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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in late
2019 in Wuhan, China, and has proven to be highly pathogenic, making it a global pub-
lic health threat. The immediate need to understand the mechanisms and impact of the
virus made omics techniques stand out, as they can offer a holistic and comprehensive
view of thousands of molecules in a single experiment. Mastering bioinformatics tools
to process, analyze, integrate, and interpret omics data is a powerful knowledge to
enrich results. We present a robust and open access computational pipeline for
extracting information from quantitative proteomics and transcriptomics public data.
We present the entire pipeline from raw data to differentially expressed genes. We
explore processes and pathways related to mapped transcripts and proteins. A pipeline
is presented to integrate and compare proteomics and transcriptomics data using also
packages available in the Bioconductor and providing the codes used. Cholesterol
metabolism, immune system activity, ECM, and proteasomal degradation pathways
increased in infected patients. Leukocyte activation profile was overrepresented in both
proteomics and transcriptomics data. Finally, we found a panel of proteins and tran-
scripts regulated in the same direction in the lung transcriptome and plasma proteome
that distinguish healthy and infected individuals. This panel of markers was confirmed in
another cohort of patients, thus validating the robustness and functionality of the tools
presented.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was

first identified in late 2019 in Wuhan, China, and has proven to be highly

pathogenic, making it a global public health threat (Mahalmani et al., 2020).

There are a variety of manifestations, from asymptomatic to severe cases, that

include symptoms such as muscle damage, prolonged tiredness, shortness of

breath, loss of taste/smell, and severe pneumonia (Dixon et al., 2021;

Nalbandian et al., 2021). Cumulative reports also associate post-acute effects

of the infection, including pulmonary, hematological, cardiovascular, neu-

ronal, renal, endocrine, and gastrointestinal sequelae (Hayes, Ingram, &

Sculthorpe, 2021; Nalbandian et al., 2021). The quest to understand the

infectious mechanisms of SARS-CoV-2, diagnostic alternatives, and treat-

ments have been approached by several techniques (Das, Ahmed, Akhtar,

Begum, & Banu, 2021). Among them, omics sciences generate large
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amounts of information to enable holistic understanding of cell, tissue

or organism function and reaction against a disease. These are high-

performance techniques able to explore an organism at the level of genes

(genomics), proteins (proteomics), metabolites (metabolomics), and lipids

(lipidomics). Integration of this vast information provides a comprehensive

and powerful tool for exploring the infection mechanism of SARS-CoV-2

(Overmyer et al., 2021; Wu et al., 2021).

In the last 10 years, with the advancement of technologies and proces-

sing capacity, proteomics and transcriptomics were readily implemented

in several laboratories (Martens & Vizcaı́no, 2017), while metabolomics

and lipidomics were integrated along the years (Wenk, 2005). The more

sophisticated data becomes, the greater the demand for new computational

methods to deal with them. Currently, numerous tools can assess

protein-protein interaction, calculate correlation between expression of

different genes, identify enriched pathways and biological processes, and

thus, drive data to find the most relevant points (Mangul et al., 2019;

Mishra et al., 2021).

2. Applications

Omics sciences combined with bioinformatics technologies, in partic-

ular, contributed to the identification of therapeutic targets (Bojkova

et al., 2020; Li et al., 2021); to the elucidation of virus pathophysiological

mechanisms (Desai et al., 2020; Rosa-Fernandes et al., 2019; Wu et al.,

2020); pathogen–host interactions (Terracciano et al., 2021); detection of

patients predisposed to manifestations of severe symptoms (Lazari et al.,

2021), selection of prognostic markers (Rosa-Fernandes et al., 2020;

Terracciano et al., 2021) and to determine differential gene/protein/metab-

olite expression profiles (Desai et al., 2020; Leng et al., 2020; Wu et al.,

2020). In addition to these fundamental applications, omics tools are also

helpful in stratifying clinical manifestations in viral infections (Macedo-

da-Silva et al., 2020). Furthermore, integrating data from different biological

matrices may offer a comprehensive overview of disease pathogenesis,

helping in prioritizing biomarkers and therapeutic targets (Wu et al.,

2021; Zhu et al., 2022). Storing, analyzing, and interpreting these data

can be a big challenge for researchers. However, it is a worthwhile task

to overcome as omics approach enable answering multiple biological

questions.
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Notably the generated raw data in previous studies are cumula-

tively stored and accessible in public repositories, such as PRIDE

(Vizcaı́no et al., 2013) and SRA (Kodama et al., 2012), allowing reanalysis

by different research groups. Therefore, mastering bioinformatics tools

to process, analyze, integrate, and interpret these omic data is a powerful

knowledge to build and validate hypotheses. The objective of this study

is to present bioinformatics tools that can be used to reanalyze transcriptomic

and proteomic data deposited in public databases and integrate them to

increase the understanding of the pathophysiology of SARS-CoV-2.

3. Methodologies

3.1 Selected datasets
Four datasets, including proteomics and transcriptomics, were selected from

public repositories. Shu et al. (PXD019106) evaluated plasma samples

from patients infected with SARS-CoV-2, subdivided into fatal (FT,

n¼5), severe (SV, n¼7), andmoderate (MD, n¼10) groups by proteomics.

In addition, the study included samples from healthy patients (HE, n¼8)

who tested negative on throat swab and serological tests (Shu et al.,

2020). Zhong et al. (S-BSST719) determined the plasma proteome profile

of 50 individuals with mild and moderate disease. Collections were per-

formed in the first 24h (D0) after the positive PCR test and after 14days

(D14) with negative PCR result (Zhong et al., 2021). Kwan et al.

(PRJNA692253) conducted RNA sequencing analyses of whole blood

samples from 64 patients, of whom 45 tested positive for COVID-19

(INF) and 19 healthy participants not exposed to the virus (CTRL)

(Kwan et al., 2021). Wu et al. (PRJNA646224) explored the lung and colon

tissue transcriptome of patients who died due to COVID-19 (INF, n¼8)

and healthy counterparts were obtained from cancer patients who under-

went surgical resection or biopsy (CTRL) (Wu et al., 2020).

3.2 Hardware features
The analyzes presented here were performed on an Ubuntu 20.04.3

LTS system (https://www.ubuntu.com/), with a total memory of 62GB,

40 CPUs, 2 threads per core, 10 cores per socket, and 2 sockets. The local

storage of raw files required a large amount of space. However, the size of the

files varied substantially as it depended on the quality of the data and

equipment used.
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3.3 Data download
In this protocol, we did not address the processing of raw files from

proteomic approaches. The protein quantification tables provided in the

selected manuscripts were downloaded and analyzed. The detailed pipelines

for processing proteomic raw data are available in Kong, Leprevost,

Avtonomov, Mellacheruvu, and Nesvizhskii (2017), Carvalho et al.

