) + 7-mers (300 f) + EV 96 96 96 96.29 20.31

5-mers (100 f) + 7-mers (100 f) + EV 96 96 96 96.37 14.79

5-mers (100 f) + 7-mers (300 f) + EV 96 96 96 95.63 13.9

Table 1. Layers of the deep neural network implemented in this model.

Layer Type Output shape Param #

dense_108 Dense (None, 128) 42112

dropout_96 Dropout (None, 128) 0

dense_109 Dense (None, 64) 8256

batch_normalization_56 Batch (None, 64) 256

activation_82 Activation (None, 64) 0

dropout_83 Dropout (None, 64) 0

dense_110 Dense (None, 32) 2080

batch_normalization_57 Batch (None, 32) 128

activation_83 Activation (None, 32) 0

dropout_84 Dropout (None, 32) 0

dense_111 Dense (None, 2) 66

activation_84 Activation (None, 2) 0
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requires that each subset is used to validate data exactly once.34 In this validation process, k typically is 10, even though to
reduce the computational time, this study used k = 4, giving 4-fold cross-validation (Figure 6).

Datasets were partitioned into four equal parts; one group was used to test the methodologies (test dataset), and the
remaining groups were used to train the software (Train Dataset). Four iterations were needed for each part to validate the
methodologies throughout an accuracy and confusion matrix obtained for each iteration to discard the model. Then, each
dataset methodology is processed by 4 iterations, where induvial iteration generates a classifier. Thus, when the classifier
with the best performance is found, this is saved and used to predict NifH proteins.

Operation
NIFtHool requires access to internet and to have any device capable of being a Web server. The device must have
an operating system that can run as a Web server, capable of delivering HTML5 content. It must also have an Intel®

Celeron® 847 Processor, 1.10 GHz, and aminimumRam of 512MB. Finally, this tool does not require the device to have
a certain amount of storage or hard disk space as it works online.

Results
Evaluation of the model classification
Performance of four-fold cross-validation andmetrics such as accuracy, loss, F1-score, sensitivity or recall, and precision
were obtained for each dataset methodology to evaluate the classification as summarized in Table 2. Due to each dataset
methodology works with four iteration producing four classifiers, only the one with the best performance is mentioned
below.

The use of the methodology that consists of EV had a high performance, since both its precision, recall and F1-score were
greater than 90%. However, its loss still represents a significant value. For this reason, EV was merged with k-mers to
increase the classification values. A large number ofmethodological datasetswere tested, and all of themwere higher than
the EV. The results define that datasets with longer k-mers, such as 20-mers, have slightly lower performance than
datasets with shorter k-mers, such as 7-mers. Because the computational cost is higher as the k-mers are longer, and
because their performance decreases slightly, shorter k-mers were selected to improve the classification performance.

Another factor considered when comparing the different methodologies was the number of features extracted. For the
3-mers + EV and 7-mers + EV datasets, the extraction of 100, 200 and 300 features were tested, but the results were
similar between the groups. In the group of 3-mers + EV, the accuracy values were around 95% for the three cases, as well
as recall and F1-score, which were the same (96%) for all. For the group of 7-mers + EV, despite being k-mers of greater

Figure 6. Four-fold cross-validation diagram. Data were divided into four folders, three were used to train the
classifier, and one was allowed to test during each of four iterations.
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length than the 3-mers, they obtained similar results to 3-mers + EV, where their greatest difference was the loss, which
represents an advantage for the 7-mers with values between 13 and 17%, compared to the higher 17 to 21% of the 3-mers.
In this sense, since a greater number of features implies a higher computational cost, and the values are similar, the
extraction of 100 features for each k-mer was chosen. The analysis of 5-mers + EVwas also recorded, which was similar
to 3-mers + EV, however this analysis showed better performance in the loss, since 5-mers reached 13% while the best
result of 3-mers was 17%.

