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ABSTRACT Physiological resistance to antibiotics confounds the treatment of many chronic bacterial infections, motivating
researchers to identify novel therapeutic approaches. To do this effectively, an understanding of how microbes survive in vivo is
needed. Though much can be inferred from bulk approaches to characterizing complex environments, essential information can
be lost if spatial organization is not preserved. Here, we introduce a tissue-clearing technique, termed MiPACT, designed to re-
tain and visualize bacteria with associated proteins and nucleic acids in situ on various spatial scales. By coupling MiPACT with
hybridization chain reaction (HCR) to detect rRNA in sputum samples from cystic fibrosis (CF) patients, we demonstrate its
ability to survey thousands of bacteria (or bacterial aggregates) over millimeter scales and quantify aggregation of individual
species in polymicrobial communities. By analyzing aggregation patterns of four prominent CF pathogens, Staphylococcus au-
reus, Pseudomonas aeruginosa, Streptococcus sp., and Achromobacter xylosoxidans, we demonstrate a spectrum of aggregation
states: from mostly single cells (A. xylosoxidans), to medium-sized clusters (S. aureus), to a mixture of single cells and large ag-
gregates (P. aeruginosa and Streptococcus sp.). Furthermore, MiPACT-HCR revealed an intimate interaction between Strepto-
coccus sp. and specific host cells. Lastly, by comparing standard rRNA fluorescence in situ hybridization signals to those from
HCR, we found that different populations of S. aureus and A. xylosoxidans grow slowly overall yet exhibit growth rate heteroge-
neity over hundreds of microns. These results demonstrate the utility of MiPACT-HCR to directly capture the spatial organiza-
tion and metabolic activity of bacteria in complex systems, such as human sputum.

IMPORTANCE The advent of metagenomic and metatranscriptomic analyses has improved our understanding of microbial com-
munities by empowering us to identify bacteria, calculate their abundance, and profile gene expression patterns in complex envi-
ronments. We are still technologically limited, however, in regards to the many questions that bulk measurements cannot an-
swer, specifically in assessing the spatial organization of microbe-microbe and microbe-host interactions. Here, we demonstrate
the power of an enhanced optical clearing method, MiPACT, to survey important aspects of bacterial physiology (aggregation,
host interactions, and growth rate), in situ, with preserved spatial information when coupled to rRNA detection by HCR. Our
application of MiPACT-HCR to cystic fibrosis patient sputum revealed species-specific aggregation patterns, yet slow growth
characterized the vast majority of bacterial cells regardless of their cell type. More broadly, MiPACT, coupled with fluorescent
labeling, promises to advance the direct study of microbial communities in diverse environments, including microbial habitats
within mammalian systems.
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Host-microbe interactions are increasingly recognized as driv-
ers of health and disease in many different contexts, from the

beneficial human microbiome to deleterious bacterial infections,
such as those that chronically infect individuals living with cystic
fibrosis (CF) (1–3). In all of these cases, the relationship between
microbial and host cells is influenced by the features of the mi-
croenvironment, which change over time and can be challenging
to measure. Nevertheless, it is essential to characterize the nature
of these important associations if we seek to understand and/or
control them. Spatial organization is a defining parameter in any

environment, and it is likely that by impacting bacterium-
bacterium or bacterium-host associations, or by creating gradi-
ents of nutrients or toxins that affect bacterial growth rates, spatial
organization affects bacterial survival (4). The current toolset for
understanding microbial communities associated with animal
host environments provides limited spatial information (e.g., thin
sectioning) (5–7) or lacks it entirely (bulk measurement of abun-
dance, via metagenomics and transcriptomics) (8–10). Building
upon a tissue-embedding and clearing technique, the passive clar-
ity technique (PACT) (11–13), we developed MiPACT (microbial
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identification after PACT) to permit the study of diverse bacterial
pathogens residing in cystic fibrosis patient sputum. While PACT
preserves spatial and molecular information and allows for effi-
cient clearing as well as protein and transcript labeling via use of
fluorescent probes, we incorporated key modifications to ensure
(i) stabilization of amorphous sputum samples, (ii) high retention
of bacteria, and (iii) efficient labeling of bacterial rRNA via hy-
bridization chain reaction (HCR) (14, 15) and fluorescence in situ
hybridization (FISH). Though developed in the context of CF,
MiPACT-HCR can be readily applied to diverse host-microbe sys-
tems.