(2016), Guangcan et al. (2021), and Tyanova, Temu, and Cox (2016).

For transcriptomicanalysis, the fastq raw filesweredownloadedthrough the

SRA Explorer platform (https://sra-explorer.info/) with the access numbers

PRJNA692253 and PRJNA646224. Information regarding each file, such as

SRA Accession, instrument, and total bases (Mb) were accessed. The SRA

repository stores raw high-throughput sequencing data from different search

fields. SRA files consist of raw data and require quality scores per basis for

the submitted data. Tools like the sratoolkit download sequencing data

from this database. Fastq files are raw data that have a definition line (defline)

that contains a read identifier and nucleotide base information, all in text form.

After selection, all files from PRJNA692253 were downloaded by

clicking on “Add to collection.” A total of 64 SRA files were added. The

platform offers the option of downloading .fastq files directly, but also .sra

files and metadata. In the “FastQ Downloads” tab, the corresponding

URL for all files could be downloaded. Kwan et al. used paired-end

sequencing, resulting in 128 fastq files. Accession number PRJNA646224

provides the possibility to download colon and lung transcriptome data.

Here, we downloaded only data referring to the lung (CTRL and INF),

resulting in a total of 19 fastq files sinceWu et al. used single-end sequencing.

After creating a directory named “fastq_files” in the terminal console, files

were downloaded using the “wget” command.

3.4 FastQC
FastQC is a highly recommended software for checking the quality of

raw data coming from high-throughput sequencing pipelines. To download

the software via the terminal console, “wget” command must be used.
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The download is also possible by using directly the web browser from the

Brabraham Institut website (https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/). After unzipping the file, turned the tool executable and

added FastQC to the path. A directory to allocate FastQC outputs files

was created and then the software was executed.

At the end of the process, two output files will be created for each fastq file.

By opening the generated .html file, the user can access the sample quality

control report. The first module presents the results of basic statistics, includ-

ing Total Sequences, Sequences flagged as poor quality, Sequence length,

and %GC. Below is a BoxWhisker chart, which on the y-axis indicates

the quality scores and on the x-axis the position in the read. The background

indicates the quality of the sequences: green (very good), orange (fair), and

red (poor). The “Per sequence quality scores” graph shows the average qual-

ity score on the x-axis and the number of sequences with that average on the

y-axis. Generally, most samples’ readings are expected to have a high-quality

score. The parameter “Per base sequence content” reveals the proportion

of each position of a base. If the difference between A and T or G and C

bases is greater than 10%, the software will report a warning. If the difference

is greater than 20%, this module will fail. In “Per sequence GC content,”

the GC content measurement is reported. A normal distribution profile

is expected. In “Overrepresented Sequences” frequent sequences are

reported, indicating that it has some biological relevance or that the library

is not diverse or contaminated.

3.5 Trim Galore!
TrimGalore! is a platform that performs sample quality control by efficiently

removing poor-quality parts of the readings and trimming the adapter.
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This tool requires the previous installation of cutadapt and FastQC

tools. The step of removing adapter sequences may or not be adopted in

a transcriptome data analysis pipeline. In the selected datasets, Wu et al.

chose to apply Trim Galore! while Kwan et al. started the sequence align-

ment right after running FastQC. In this pipeline, we applied the tool

only to the dataset from Wu et al. study, based on the obtained FastQC

report. The command used followed the structure for single-end sequencing

data.

In the above command, the “-j” option indicates the number of cores to

be used for trimming; “-e” corresponds to the maximum allowed error

rate; “-q” allows the trimming of low-quality ends from reads in addition

to adapter removal; “--stringency” points out the overlap with adapter

sequence required to trim a sequence; the “-O” option creates a directory

to save the output files. The command “-a” is used to add the adapter

sequence. The Trim Galore! can automatically detect whether the

Illumina universal, Nextera transposase, or Illumina small RNA adapter

sequence was used. However, it is possible to add the adapter sequence

manually. When the command is missing, the software auto-detects the

adapter.

3.6 Reference genome
Before starting the sequence alignment, it is necessary to download the

reference genome. As indicated in the original manuscripts, Wu et al. used

the h19 genome and Kwan et al. used the GRCh38 genome. The down-

loaded file will be allocated in the created directory. Then the HISAT2

sequence alignment software will be downloaded, unzipped, and added

to the path. The genome will be indexed using the “hisat2-build” script,

allowing HISAT2 to perform the read alignment faster in the next step.

At the end of the indexing, eight .ht2 files will be created.
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3.7 Alignment of raw readings
Sequence alignment was performed with HISAT2 software (Kim, Paggi,

Park, Bennett, & Salzberg, 2019). Other programs are available for free, such

as STAR (Dobin et al., 2013), Bowtie2 (Langmead & Salzberg, 2012), and

TopHat2 (Kim et al., 2013). A comparison between the methods was

recently reported and can be accessed at Schaarschmidt, Fischer, Zuther,

and Hincha (2020) and Musich, Cadle-Davidson, and Osier (2021).

The “-p” command indicates the number of threads to perform the

alignment; “-x” is used to enter the path of previously generated reference
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files. It is important not to add the file extension (e.g., .ht2). The “-U”

option is used to show the path of unpaired files. To perform paired-end

sequencing alignment, the synthesis used is “-1” and “-2” to assign files

_1 and _2. The “-S” command designates the .sam file that will be gener-

ated. SAM files store aligned sequences and take upmuch space, so these files

can be converted to compressed version .BAM by the samtools software.

3.8 Samtools to convert SAM to BAM files
Samtools is a set of programs for interacting with high-throughput sequenc-

ing data. It is helpful for converting SAM, BAM and CRAM files. One of

the most used commands is the “samtools view,” which takes .BAM/.SAM

files as input and converts them to .SAM/.BAM, respectively. The “-S” and

“-b” commands are used. The alignment of fastq files occurs in random

order with the position in the reference genome. Therefore, in “samtools

sort,” the BAM files sorting is performed. The “-o” command indicates

the output file.

3.9 FeatureCounts
FeatureCounts is a platform that performs reading counting, also called read-

ing summarization, by gene (Liao, Smyth, & Shi, 2014). The htseq-count

tool (Anders, Pyl, & Huber, 2015), and featureCounts, are widely used

for this purpose. Both share the same file input format (BAM or SAM)

and need an annotation file that includes the chromosomal coordinates of

features. Among the mandatory arguments required to run the software

are “-a” and “-o,” which specifies the name/path of an annotation file

and the name of the output file including read counts. Among the optional

arguments, we used the “-T” command to indicate the number of threads

to be used in the analysis; the “-t” option specifies the feature type in GTF

annotation, and “-g” specifies the attribute type in the GTF annotation.