Methodologies that combine two k-mers + EV were experimented with, and due to the high performance of each k-mer
together with EV, the performance of the combination of these k-mers with EV was analysed. Finally, five dataset
methodologies were performed, and 5-mers (100 features) + 7-mers (100 features) +EVdataset had the best performance,
which obtained precision, recall and F1-scores of 96%, an accuracy of 96.37%, and a loss of only 14.79%. Due to its
performance, this methodology was selected to be used as the model classifier and to be implemented into an
informatics tool.

The validation error of model 2 was 0.2625. This value was obtained from the learning rate, ranging from 0 to 40 in which
the red epochs were trained. Measurements showed suitable training convergences as shown in Figure 7. Accuracy
evaluation of the training started with low values that increased in the epochs (Figure 7b). On the other hand, while

Figure 7. TensorBoard (RRID:SCR_016345) visualization of the distributed training metrics for the classifier
after 30 epochs.Where x-axis represent the number of epochs and the y-axis represents the values of accuracy and
loss as a function of unity (1= 100%). a) Loss evaluation. b) Accuracy evaluation.

Figure 8. Assessment of the efficiency of the DeepNeural Network by a Confusionmatrix. a) Panel a shows the
confusion matrix for the number of evaluated sequences, and panel b corresponds to the number of evaluated
sequences normalized to one. TP: true positive =1188, TN: true negative = 1132, FP: false positive = 25, and FN: false
negative = 48.
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training began with a high loss, this value decreases as they were trained (Figure 7a). Both graphs show similar behaviour
during the training and validation as a reliable model learning with constant values obtained at the end of the assessment,
which indicates that the maximum training point was reached.

The efficiency of the neural network was assessed using a confusion matrix. Primary diagonal data was represented,
which indicates the number of hits in themodel (Figure 8). 1195 sequenceswere correctly classified as no-NifH, and 1128
as true NifH proteins. The value below the primary diagonal shows the false negatives or type II errors (the NifH is not
detected), corresponding to 61 cases.

In contrast, the value above the primary diagonal reflected the classifier errors: false positives or error type I (the NifH is
detected but not present) was equal to 39 cases. The confusion matrix results evaluated the relevance through 3 metrics:
accuracy rate (96.4%), specificity (96.7%), and sensitivity (95.2%).

Discussion
Deep learning was selected because it worked with protein sequence and conversion to arrays allowing better results than
other methods, as previously reported (Table 3). Our model had a high performance, as demonstrated high sensitivity
(95.2%), high accuracy (96.4%), and specificity (96.7%), which is comparable to current deep learning techniques
generating software23,25 that considered a vector of 128 features-values for each sequence protein to train the model.

Our software showed a high performance as compared with previous apps. For instance, Shinde's model12 is based on the
analysis of gene sequences of NifH proteins, operated with a 32�32matrix for each sequence as our model. Nonetheless,
our software is an improvement on previous informatics tools as it uses other feature extraction methods, as described
above. nifPred, a multi NifH proteins classifier, that uses 13,500 values per sequence, involves four manual methods to
obtain the components and data to be trained, having a high specificity.14

NIFtHool was compared with two models that work with two different embedding vectors to identification of
mitochondrial proteins of Plasmodium falciparum25 and DNA-binding proteins.23 The three models showed positive

Table 3. Performance of our model in comparisons with other methods of machine learning.