Patients with CF accumulate obstructive sputum plugs in their
lung airways that can harbor an array of opportunistic pathogens
(16). Sputum buildup and the resultant chronic infections lead to
severe lung damage and eventual respiratory failure (17). CF pa-
tients routinely expectorate infected sputum, which provides trac-
table samples for in situ analysis of pathogens (6, 18, 19). Until
recently, Pseudomonas aeruginosa was the most prevalent patho-
gen isolated from CF patients, and P. aeruginosa colonization is
well known to correlate with disease progression in CF (16, 20,
21). Therefore, the majority of studies addressing the biogeogra-
phy of CF have focused on P. aeruginosa. FISH analysis of thin
sections of CF lung or smears of CF sputum have revealed that
P. aeruginosa can exist both as single cells and in large clusters and
that P. aeruginosa grows more slowly in situ than in typical labo-
ratory cultures (6, 7).

While P. aeruginosa plays an important role in CF pathogenic-
ity in many patients, other microbes also colonize the CF lung and
contribute to exacerbations, or increase disease severity (16). In-
deed, culture-independent studies have revealed that individuals
harbor a distinct microbial ecosystem whose species composition
can vary over time and treatment regimens (10, 22). Though re-
cent studies have attempted to gain a perspective on the distribu-
tion of particular clone types as a function of lung geography,
these studies have been herculean, requiring microdissection, cul-
tivation, and sequencing of thousands of regional isolates (5, 19,
23). Recognizing the need to study CF pathogens in situ to gain
information relevant to the design of accurate in vitro models, we
sought a method that would permit rapid scanning of large spatial
areas at various magnifications, as well as one that would permit
microbial identification and study at the single-cell level. Here, we
describe our usage of MiPACT-HCR to study three important
attributes of diverse pathogens in CF sputum: aggregation pat-
terns, bacterium-host interactions, and growth rates.

RESULTS AND DISCUSSION

We obtained seven sputum samples (numbered 1 to 4 and 5.1, 5.2,
and 5.3) with consent from five patients at the Children’s Hospital
of Los Angeles (CHLA). Samples 1, 4, 5.2, and 5.3 were collected
during an exacerbation, while samples 2, 3, and 5.1 were collected
during outpatient well visits. Disease states varied between pa-
tients, with patients 1 and 3 having FEV1% (percent forced expi-
ratory volume in 1 s, a measure of lung function) values of 48 and
44 (moderate obstruction), respectively, while the remaining pa-
tients had FEV1% values greater than 70 (mild to normal).

When fixed in paraformaldehyde (PFA; 4%) and embedded in
A4P0 (4% acrylamide, 0% PFA), sputum completely dissolved
during clearing. To provide more structural stability, we replaced
acrylamide with 4% 29:1 acrylamide:bis-acrylamide (29A:1B)4P0,
providing additional cross-linking (Fig. 1a). Use of (29A:1B)4P0

preserved sputum integrity and allowed for clearance in SDS
(Fig. 1b). Samples took 3 to 14 days to fully clear (Fig. 1b). Because
sputum is composed largely of host-derived DNA and mucins
(24), we labeled DNA with 4=,6-diamidino-2-phenylindole
(DAPI) and mucins with rhodamine-conjugated lectin (wheat
germ agglutinin [WGA]) after clearing to obtain a structural con-
text. Imaging revealed a high degree of compositional variation
between samples (Fig. 1c). For example, sputum samples from
patients 1 and 2 were composed largely of lectin-stained mucin,
with interspersed DAPI-bright host cells. Sputum 5 was composed
almost entirely of polymorphonuclear neutrophils (PMNs), con-
sistent with findings that PMNs are a major component of CF
patient sputum (25). PMN cell boundaries were outlined by a
network of extracellular DNA (Fig. 1d), potentially a result of
neutrophil extracellular traps (NETs) (26). While intersample
heterogeneity was evident, sampling different regions of a single
sputum sample revealed that intrasample composition was rela-
tively homogenous (see Fig. S1 in the supplemental material).