3.10 Exploring data with R packages
After obtaining the read counts for each sample and downloading

the quantitative proteomics tables, a set of R packages were used to handle
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the data and identify the relevant biological findings. The packages used are:

limma, Glimma, edgeR, Homo.sapiens, metboAnalystR, Enhancedvolcano,

combiroc, pROC, clusterProfiler, flashClust, uwot, NbClust, richplot,

ggplot2, WCGNA, gprofiler2, ggvenn, DOSE, wordcloud, FactoMineR,

factoextra, ggstatsplot, among others. The codes used to generate the data

and figures will be available in Supplementary File 1 in the online version

at https://doi.org/10.1016/bs.apcsb.2022.04.002.

The gene expression count files for each sample mapped by the trans-

criptomics pipeline were gathered in a single directory and, with the

“readDGE” function available in the edgeR package, they were merged

into a single object DGEList class. The raw counts were transformed into

counts per million (CPM) so that the size of the libraries was taken into

account and then scaled to log (log CPM). Most samples genes that did

not have sufficiently large counts were removed with the “filterByExpr”

function. The resulting matrix was normalized by a trimmed mean of

M-values (TMM) (Law et al., 2016).

The differentially expressed genes and proteins were determined by

applying the standard analysis pipeline of the limma package, with p-value

correction by the Benjamini-Hochberg method (q-value). The Homo.sapi-

ens package performed the transformation of ENSMBL ID into Gene sym-

bol. Interactive MAplots were plotted with the Glimma package. The

table resulting from the analysis of differentially regulated genes/proteins

was used as input to visualize of volcano plots by Enhancedvolcano package.

The x and y values were the columns logFC and adjusted p-value, respec-

tively. Principal component analysis (PCA) was conducted by applying the

FactoMineR package using the “PCA” function. The “fviz_pca_ind()”

function, available in the factoextra package, was applied to visualize the

result. Samples were identified as outliers using the MetaboAnalystR pack-

age, with the “PlotRF.Outlier” function. The input data used were filtered

and normalized matrices. Venn diagrams were built with the ggvenn pack-

age. The gprofiler2 package was used to perform gene ontology (GO).

The “gost” function was applied to access functional enrichments of gene

lists by applying a threshold of q-value<0.05 and “gostplot” to visualize

the results, with the capped and interactive options set to TRUE. Only

ontologies with 5 or more proteins/genes were considered. The wordcloud

package was used to build the word cloud based on the name frequency of

ontologies identified by gprofiler2. Bubble plots were built with the ggplot

package. The x-axis shows the gene count in each ontology shown on the

y-axis. The size of the bubbles indicates the -log of the q-value and the color

indicates the ontology category. To access pathways related to differentially
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expressed genes/proteins, the clusterProfiler and enrichplot packages

were used. The “GSA” function with the options minGSSize set to 5

and maxGSSize to 100. The p-value correction method was indicated as

“BH” (Benjamini-Hochberg). The regulated pathways network was built

with the “cnetplot” function.

Data integration was performed by applying the “merge” function to

select Gene symbols common between lung transcriptomics and plasma

proteomics normalized tables. The “boxplot” function was applied to verify

data distribution. Then the “removeBatchEffect” function, available in

limma, was applied. The data were then normalized by the “scale” function

(z-score). The “umap” function, available in the uwot package, was used

to produce a low-dimensional embedding that summarizes the overall

structure of high-dimensional data. The parameters adopted were min_dist -

¼0.01, n_neighbors¼20, n_epochs¼10,000, verbose¼2 and spread¼2.

The NbClust package was applied to determine the best number of

clusters. Then the data were clustered by the “eclust” function. The cluster

number was set to k¼8. The “silhouette” function, available in the cluster

package, was applied to assess the clustering quality. Genes and proteins

from the same cluster, which have logFC > j1 j (same direction) and

q-value<0.05 were selected and applied to construct ROC curves based

on data from other datasets. The WGCNA package was applied to the

expression data from Wu et al. and Kwan et al. The intersection of

the ENSEMBL IDs mapped in the two datasets was performed by the

“intersect” function. Correlation and connectivity between two datasets

were determined using the softPower parameter set to 5. The number of

modules was set to 4 and minClusterSize to 30. The “combiroc” package

was used to determine the best marker combinations, and the “pROC”

package was applied to plot and build the ROC curves.

4. Results

Given the increasing availability of public omics data, we present a

robust and open access pipeline for extracting insights from quantitative

biomolecular data (Fig. 1). Initially, raw files generated by RNA sequencing

were downloaded and processed. The proteomics and transcriptomics

data were then analyzed to find differently regulated features between the

groups. In addition, outlier samples, biological processes, cellular compo-

nents, molecular functions, and pathways of interest were identified.

Transcriptomics data from different matrices were correlated, and proteomics
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and transcriptomics data from different biological samples were fitted and

integrated. Finally, we evaluated through ROC curves the ability to separate

samples from infected and healthy individuals based on the panel of relevant

proteins and transcripts. Proteins and transcripts with better resolution

between the clinical conditions were prioritized and discussed.

4.1 Plasma proteome presents different patterns according
to the patient’s COVID-19 grade

After filtering the original data provided by the authors, the PCA plot

demonstrated that the plasma proteome of infected patients presented a

different pattern than that of healthy patients (HE). The groups SV (severe)

and FT (fatal) showed a very similar pattern, which differed from the MD

(moderate) group (Fig. 2A). The protein profile of plasma from the same

patient collected on day 0 (D0) of infection (PCR positive) and day

Fig. 1 Computational workflow and tools adopted to explore quantitative proteomics
and transcriptomics data from plasma, whole blood, and lung of healthy individuals and
patients infected with SARS-CoV-2.
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Fig. 2 Exploring the plasma proteome alterations resulting from SARS-CoV-2 infection. (A) Principal component analysis (PCA) indicating the
separation between the groups that developed fatal (FT), severe (SV), moderate (MD) COVID-19 disease, and healthy donors (HE); (B) PCA
indicating the separation between the same patients, with samples collected on day 0 of infection (D0) and day 14 (D14); (C) Venn diagram
showing differently regulated proteins between FTvsHE, SVsvHE and MDvsHE comparisons; (D–G) Volcanos plot of differentially expressed
proteins among FTvcHE, SVvsHE, MDvsHE, and D0vsD14 conditions; (H) Venn diagram showing upregulated proteins in the SASRS-CoV-2
infected group in both evaluated studies and (I) Venn diagram showing downregulated proteins in the SASRS-CoV-2 infected group in both
evaluated studies.



14 (D14) (PCR negative) showed similarity in the majority of cases,

however few presented distinct recovery pattern (Fig. 2B).