Method Learning
technology

Purpose Database Metrics evaluated (%) Reference

Sensitivity Specificity Accuracy

Embedding vectors
and §ANN

*NN Identification of €NifH
proteins

9793 95.17 96.67 96.37 This work

Image processing
and ¶CNN

NN Identification of NifH
proteins

42767 98.26 88.79 99.00 12

Feature Generation
and ¥SVM

**ML Identification of Nif
proteins: NifH, γNifD,
ɑNifK, ∞NifE, ∂NifN and
ℇNifB.

747 88.70 99.30 94.00 14

Embedding vectors
and £MBD-LSTM

NN Identification of
Plasmodium falciparum
mitochondrial proteins

3776 100 99.33 99.50 25

Embedding vectors
and ÞDeepDBP-ANN

NN Identification of DNA-
binding proteins

1261 98.00 97.00 99.02 23

†CART ML Classification of NifH
Protein Sequences

32954 N/D N/D 95-99 13

CART and decision
trees

ML Classification of NifH
Protein Sequences

290 N/D N/D 96-97 11

§ANN: Artificial neural network.
¶CNN: Convolutional neural network.
¥SVM: Support vector machine.
£MBD-LSTM: Multilayer bi-directional long short term memory.
ÞDeepDBP-ANN: Deep neural networks for identification of DNA binding proteins.
†CART: Classification and regression trees statistical models.
*NN: Neural networks.
**ML: Machine leaning.
€NifH: Nitrogenase Iron Protein.
γNifD: Nitrogenase molybdenum-iron protein alpha chain.
ɑNifK: Nitrogenase molybdenum-iron protein beta chain.
∞NifE: Nitrogenase iron-molybdenum cofactor biosynthesis protein NifE.
∂NifN: Nitrogenase iron-molybdenum cofactor biosynthesis protein NifN.
ℇNifB: Nitrogenase iron-molybdenum cofactor biosynthesis protein NifB, N/D: No data.
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results in sensitivity, specificity, and accuracy, so the selection of the embedding vector method was adequate.
Additionally, a comparison was made with studies using machine learning techniques for the classification of NifH
protein sequences. These studies used classification and regression trees statistical models and decision trees.11,13

It is stated that our model obtained high accuracy results like these models but with reduced computational power. Thus,
NIFtHool shows clear improvements compared to the studies in the literature as shown in Table 3.

Conclusion
A binary classification model of NifH protein sequences using artificial neural networks has been developed in the
present work and hosted by Anvil. We tried the conventional approach of extracting features with specified algorithms
through the novel feature extraction approach using deep learning techniques. Numerical features were obtained from
two aspects: k-mers method considering the unique k-mer and an embedding layer related to aa position in the sequence.
This methodology that was studied offers a performance similar to the best performances in the literature. Our tool offers
better computational performance due to the classification process being based on the use of only NifH protein domain,
resulting in less data processing for the software.

Even though the entire nitrogenase complex is relevant for transforming atmospheric nitrogen into ammonia, only NifH
protein has been considered because this subunit is paramount during the reduction from N2 to NH4. NIFtHool not only
represents a significant improvement compared to other computational methods, but it is also a tool for the identification
of NifH Protein. Thus, researchers can easily use NIFtHool to identify NifH proteins as a reliable tool during the protein
and nitrogen fixing bacteria analysis.

Data availability
Underlying data
Zenodo: NIFTHool: Repository. https://doi.org/10.5281/zenodo.5913032.18

This project contains the following underlying data:

- List_kmers.csv (List of 5-mers and 7-mers obtained from dataset after it filtered sequences shorter than 50 aa
and longer than 1173 aa)

- RAW_data_NifH.fasta (52942 NifH proteins retrieved from Uniprot)

- data_NifH.csv (4939 NifH sequences retrieved after CD-hit filtration)

- data_nonNifH.txt (4953 non-NifH sequences)

Extended data
Zenodo: NIFTHool: Repository. https://doi.org/10.5281/zenodo.5913032.18

This project contains the following underlying data:

- data_NifH_plus_nonNifH.txt (Combination of sequences from data_NifH.csv and data_nonNifH.txt).

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public
domain dedication).

Software availability
NIFtHool available from: https://nifthool.anvil.app/

Source code available from: https://github.com/JefferDSP/NIFTHool/tree/v1.0

Archived source code as at time of publication: https://doi.org/10.5281/zenodo.5913032.18

License: CC0-1.0.
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