We next verified that the common CF pathogens P. aeruginosa
and Staphylococcus aureus could be retained and visualized under
the same embedding and clearing conditions required for retain-
ing sputum integrity. There was no significant loss of DAPI-
stained logarithmic- or stationary-phase bacteria after clearing of
pure cultures embedded in (29A:1B)4P0 hydrogel blocks (see
Fig. S2a in the supplemental material). FISH staining with satu-
rating probe concentrations of the universal bacterial probe
EUB338 after MiPACT (see Fig. S3a in the supplemental material)
revealed that the Gram-positive microbe S. aureus required treat-
ment with lysostaphin after clearing via SDS, while the Gram-
negative P. aeruginosa did not require lysozyme treatment (see
Fig. S3b). In sputum, autofluorescence makes bacteria, particu-
larly slowly growing cells, difficult to demarcate by FISH (see
Fig. S4 in the supplemental material). Therefore, we employed
HCR, a FISH amplifying technique which has previously been
used to fluorescently label RNA in zebrafish embryos, brain tissue,
and environmental microbes (15, 27, 56). HCR entails hybridizing
target RNA with a DNA probe that triggers amplification of fluo-
rescently labeled DNA hairpins into polymer chains via a specific
initiator region (14, 15). To directly compare FISH and HCR,
FISH with a dilabeled AlexaFluor 594 EUB338 probe and HCR
with an initiator EUB338 probe and AlexaFluor 594 hairpins were
performed separately on stationary-phase cultured cells embed-
ded in (29A:1B)4P0 and cleared for 5 days. HCR increased the
average fluorescence intensity of P. aeruginosa cells by ~68-fold
and S. aureus cells by ~42-fold above levels obtained with FISH.

HCR hybridizations in sputum were optimized such that (i)
the EUB338 probe bound and nucleated hairpin polymerization,
(ii) samples did not fluoresce when incubated with both NON338,
the reverse complement of EUB338, and fluorescent hairpins, and
(iii) class/genus-specific probes did not cross-react with other rel-
evant bacteria (see Fig. S5 and S6 in the supplemental material).
The Betaproteobacteria probe BET42a, used for Achromobac-
ter xylosoxidans, had weak cross-reactivity with P. aeruginosa and
was therefore not used in P. aeruginosa culture-positive samples.
Some species-specific probes tested, including those specific for
A. xylosoxidans, were excluded due to their inability to withstand
the stringent hybridization and wash conditions necessary for
HCR specificity (see Materials and Methods). Object-based colo-
calization analysis after HCR multiplexing was performed to fur-
ther validate HCR specificity. Greater than 90% of objects (dis-
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crete HCR-identified cells or aggregates with a size of �4 voxels)
in sputum were concurrently identified by using two separate uni-
versal probes (see Fig. S6). Moreover, �90% of objects identified
by the class/genus-specific probes used in sputum colocalized with
EUB338 but not with other class/genus-specific probes (see
Fig. S6). HCR allowed multiscale visualization of bacteria; low
magnification (e.g., �10) enabled broad surveying of the sample
(Fig. 1d), and increased magnification (e.g., �25) enabled single-
cell resolution and revealed the spatial organization of bacteria
and host cells (Fig. 1d).