A total of 453 proteins were differentially regulated in the comparison

between FT and HE (Fig. 2D); 424 between SV and HE (Fig. 2E), and

403 between MD and HE (Fig. 2F). Among patients in groups D0 and

D14, 421 regulated proteins were identified (Fig. 2G). Comparing the

proteins upregulated and downregulated in all comparisons (Fig. 2H and I),

6 proteins (C1QA, CD93, FLT4, INHBC, ENPP2, and NID1) are identi-

fied upregulated in the infected groups, indicating a possible role in the

SARS-CoV-2 pathology (Fig. 3).

The boxplot plots (Fig. 3) showed that in the three degrees of infectious

disease severity (FT, SV, MD) the expression level of the six proteins

were higher than the healthy group (HE). The intra-patient comparisons

(Fig. 3B) showed that after 14days (D14) of disease onset (negative PCR),

the levels of these proteins were lower than at the time of diagnosis (D0).

4.2 Plasma proteome analysis indicates dysregulation
of immune system and cholesterol metabolism

Enriched GO terms were associated to the dysregulation of immune

system, proteasome, cytoskeleton, cell adhesion, and lipoprotein metabo-

lism (Fig. 4A). Upregulated proteins in the infected groups (FT, SV,

MD, and D0) are related to the activation of the immune system, especially

with the response mediated by leukocytes. Cytoskeleton dynamics and

proteasomal degradation were also upregulated (Fig. 4B). Processes related

to lipid metabolism and cell adhesion and migration are downregulated

(Fig. 4C). Pathway analysis was performed using differentially regulated

proteins and confirmed findings from GO analysis (Fig. 4D and E). In fact,

downregulated proteins in the infected groups (FT, SV, MD, and D0) are

related to cholesterol and lipoprotein metabolism. The ECM-proteoglycans

pathway and cell adhesion molecules were also associated with down-

regulated features. On the other hand, the pathways of infection, immune

system, apoptosis, and extracellular matrix (ECM) organization are

upregulated.

4.3 Lung and whole blood transcriptome reinforce findings
in the plasma proteome

PCA analysis based on blood transcriptome from CTRL and INF patients

with different degrees of symptoms did not show a clear separation

(Fig. 5A). On the other hand, analysis of lung tissue from patients with fatal
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COVID-19 (INF) and healthy counterparts (CTRL) showed separation

between groups (Fig. 5B). A total of 1039 genes were identified differentially

expressed in the blood transcriptome (Fig. 5C) and 1034 in the lung tissue

analysis (Fig. 5D) (logFc j1 j and q-value<0.05). A higher number of

enriched GO terms (q value<0.05) were found in the lung tissue compared

to the blood transcriptome giving more information about the COVID-19

pathophysiology. Immune response mediated by leukocytes, apoptotic

Fig. 3 Boxplot of upregulated proteins in SARS-CoV-2 infection. (A) Upregulated pro-
teins in the groups that developed fatal (FT), severe (SV), and moderate (MD) COVID-
19; (B) Upregulated proteins at the onset of COVID-19 (D0).
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Fig. 4 Gene ontology and GSEA analysis of differentially regulated plasma proteins. (A) Word cloud generated from differentially regulated
identified terms (gene count>5 and q-value<0.05); (B–C) Biological processes, cellular components, andmolecular functions of upregulated
and downregulated proteins in infected groups, respectively; (D) Network of proteins that participate in themain enriched pathways. Red and
blue dots indicate upregulated and downregulated proteins, respectively; (E) Pathways associated with differentially regulated proteins.



Fig. 5 Alteration of blood and lung transcriptome due to SARS-CoV-2 infection. (A) Principal component analysis (PCA) based on blood trans-
criptome from healthy (CTRL) and infected patients (INF); (B) PCA showing lung transcriptome-based separation of groups that developed
fatal COVID-19 (INF) and non-infected individuals (CTRL); (C) Volcano plot indicating differentially expressed genes identified in blood;
(D) Volcano plot indicating differentially expressed genes identified in the lung; Gene ontology (GO) analysis of upregulated (E) and down-
regulated (F) genes in the INF (blood and lung) groups.



processes, collagen degradation, and viral life cycle were among the

upregulated enriched GO terms corroborating the findings of plasma

proteomics. On the other hand, there was an enrichment associated with

misfolded proteins that were not identified in plasma (Fig. 5E).

Ontologies related to downregulated genes showed greater differences with

respect to proteomic findings, although processes such as cell adhesion are

common to both. Terms related to cell development and differentiation,

especially of the brain components, are highlighted (Fig. 5F). Processes

related to lipid and cholesterol metabolism were not identified.

4.4 The integration of omics data identifies clusters of proteins
and genes related to key processes in infection

Weighted Gene Coexpression Network Analysis (WGCNA) is a popular

method applied to identify correlation patterns between genes in samples.

Integration of the 5000 common genes between lung and blood trans-

criptome did not show high modulus preservation between studies

(Fig. 6A). However, the green (Fig. 6B) and turquoise (Fig. 6C) modules

have 5<Z<10, indicating moderate preservation. By selecting and work-

ing with the 400 key genes (labeled on the basis of kME) differentially

expressed in the assessed groups of the turquoise and green modules, we

identified enriched biological processes and pathways. The green module

has genes related to leukocyte activation and proteasome activity, which

was also identified in the turquoise module (Fig. 6D). However, it was

also possible to verify processes linked to the virus, including proteins asso-

ciated with spike viral glycoprotein maturation and deregulation of

host-glycosylation (Fig. 6E), a key process during infection.

The clustering of 421 features common to lung transcriptome and plasma

proteome data from healthy (CTRL and HE) and fatal (INF and FT)

COVID-19 patients resulted in 8 clusters (Fig. 7A and B). The silhouette

plot indicates genes possibly associated with the wrong cluster (n¼27)

(Fig. 7C). These genes were disregarded in the enrichment analyses.

Clusters 3, 4, 6, 7, and 8 show the highest correlation between the

LogFC of the proteome and transcriptome (Fig. 7D). Considering only

genes regulated in the same direction in both matrices, we identified

enriched biological pathways and processes. Cluster 1 highlights terms

associated with ECM; cluster 2, terms linked to the immune system and

enzymatic activity; cluster 3, cytoskeletal activities; cluster 4, lipid metabo-

lism; cluster 5, immune system and leukocyte activation; cluster 6,
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Fig. 6 Weighted gene co-expression network analysis (WGCNA). (A) Z-score for modules preserved between lung transcriptome and whole
blood; (B–C) Scatter plot indicating the LogFC of the 400 genes comprising the green and turquoise modules (Z>5), respectively, selected by
the topGenesKME function; (D–E) Network indicating differentially expressed proteins from the turquoise and greenmodules. The donut plot
indicates enriched processes and pathways (q-value<0.05).