Once optimized for retention and identification of bacteria in
sputum, we utilized MiPACT-HCR to measure bacterial aggrega-
tion in situ. Bacterial aggregates are thought to contribute to the
persistence of pathogen populations in chronic infections, includ-
ing those in CF patients (1, 28–30), yet direct evidence for this is
sparse (6, 19, 31). We examined distribution patterns of Staphy-
lococcus sp. in sputum sample 5.1 (culture positive for S. aureus

and A. xylosoxidans) by using a Staphylococcus-specific probe. Cul-
tured bacteria were analyzed in parallel with magnification �25
sputum surveys to calibrate our expectations for the signal size of
single bacterial cells (see Fig. S7 in the supplemental material). The
mean fluorescence volume of objects in stationary-phase cultures
of S. aureus was 12.1 �m3. In sputum, Staphylococcus cells existed
in a range of intermediate aggregates, with only 6% of objects
being greater than 1,000 �m3 (see Fig. S7a). The Staphylococcus
size distribution in sputum cleared for 5 or 14 days was similar,
signifying that clearing preserves a range of bacterial aggregate
sizes (see Fig. S2b in the supplemental material). Taking advan-
tage of the large-scale surveying enabled by MiPACT, we next
acquired �10 magnification Z-stacks of sputum sample 5.1, ana-
lyzing thousands of objects in sputum volumes of ~0.1 to
0.3 mm3. Like the �25 magnification surveys, Z-stacks at �10
magnification revealed that Staphylococcus was chiefly visible as
small to medium aggregates (85% of objects ranged in size from 50

FIG 1 MiPACT-HCR allows visualization of bacteria in cleared sputum samples. (a) Cartoon depicting the process of embedding and clearing sputum for
visualization of bacteria via HCR. (b) The clearing process for sputum sample 5.1. Each grid square represents 1 mm2. (c) Blend projections of five sputum
samples after staining with DAPI (blue) and WGA (orange) from Z-stacks acquired with a 10� objective. (d) HCR with a universal bacterial probe (green;
EUB338 with B1 hairpins conjugated to AlexaFluor 647) in sputum sample 5.1. The middle panel is a maximum intensity projection acquired with a 10�
objective, and the right panel is a single-plane image acquired with a 25� objective. White arrows indicate PMNs.
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FIG 2 Aggregation patterns vary between species. (a) HCR with a Staphylococcus-specific probe in sputum sample 5.1 (green). The first panel is a maximum
intensity projection of a Z-stack after HCR and staining with DAPI (blue) and WGA (orange), acquired with a 10� objective. The second panel is a maximum
intensity projection of a separate Z-stack acquired with a 10� objective while only collecting HCR signal (Staphylococcus-specific probe mix with B4 amplifier and
AlexaFluor 488-conjugated B4 hairpins) (7,910 objects analyzed). Each object identified in the second panel’s Z-stack was binned according to proportional
object volume (each object’s fluorescent volume relative to the total fluorescent volume for that Z-stack; shown in the graph on the right). The top right panel is
a maximum intensity projection of a Z-stack acquired with a 25� objective, highlighting a representative region from the same sputum sample. (b to d) The same
analysis was applied to sputum 5.1 using a Betaproteobacteria-specific probe with B4 amplifier and AlexaFluor 488-conjugated B4 hairpin (21,255 objects
analyzed) (b), to sputum 1 with a Pseudomonas-specific probe mixture with B4 amplifier and AlexaFluor 647-conjugated B4 hairpins (9,520 objects analyzed) (c),
or a Streptococcus-specific probe mixture with AlexaFluor 488-conjugated B4 hairpins (4,603 objects analyzed) (d).

DePas et al.

4 ® mbio.asm.org September/October 2016 Volume 7 Issue 5 e00796-16

mbio.asm.org


to 1,000 �m3) (see Fig. 2a and S7a). In contrast, Betaproteobacte-
ria showed very little aggregation; 71% of objects fell in the small-
est bin (�50 �m3) (Fig. 2b; see also Fig. S7b in the supplemental
material). Because S. aureus is the most common pathogen cul-
tured from CF patients (21), we monitored aggregation in samples
from three distinct areas of sputum 5 (5.1A, 5.1B, and 5.1C) (see
Fig. S8a in the supplemental material). Also, three temporal sam-
ples from patient 5 (5.1, 5.2 [103 days after 5.1], and 5.3 [1 day
after 5.2]) and a sample from patient 4, also culture positive for
S. aureus, were analyzed. All samples demonstrated a similar pat-
tern of small- to medium-sized aggregates (see Fig. S8b). Next, we
took advantage of the straightforward multiplexing enabled by
HCR (15) to concurrently probe Betaproteobacteria and Staphy-
lococcus sp. in different regions of sputum 5.1 (see Fig. S9 in the
supplemental material). Both were present in all areas of sputum
5.1 tested, but their relative abundance differed between regions
(see Fig. S9).

The only organism for which sputum 1 was culture positive
was P. aeruginosa, and surveying at �10 and �25 magnifications
with a Pseudomonas-specific probe mixture revealed small objects
(0 to 50 �m3) and large aggregates (�1,000 �m3) (Fig. 2c; see also
Fig. S7c in the supplemental material), consistent with prior im-
aging of smears of CF sputum and thin sections of explanted CF
patient lungs (6, 19). While surveying sputum sample 1 with the
EUB338 probe, we unexpectedly found bacteria with a distinctive
filamentous morphology. Patient 1 had previously produced a
sputum sample that was culture positive for Streptococcus angino-
sus, and probing sputum 1 with a Streptococcus-specific probe
mixture revealed a dense bacterial population (Fig. 2d). The larg-
est proportion of Streptococcus signal volume (which ranged from
~10 to 300,000 �m3 at �10 magnification) came from large
(�1,000 �m3) aggregates (Fig. 2d). Streptococcus is often missed
in routine clinical culturing, highlighting the gap that is often
observed between culture-dependent and culture-independent
techniques (32, 33).

An important advantage of surveying large volumes at low
magnification is the ability to quickly identify key areas that can
benefit from higher magnification. After performing �10 surveys
in sputum, we focused on large bacterial aggregates with a 25�
objective (Fig. 3). Multiplexing of sputum 1 for both Streptococcus
and Pseudomonas revealed that aggregates were mostly monospe-
cies, with little visible interaction (Fig. 3a). Pseudomonas aggre-
gates existed in a range of sizes, with large biofilms having diam-
eters up to ~50 �m (Fig. 3b). PMNs could be seen surrounding,
and in some cases within, the biofilm structure (Fig. 3b). With
finer resolution, it became apparent that the large Streptococcus
aggregates visible at �10 had morphologies indicative of associa-
tion with an interior substrate (Fig. 3c and d). To determine the
substrate, we stained samples of sputum 1 with DAPI and WGA
after HCR with Streptococcus-specific probes. Staining revealed
that the areas inside Streptococcus aggregates were in fact host cells
with single-lobed nuclei (Fig. 3d). Each host cell boundary stained
brightly with WGA, potentially indicative of polysaccharide moi-
eties on the host cell surface (Fig. 3d and e). These results exem-
plify the ability of MiPACT-HCR to identify novel bacterium-host
interactions.

While the importance of aggregative or biofilm modes of
growth in chronic infection is well appreciated (1, 3, 4, 28–30, 34),
the role of growth rate is less so. Recent studies demonstrated slow
in situ S. aureus growth rates in CF sputum (35) and slow-growth-

specific regulation networks in P. aeruginosa (36), underscoring
the importance of careful growth measurements in situ for design-
ing in vitro models that faithfully recapitulate in vivo physiology.
Many species show a linear relationship between growth rate and
rRNA abundance (37), but a number of challenges impede the
calculation of precise growth rates in sputum from FISH data
alone: rRNA abundance can be completely decoupled from
growth rate in some species (37), at low growth rates rRNA abun-
dance ceases to linearly correlate with growth rate (7), and sputum
autofluorescence can overwhelm signals from slowly growing cells
(see Fig. S4 in the supplemental material). To address these prob-
lems, we refrained from estimating specific growth rates of indi-
vidual cells, instead opting to describe the growth rates of bacterial
populations with respect to logarithmic- and stationary-phase
standards, analyzed in parallel. We first verified that the FISH
signal of both S. aureus and A. xylosoxidans decreased in stationary
phase (see Fig. S10a in the supplemental material). We then de-
termined that FISH signal from logarithmic cells did not substan-
tially decay even after 14 days of clearing (see Fig. S10b). Lastly, we
used HCR to distinguish bacterial signals from background auto-
fluorescence and to select for the desired genus in a mixed popu-
lation. For analysis, HCR-identified objects were outlined and
EUB338 FISH fluorescence (the proxy for growth rate) within the
outlines was quantified (Fig. 4a). EUB338 was chosen as the FISH
probe due to its robustness and hybridization to a separate rRNA
locus, preventing probe competition.