Fig. 7 Integration of lung transcriptomics and plasma proteomics data. (A) UMAP plot indicating the clustering of 421 genes/proteins iden-
tified in both evaluated datasets; (B) Dendrogram indicating the separation of 8 clusters identified; (C) Silhouette graph showing the quality of
clustering applied. Negative values indicate genes that were possibly wrongly clustered. These genes were disregarded; (D) Scatter plot rep-
resenting the LogFC of the proteome (x) and transcriptome (y) analysis; (E) Gene ontology and enriched pathways associated with identified
clusters. The size of the bubbles indicates the -log-q-value and the color represents the associated cluster.



proteasomal degradation, immune system, and enzyme activity; cluster 7,

complement system and cluster 8, glucose metabolism (Fig. 7E).

The transcripts and proteins differentially regulated with a logFC > j1 j
in the same direction (upregulation or downregulation) in both the prote-

ome and the transcriptome were selected for application of the ROC

curve (Fig. 8). The targets with the highest specificity and sensitivity were

Fig. 8 ROC curves based on proteins involved in SARS-CoV-2 pathology. (A) Bubble
chart indicating combinations between proteins/genes that present better results
(golden combinations); (B) ROC curves of gold combinations indicating the potential
for protein separation in distinguishing between groups D0 (PCR positive, day 01)
and D14 (PCR negative, day 14); (C) ROC curves of gold combinations indicating the
gene splitting potential in distinguishing between infected (INF) and healthy (CTRL)
groups from whole blood transcriptomics analysis; (D–E) Boxplots indicating the sepa-
ration of patients based on the selected protein/gene.
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selected based in the integrated expression dataset (plasma proteome and

lung transcriptome) (Fig. 8A). Additionally, the predictive power of these

targets to stratify infected and healthy conditions was tested in another

cohort (plasma proteome of D0 and D14 and whole blood transcriptome

from INF and CTRL).

Three biomolecules gave the best AUC: TIMP1, a natural inhibitor of

the matrix metalloproteinases involved in extracellular matrix remodeling,

cell proliferation and regulated in response to cytokines; TNXB, tenascin

XB, an extracellular matrix glycoprotein involved in wound healing, and

PTPRS, protein tyrosine phosphatase receptor type S, the cell surface recep-

tor that binds to glycosaminoglycans and involved in cell-cell interaction and

cell growth and differentiation (Fig. 8B). The combination of the three

showed an AUC greater than 0.8. At the gene level, the same combination

resulted in AUC higher than 0.9 (Fig. 8C). Other combinations that showed

AUC values close to 1 were PTPRS and TIMP1; and PTPRS and SPP1, a

sialoprotein related to lymphocytic activation (Fig. 8D and E).

5. Discussion

To explore and understand the mechanisms of SARS-CoV-2 infec-

tion, the virus responsible for the death of more than 5 million people

worldwide (https://covid19.who.int/), we present here an optimized pipe-

line for omics data analysis (Fig. 1), as well as extract meaningful information

from high-throughput techniques. Dealing with codes in command line

may not be a common expertise; however, being able to access and interpret

public data is of great advantage for performing in silico validations and

designing experiments in the wet lab to test hypotheses. We present the

application of computational tools to analyze raw transcriptomics data and

funnel the findings to access key disease processes. In addition, we integrated

quantitative proteomics data to improve our understanding of COVID-19.

The rapid need to understand the mechanisms and impacts of

SARS-CoV-2 makes omics strategies stand out as they can offer a holistic

and comprehensive view of thousands of molecules (Colinge & Bennett,

2007; Haas, Muralidharan, Krogan, Kaake, & H€uttenhain, 2021). The

ability to study alterations of a large number of proteins and transcripts

in a single experiment is attractive (Al-Amrani, Al-Jabri, Al-Zaabi,

Alshekaili, & Al-Khabori, 2021). Furthermore, accessing the modulation

of molecules based on a clinical status can answer many questions about a
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given disease (Amiri-Dashatan, Koushki, Abbaszadeh, Rostami-Nejad, &

Rezaei-Tavirani, 2018). However, to access these countless possibilities

offered by omics, it is necessary to conduct information processing to

reduce noisy data and focus only on what is relevant. Computational and

bioinformatic analyses complement the sample preparation and data acqui-

sition steps allowing a comprehensive visualization of dysregulated pathways

(Cannataro, 2007).

The mechanisms altered by SARS-CoV-2 during infection can be

accessed through the application of shotgun proteomics (Badua, Baldo, &

Medina, 2021; Rais, Fu, & Drabovich, 2021). In addition, this approach

can provide the quantification of viral proteins in complex clinical samples

(Bojkova et al., 2020; Lach�en-Montes, Corrales, Fernández-Irigoyen, &

Santamarı́a, 2020; Lazari et al., 2021). Reports of sequelae resulting from

viral infection are increasingly frequent. Chen et al. (2021) applied a prote-

omic approach monitoring the health status of patients who developed

COVID-19. The study showed changes in proteins related to cholesterol

metabolism and heart disease. Our in silico analyses resulting from the appli-

cation of the deft pipeline detailed here showed an alteration in processes

linked to lipoproteins and cholesterol. These results are in agreement with

changes in the HDL proteome associated with COVID-19 complications

(Souza Junior et al., 2021). The data obtained in this manuscript show that

the plasma proteome reflects the immunological status of infected patients,

since pathways and proteins were identified as increased in these groups. The

intra-patient comparison at different time points showed there is an activa-

tion of the immune system, especially of pathways linked to leukocytes

in the first 24h. However, these responses are diminished after 14days.

Other studies also reported the ability of the plasma and serum proteome

to reflect the action of the immune system in the infection (Arthur et al.,

2021; Kumar, 2021; Villar et al., 2021; Zhong et al., 2021). Among the

immune system proteins that stood out were C1QA, which is crucial in

the activation of the classical pathway of the complement system

(Ghebrehiwet, Hosszu, Valentino, & Peerschke, 2012; Kouser et al.,

2015; Nayak, Pednekar, Reid, & Kishore, 2012), and CD93, involved in

the regulation of phagocytosis of apoptotic cells in vivo. Transcriptomics

approaches have also been extensively applied to study SARS-CoV-2 infec-

tion (Butler et al., 2021; Chakraborty, Sharma, Bhattacharya, Zayed, & Lee,

2021; Islam et al., 2021; O’Donnell et al., 2021; Sun et al., 2020; Wong

et al., 2021). We identified regulated pathways linked to misfolded proteins

in the lung of infected patients, as previously reported (Rosa-Fernandes
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et al., 2021). Moreover, we identified an increase in the enzymes involved

ECM remodeling, extravasation of intracellular contents and activation of

the immune system (Leeming et al., 2021; Leng et al., 2020).