The growth rate measurements described above were per-
formed on objects identified with a Staphylococcus-specific HCR
probe from portions of sputum 5.1 taken from distinct areas of the
sample (5.1A, -B, and -C, with subsamples 5.1A1, 5.1A2, etc.)
(Fig. 4a and b). We then calculated the percentage of objects that
crossed a threshold above which 90% of logarithmic-phase cul-
tured cells fell (corresponding to a doubling time of �1 h). Re-
gions 5.1A1, 5.1B1, and 5.1C1 demonstrated mostly low growth
rates, with 0%, 4.3%, and 0.2% of objects reaching signal thresh-
old (Fig. 4c). Interestingly, subsample 5.1C2 demonstrated an in-
crease in growth rate compared to its neighbors, with 20.8%, of
objects reaching threshold (no objects in 5.1A2 and 7.0% of ob-
jects in 5.1B2 reached threshold) (Fig. 4d). Temporal samples
from patient 5 (sputum samples 5.2 and 5.3) did not reach thresh-
old (Fig. 4e). Samples 4A and -B and -C, from a different S. aureus
culture-positive patient, contained slowly growing bacteria as
well, with only 2.7%, 4.1%, and 2.0% of objects, respectively,
above threshold (Fig. 4f). In order to determine if aggregate size
correlated with our proxy for growth rate, we separated S. aureus
objects (from Fig. 4c to f) into quartiles with respect to object size
and plotted against mean fluorescence intensity from FISH. Flu-
orescence intensity increased significantly with increasing object
size, signifying that larger aggregates may have experienced higher
growth rates (see Fig. S10c and d in the supplemental material).
This was possibly due to the greater susceptibility of single cells to
antibiotics (34). Interestingly, cultured, planktonic S. aureus cells
also showed a positive correlation between object size and fluores-
cence intensity (see Fig. S10e). This is consistent with previous
studies showing that RNA abundance and cell size increase with
higher growth rates (38). Further study would be needed to deter-
mine what, if any, correlation exists between aggregate size and
cell size in situ.

Lastly, as A. xylosoxidans is subject to the same in vivo condi-
tions as S. aureus in these samples, we assayed growth rates of
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FIG 3 Pseudomonas and Streptococcus biofilm structure. (a) A maximum intensity projection was generated after HCR was performed on sputum 1 with a
Pseudomonas-specific probe mixture (with B1 hairpins conjugated to AlexaFluor 647) and a Streptococcus-specific probe mixture (with B4 hairpins conjugated
to AlexaFluor 488). (b) Maximum intensity projections showing Pseudomonas aggregates from sputum 1 after HCR with a Pseudomonas probe mixture and B4
hairpins conjugated to AlexaFluor 488 and DAPI staining. (c) Blend projection of a Streptococcus biofilm from sputum 1 (HCR with Streptococcus probe mixture
with B4 hairpins conjugated to AlexaFluor 488). (d) Blend projections showing, stepwise, a Streptococcus aggregate (top; green), DAPI (blue), and WGA (orange)
staining of host cells (middle), and an overlay of the two showing the arrangement of the Streptococcus biofilm around WGA-stained host cells (bottom). (e)
Maximum intensity projection of HCR-identified Streptococcus (green), DAPI (blue), and WGA (orange) staining in sputum 1.
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FIG 4 Growth rate estimates of CF pathogens in situ. (a) Diagram showing the process of estimating growth rates in situ. Samples were first stained with a
species-specific B4 amplifier HCR probe, using B4 hairpins conjugated to AlexaFluor 488. Samples were then stained with the universal bacterial FISH probe
EUB338, conjugated to two Cy5 fluorophores. Masks were made based upon HCR signal, and fluorescence intensity from FISH was quantified within each mask.
(b) The basic sputum sampling technique. (c) For this and subsequent panels, Z-stacks of cultured cells and sputum samples were acquired with a 25� objective
in parallel. The average fluorescence intensity of the FISH channel of each object is plotted on the x axis as a histogram. The blue line denotes the bin above which
90% of the logarithmic objects fell (for each particular experimental set). Growth rate analysis was performed on three distinct regions of sputum sample 5.1:
5.1A1 (409 objects analyzed), 5.1B1 (697 objects analyzed), and 5.1C1 (575 objects analyzed) (c), and on 5.1A2 (418 objects analyzed) 5.1B2 (1,087 objects
analyzed), and 5.1C2 (419 objects analyzed) (d). (e) Analysis of temporal samples 5.2 (520 objects analyzed) and 5.3 (893 objects analyzed). (f) Analysis of three
distinct regions of sputum 4: 4A (1,067 objects analyzed), 4B (73 objects analyzed), and 4C (599 objects analyzed). (g) Analysis of Betaproteobacteria from
samples 5.1A2 (1,919 objects analyzed), 5.1B2 (2,351 objects analyzed), and 5.1C2 (1,523 objects analyzed).
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Betaproteobacteria in sputum sample 5.1. All populations were
growing slowly, with 0.1% of objects from 5.1A2, 0.5% from
5.1B2, and 0.8% from 5.1C2 reaching the threshold set by
logarithmic-phase A. xylosoxidans standards (doubling time of
�0.6 h) (Fig. 4g).