Leukocyte activation was recurrent in our analyses of the integrated

proteomic and transcriptomic data (Alon et al., 2021; Coradi & Vieira,

2021). Regarding our data integration approach, we saw that there is little

correlation between transcripts mapped in lung and whole blood trans-

criptome. However, looking at moderately conserved transcripts, we

found processes linked to leukocyte activation and host glycosylation.

Our integrated data also mapped transcripts and proteins linked to

proteasome activity in the infected groups. In fact, other groups have iden-

tified the importance of the proteasome in COVID-19 from the application

of other techniques (Chatterjee et al., 2020; Longhitano et al., 2020; Wang

et al., 2021).

6. Conclusions

We conducted integrated omic data analysis with focus on open

tools to analyze and interpret this data type.We presented the entire pipeline

for handling from raw files to differentially expressed features using the

FastQC, Trim Galore!, HISAT2, samtools, featureCounts and R softwares.

We also looked at useful tools to explore processes and pathways related to

mapped transcripts and proteins. An important point was establishing a pipe-

line to integrate proteomics and transcriptomics data, since adjusting these

data to make them comparable can be a big challenge. We also consistently

reported applying various packages available in the bioconductor, providing

the codes used. Regarding the biological findings, we evidenced increase in

the cholesterol metabolism, immune system activity, ECM and proteasome

degradation increased in infected patients. We also noticed a leukocyte

activation profile in both proteomics and transcriptomics data. Finally, we

identified a panel of proteins and transcripts that are regulated in the same

direction in the lung transcriptome and plasma proteome that have a great

ability to distinguish between healthy and infected groups. This panel of

markers was applied to another cohort of patients and showed good results,

corroborating the robustness and usefulness of the computational tools

presented in this manuscript.
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observadas em extensão de sangue perif�erico. Research, Society and Development, 10,
e400101119838. https://doi.org/10.33448/rsd-v10i11.19838.

Das, A., Ahmed, R., Akhtar, S., Begum, K., & Banu, S. (2021). An overview of basic molec-
ular biology of SARS-CoV-2 and current COVID-19 prevention strategies. Gene
Reports, 23, 101122. https://doi.org/10.1016/j.genrep.2021.101122.

Desai, N., Neyaz, A., Szabolcs, A., Shih, A. R., Chen, J. H., Thapar, V., et al. (2020).
Temporal and spatial heterogeneity of host response to SARS-CoV-2 pulmonary infec-
tion. Nature Communications, 11, 6319. https://doi.org/10.1038/s41467-020-20139-7.

Dixon, B. E., Wools-Kaloustian, K. K., Fadel, W. F., Duszynski, T. J., Yiannoutsos, C.,
Halverson, P. K., et al. (2021). Symptoms and symptom clusters associated with
SARS-CoV-2 infection in community-based populations: Results from a statewide epi-
demiological study. PLoS One, 16, e0241875. https://doi.org/10.1371/journal.pone.
0241875.

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013).
STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21. https://doi.
org/10.1093/bioinformatics/bts635.

Ghebrehiwet, B., Hosszu, K. K., Valentino, A., & Peerschke, E. I. B. (2012). The C1q
family of proteins: Insights into the emerging non-traditional functions. Frontiers in
Immunology, 3. https://doi.org/10.3389/fimmu.2012.00052.

Guangcan, S., Yong, C., Zhenlin, C., Chao, L., Shangtong, L., Hao, C., et al. (2021). How
to use open-pFind in deep proteomics data analysis?—A protocol for rigorous identifi-
cation and quantitation of peptides and proteins from mass spectrometry data. Biophysics
Reports, 7, 207–226. https://doi.org/10.52601/bpr.2021.210004.

Haas, P.,Muralidharan,M., Krogan,N. J., Kaake,R.M., &H€uttenhain, R. (2021). Proteomic
approaches to study SARS-CoV-2 biology and COVID-19 pathology. Journal of Proteome
Research, 20, 1133–1152. https://doi.org/10.1021/acs.jproteome.0c00764.

Hayes, L. D., Ingram, J., & Sculthorpe, N. F. (2021). More than 100 persistent symptoms of
SARS-CoV-2 (long COVID): A scoping review. Frontiers in Medicine, 8, 750378.
https://doi.org/10.3389/fmed.2021.750378.

Islam, A. B. M. M. K., Khan, M. A.-A.-K., Ahmed, R., Hossain, M. S., Kabir, S. M. T.,
Islam, M. S., et al. (2021). Transcriptome of nasopharyngeal samples from
COVID-19 patients and a comparative analysis with other SARS-CoV-2 infection
models reveal disparate host responses against SARS-CoV-2. Journal of Translational
Medicine, 19, 32. https://doi.org/10.1186/s12967-020-02695-0.

Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome
alignment and genotyping withHISAT2 andHISAT-genotype.Nature Biotechnology, 37,
907–915. https://doi.org/10.1038/s41587-019-0201-4.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2:
Accurate alignment of transcriptomes in the presence of insertions, deletions and gene
fusions. Genome Biology, 14, R36. https://doi.org/10.1186/gb-2013-14-4-r36.

Kodama, Y., Shumway, M., Leinonen, R., & International Nucleotide Sequence Database
Collaboration. (2012). The sequence read archive: Explosive growth of sequencing data.
Nucleic Acids Research, 40, D54–D56. https://doi.org/10.1093/nar/gkr854.

336 Janaina Macedo-da-Silva et al.

https://doi.org/10.1021/acs.jproteome.1c00054
https://doi.org/10.1021/acs.jproteome.1c00054
https://doi.org/10.1371/journal.pcbi.0030114
https://doi.org/10.1371/journal.pcbi.0030114
https://doi.org/10.33448/rsd-v10i11.19838
https://doi.org/10.33448/rsd-v10i11.19838
https://doi.org/10.1016/j.genrep.2021.101122
https://doi.org/10.1016/j.genrep.2021.101122
https://doi.org/10.1038/s41467-020-20139-7
https://doi.org/10.1038/s41467-020-20139-7
https://doi.org/10.1371/journal.pone.0241875
https://doi.org/10.1371/journal.pone.0241875
https://doi.org/10.1371/journal.pone.0241875
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.3389/fimmu.2012.00052
https://doi.org/10.3389/fimmu.2012.00052
https://doi.org/10.52601/bpr.2021.210004
https://doi.org/10.52601/bpr.2021.210004
https://doi.org/10.1021/acs.jproteome.0c00764
https://doi.org/10.1021/acs.jproteome.0c00764
https://doi.org/10.3389/fmed.2021.750378
https://doi.org/10.3389/fmed.2021.750378
https://doi.org/10.1186/s12967-020-02695-0
https://doi.org/10.1186/s12967-020-02695-0
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1186/gb-2013-14-4-r36
https://doi.org/10.1186/gb-2013-14-4-r36
https://doi.org/10.1093/nar/gkr854
https://doi.org/10.1093/nar/gkr854


Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D., & Nesvizhskii, A. I.
(2017). MSFragger: Ultrafast and comprehensive peptide identification in mass
spectrometry-based proteomics. Nature Methods, 14, 513–520. https://doi.org/10.
1038/nmeth.4256.