We have shown that MiPACT-HCR is effective at retaining and
visualizing bacteria in complex samples after optical clearing, and
enables the rapid survey of large volumes of these samples. In our
CF patient sputum samples, P. aeruginosa, Streptococcus sp., A. xy-
losoxidans, and S. aureus aggregation patterns varied, suggesting
that broader, species-specific cellular interaction trends occur in
vivo. Our results also reinforced that in vivo CF pathogen aggre-
gates, particularly in regards to S. aureus and A. xylosoxidans, are
considerably smaller than typical laboratory biofilms (34), an im-
portant observation when attempting to model biofilms for this
context in the laboratory. We have also demonstrated that
MiPACT-HCR, in combination with FISH, provides an accessible
method for assessing growth rates in situ. Using this strategy, we
found low growth rates for S. aureus and A. xylosoxidans, consis-
tent with the few in situ measurements existing for these CF patho-
gens (6, 7, 35). While most of the populations surveyed were slow
growers, there were pockets of relatively fast growth, illustrating
the heterogeneity in in vivo growth rates that is beginning to be
described in the literature (35). Indeed, due to concomitant ex-
pectoration of sputum plugs from different airways, and from the
gradients of nutrients and oxygen existing with various sputum
plug geometries (18), heterogeneity within the same expectorated
sample is expected. Furthermore, particular sputum environ-
ments may favor one bacterial species or another, leading to the
compositional heterogeneity that we observed in the same sputum
sample.

MiPACT provides a widely accessible technique to characterize
biogeography in situ, in three dimensions (3D) and at imaging
depths not previously practical, and has the potential to reveal the
range of microbes growing slowly in a wide variety of contexts.
Through systematic application of MiPACT and fluorescent hy-
bridization techniques such as HCR, patterns may emerge that
will lead to new insights into heterogeneous polymicrobial com-
munities, conditions conducive to promoting health (the human
microbiome), treating disease (bacterial infections), or under-
standing important ecological interactions.

MATERIALS AND METHODS
Strains and growth conditions. The following strains were used in this
study: Pseudomonas aeruginosa PA14, Staphylococcus aureus MN8, and a
clinical isolate of Achromobacter xylosoxidans generously donated by
CHLA. Strains were grown aerobically in lysogeny broth (LB) at 37°C with
shaking at 250 rpm.