Kouser, L., Madhukaran, S. P., Shastri, A., Saraon, A., Ferluga, J., Al-Mozaini, M., et al.
(2015). Emerging and novel functions of complement protein C1q. Frontiers in
Immunology, 6. https://doi.org/10.3389/fimmu.2015.00317.

Kumar, V. (2021). Can proteomics-based approaches further help COVID-19 preven-
tion and therapy? Expert Review of Proteomics, 18, 241–245. https://doi.org/10.1080/
14789450.2021.1924684.

Kwan, P. K. W., Cross, G. B., Naftalin, C. M., Ahidjo, B. A., Mok, C. K., Fanusi, F., et al.
(2021). A blood RNA transcriptome signature for COVID-19. BMC Medical Genomics,
14, 155. https://doi.org/10.1186/s12920-021-01006-w.

Lach�en-Montes, M., Corrales, F. J., Fernández-Irigoyen, J., & Santamarı́a, E. (2020).
Proteomics insights into the molecular basis of SARS-CoV-2 infection: What we can
learn from the human olfactory axis. Frontiers in Microbiology, 11, 2101. https://doi.
org/10.3389/fmicb.2020.02101.

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9, 357–359. https://doi.org/10.1038/nmeth.1923.

Law, C. W., Alhamdoosh, M., Su, S., Dong, X., Tian, L., Smyth, G. K., et al. (2016).
RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000 Research,
5. https://doi.org/10.12688/f1000research.9005.3. ISCB Comm J-1408.

Lazari, L. C., Ghilardi, F. D. R., Rosa-Fernandes, L., Assis, D. M., Nicolau, J. C.,
Santiago, V. F., et al. (2021). Prognostic accuracy of MALDI-TOF mass spectrometric
analysis of plasma in COVID-19. Life Science Alliance, 4, e202000946. https://doi.org/10.
26508/lsa.202000946.

Leeming, D. J., Genovese, F., Sand, J. M. B., Rasmussen, D. G. K., Christiansen, C.,
Jenkins, G., et al. (2021). Can biomarkers of extracellular matrix remodelling and wound
healing be used to identify high risk patients infected with SARS-CoV-2?: Lessons
learned from pulmonary fibrosis. Respiratory Research, 22, 38. https://doi.org/10.1186/
s12931-020-01590-y.

Leng, L., Cao, R., Ma, J., Mou, D., Zhu, Y., Li, W., et al. (2020). Pathological features of
COVID-19-associated lung injury: A preliminary proteomics report based on clinical
samples. Signal Transduction and Targeted Therapy, 5, 240. https://doi.org/10.1038/
s41392-020-00355-9.

Li, Y., Hou, G., Zhou, H., Wang, Y., Tun, H. M., Zhu, A., et al. (2021). Multi-platform
omics analysis reveals molecular signature for COVID-19 pathogenesis, prognosis and
drug target discovery. Signal Transduction and Targeted Therapy, 6, 155. https://doi.org/
10.1038/s41392-021-00508-4.

Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose pro-
gram for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930.
https://doi.org/10.1093/bioinformatics/btt656.

Longhitano, L., Tibullo, D., Giallongo, C., Lazzarino, G., Tartaglia, N., Galimberti, S., et al.
(2020). Proteasome inhibitors as a possible therapy for SARS-CoV-2. International Journal
of Molecular Sciences, 21, E3622. https://doi.org/10.3390/ijms21103622.

Macedo-da-Silva, J., Rosa-Fernandes, L., Barbosa, R. H., Angeli, C. B., Carvalho, F. R.,
de Oliveira Vianna, R. A., et al. (2020). Serum proteomics reveals alterations in
protease activity, axon guidance, and visual phototransduction pathways in infants with
in utero exposure to zika virus without congenital zika syndrome. Frontiers in Cellular and
Infection Microbiology, 10, 577819. https://doi.org/10.3389/fcimb.2020.577819.

337Exploring COVID-19 pathogenesis on command-line

https://doi.org/10.1038/nmeth.4256
https://doi.org/10.1038/nmeth.4256
https://doi.org/10.1038/nmeth.4256
https://doi.org/10.3389/fimmu.2015.00317
https://doi.org/10.3389/fimmu.2015.00317
https://doi.org/10.1080/14789450.2021.1924684
https://doi.org/10.1080/14789450.2021.1924684
https://doi.org/10.1080/14789450.2021.1924684
https://doi.org/10.1186/s12920-021-01006-w
https://doi.org/10.1186/s12920-021-01006-w
https://doi.org/10.3389/fmicb.2020.02101
https://doi.org/10.3389/fmicb.2020.02101
https://doi.org/10.3389/fmicb.2020.02101
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.26508/lsa.202000946
https://doi.org/10.26508/lsa.202000946
https://doi.org/10.26508/lsa.202000946
https://doi.org/10.1186/s12931-020-01590-y
https://doi.org/10.1186/s12931-020-01590-y
https://doi.org/10.1186/s12931-020-01590-y
https://doi.org/10.1038/s41392-020-00355-9
https://doi.org/10.1038/s41392-020-00355-9
https://doi.org/10.1038/s41392-020-00355-9
https://doi.org/10.1038/s41392-021-00508-4
https://doi.org/10.1038/s41392-021-00508-4
https://doi.org/10.1038/s41392-021-00508-4
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.3390/ijms21103622
https://doi.org/10.3390/ijms21103622
https://doi.org/10.3389/fcimb.2020.577819
https://doi.org/10.3389/fcimb.2020.577819


Mahalmani, V. M., Mahendru, D., Semwal, A., Kaur, S., Kaur, H., Sarma, P., et al. (2020).
COVID-19 pandemic: A review based on current evidence. Indian Journal of
Pharmacology, 52, 117–129. https://doi.org/10.4103/ijp.IJP_310_20.

Mangul, S., Martin, L. S., Hill, B. L., Lam, A. K.-M., Distler, M. G., Zelikovsky, A., et al.
(2019). Systematic benchmarking of omics computational tools. Nature Communications,
10, 1393. https://doi.org/10.1038/s41467-019-09406-4.

Martens, L., & Vizcaı́no, J. A. (2017). A golden age for working with public proteomics data.
Trends in Biochemical Sciences, 42, 333–341. https://doi.org/10.1016/j.tibs.2017.01.001.

Mishra, S., Shah, M. I., Udhaya Kumar, S., Thirumal Kumar, D., Gopalakrishnan, C.,
Al-Subaie, A. M., et al. (2021). Network analysis of transcriptomics data for the predic-
tion and prioritization of membrane-associated biomarkers for idiopathic pulmonary
fibrosis (IPF) by bioinformatics approach. InAdvances in protein chemistry and structural biol-
ogy (pp. 241–273). Elsevier. https://doi.org/10.1016/bs.apcsb.2020.10.003.

Musich, R., Cadle-Davidson, L., &Osier, M. V. (2021). Comparison of short-read sequence
aligners indicates strengths and weaknesses for biologists to consider. Frontiers in Plant
Science, 12, 657240. https://doi.org/10.3389/fpls.2021.657240.

Nalbandian, A., Sehgal, K., Gupta, A., Madhavan, M. V., McGroder, C., Stevens, J. S., et al.
(2021). Post-acute COVID-19 syndrome. Nature Medicine, 27, 601–615. https://doi.
org/10.1038/s41591-021-01283-z.

Nayak, A., Pednekar, L., Reid, K. B., & Kishore, U. (2012). Complement and
non-complement activating functions of C1q: A prototypical innate immune molecule.
Innate Immunity, 18, 350–363. https://doi.org/10.1177/1753425910396252.

O’Donnell, K. L., Pinski, A. N., Clancy, C. S., Gourdine, T., Shifflett, K., Fletcher, P., et al.
(2021). Pathogenic and transcriptomic differences of emerging SARS-CoV-2 variants
in the Syrian golden hamster model. eBioMedicine, 73, 103675. https://doi.org/10.
1016/j.ebiom.2021.103675.

Overmyer, K. A., Shishkova, E., Miller, I. J., Balnis, J., Bernstein, M. N., Peters-Clarke,
T. M., et al. (2021). Large-scale multi-omic analysis of COVID-19 severity. Cell
Systems, 12, 23–40.e7. https://doi.org/10.1016/j.cels.2020.10.003.

Rais, Y., Fu, Z., & Drabovich, A. P. (2021). Mass spectrometry-based proteomics in basic
and translational research of SARS-CoV-2 coronavirus and its emerging mutants.
Clinical Proteomics, 18, 19. https://doi.org/10.1186/s12014-021-09325-x.

Rosa-Fernandes, L., Barbosa, R. H., Dos Santos, M. L. B., Angeli, C. B., Silva, T. P.,
Melo, R. C. N., et al. (2020). Cellular imprinting proteomics assay: A novel method
for detection of neural and ocular disorders applied to congenital zika virus syndrome.
Journal of Proteome Research, 19, 4496–4515. https://doi.org/10.1021/acs.jproteome.
0c00320.

Rosa-Fernandes, L., Cugola, F. R., Russo, F. B., Kawahara, R., de Melo Freire, C. C.,
Leite, P. E. C., et al. (2019). Zika virus impairs neurogenesis and synaptogenesis path-
ways in human neural stem cells and neurons. Frontiers in Cellular Neuroscience, 13,
64. https://doi.org/10.3389/fncel.2019.00064.

Rosa-Fernandes, L., Lazari, L. C., da Silva, J. M., de Morais Gomes, V., Machado, R. R. G.,
dos Santos, A. F., et al. (2021). SARS-CoV-2 activates ER stress and Unfolded protein
response (preprint). Biochemistry. https://doi.org/10.1101/2021.06.21.449284.

Schaarschmidt, S., Fischer, A., Zuther, E., & Hincha, D. K. (2020). Evaluation of seven
different RNA-seq alignment tools based on experimental data from the model plant
Arabidopsis thaliana. International Journal of Molecular Sciences, 21, E1720. https://doi.
org/10.3390/ijms21051720.

Shu, T., Ning, W., Wu, D., Xu, J., Han, Q., Huang, M., et al. (2020). Plasma proteomics
identify biomarkers and pathogenesis of COVID-19. Immunity, 53, 1108–1122.e5.
https://doi.org/10.1016/j.immuni.2020.10.008.

338 Janaina Macedo-da-Silva et al.

https://doi.org/10.4103/ijp.IJP_310_20
https://doi.org/10.4103/ijp.IJP_310_20
https://doi.org/10.1038/s41467-019-09406-4
https://doi.org/10.1038/s41467-019-09406-4
https://doi.org/10.1016/j.tibs.2017.01.001
https://doi.org/10.1016/j.tibs.2017.01.001
https://doi.org/10.1016/bs.apcsb.2020.10.003
https://doi.org/10.1016/bs.apcsb.2020.10.003
https://doi.org/10.3389/fpls.2021.657240
https://doi.org/10.3389/fpls.2021.657240
https://doi.org/10.1038/s41591-021-01283-z
https://doi.org/10.1038/s41591-021-01283-z
https://doi.org/10.1038/s41591-021-01283-z
https://doi.org/10.1177/1753425910396252
https://doi.org/10.1177/1753425910396252
https://doi.org/10.1016/j.ebiom.2021.103675
https://doi.org/10.1016/j.ebiom.2021.103675
https://doi.org/10.1016/j.ebiom.2021.103675
https://doi.org/10.1016/j.cels.2020.10.003
https://doi.org/10.1016/j.cels.2020.10.003
https://doi.org/10.1186/s12014-021-09325-x
https://doi.org/10.1186/s12014-021-09325-x
https://doi.org/10.1021/acs.jproteome.0c00320
https://doi.org/10.1021/acs.jproteome.0c00320
https://doi.org/10.1021/acs.jproteome.0c00320
https://doi.org/10.3389/fncel.2019.00064
https://doi.org/10.3389/fncel.2019.00064
https://doi.org/10.1101/2021.06.21.449284
https://doi.org/10.1101/2021.06.21.449284
https://doi.org/10.3390/ijms21051720
https://doi.org/10.3390/ijms21051720
https://doi.org/10.3390/ijms21051720
https://doi.org/10.1016/j.immuni.2020.10.008
https://doi.org/10.1016/j.immuni.2020.10.008


Souza Junior, D. R., Silva, A. R. M., Rosa-Fernandes, L., Reis, L. R., Alexandria, G.,
Bhosale, S. D., et al. (2021). HDL proteome remodeling associates with COVID-19
severity. Journal of Clinical Lipidology, 15, 796–804. https://doi.org/10.1016/j.jacl.
2021.10.005.

Sun, J., Ye, F., Wu, A., Yang, R., Pan, M., Sheng, J., et al. (2020). Comparative
transcriptome analysis reveals the intensive early stage responses of host cells to
SARS-CoV-2 infection. Frontiers in Microbiology, 11, 593857. https://doi.org/10.
3389/fmicb.2020.593857.
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