Growth curves studies and embedding bacteria in acrylamide-based
hydrogel blocks. Five-milliliter cultures of S. aureus, P. aeruginosa, and
A. xylosoxidans were inoculated with single colonies from LB agar plates.
Once cultures reached late exponential phase, the cultures were diluted
1:1,000 into glass culture tubes with 10 ml of medium. The optical density
at 500 nm (OD500) or the OD600 of these cultures was tracked using a
Thermo Spectronic 20D� system during aerobic growth, with shaking, at
37°C. At intervals denoted in Fig. S10 in the supplemental material, cells
were removed from the culture, normalized to an OD500 or OD600 of 1 in
LB, and then PFA (to 2% [vol/vol]; EMS 15713) was added. Samples were
slowly rotated at 4°C overnight. The next day, after washing with
phosphate-buffered saline (PBS), fixed cells were diluted 1:10 into 4%
(vol/vol) 29:1 acrylamide:bis-acrylamide (catalog number 161-0146; Bio-
Rad) and 0.25% (wt/vol) VA-044 hardener (catalog number 27776-21-2l;

Wako) in 1� PBS for polymerization. After leaving samples open, but
covered, in an anaerobic hood for 5 min to decrease oxygen in the head-
space, blocks were polymerized in a 37°C water bath for 3 h, without
shaking, and then cut to ~1 mm3. Unless otherwise noted, blocks were
cleared for 5 days in 8% SDS and then processed for FISH as described
below. All solutions were sterilized with a 0.2-�m filter.

Sputum sample collection. Sputum samples were collected at CHLA
in accordance with study CCI-13000211, which was approved by the
CHLA IRB. Immediately upon expectoration, sputum samples were
placed into 50-ml conical tubes with 25 ml of 4% paraformaldehyde so-
lution in 1� PBS (pH 7.2). Samples were incubated for 24 h at 4°C, gently
washed 3 times in 50 ml 1� PBS (pH 7.2), and then stored in 1� PBS with
0.01% (wt/vol) sodium azide at 4°C.

MiPACT processing of sputum. For sputum samples, small sections
roughly 5 mm in diameter were removed under sterile conditions with a
scalpel and placed in a 1.5-ml culture tube. Samples were incubated over-
night in 4% (vol/vol) 29:1 acrylamide:bis-acrylamide and 0.25% (wt/vol)
VA-044 hardener in 1� PBS, made fresh and filter sterilized. After over-
night incubation, samples were moved into an anaerobic hood and left
open, but covered, for 5 min to remove headspace oxygen. Samples were
polymerized in fresh solution for 3 h at 37°C in a water bath, without
shaking. Under sterile conditions, samples were routed to a solution of 8%
SDS, pH 8.0, at 37°C, with shaking until cleared. Generally, samples took
from 3 to 14 days to fully clear (average, 5 days). After clearing, samples
were washed 3 times in 50-ml conical tubes in 1� PBS (ml volumes) to
remove SDS. Once cleared, samples were stored in 1� PBS with 0.01%
(wt/vol) sodium azide and 1� ProtectRNA RNase inhibitor (catalog
number R7397; Sigma) at 4°C. PACT has a flexible formulation with
application-specific recommendations regarding inclusion or exclusion
of PFA and bis-acrylamide (see the troubleshooting instructions of
Treweek et al. in reference 12).

Lysozyme and lysostaphin digestion. Before lysozyme/lysostaphin
treatment, samples were trimmed and sectioned with ethanol-sterilized
razor blades to ~1-mm3 blocks. All sputum and cultured cells in
acrylamide-based hydrogel blocks were incubated in 1.5-ml microcentri-
fuge tubes in 500 �l of a sterile solution of lysozyme (1 mh/ml; catalog
number L6876; Sigma) and lysostaphin (0.05 mg/ml; catalog number
L7386; Sigma) in 10 mM Tris-HCl (pH 7.6) for 3 h at 37°C with shaking.
Samples were then washed 2 times for 30 min each in 50 ml of 1� PBS.

FISH. To ensure adequate binding site saturation of our target rRNAs,
we evaluated using FISH over a range of probe concentrations, with loss of
binding site saturation occurring at around 0.008 ng/�l (1.2 nM) (see
Fig. S4 in the supplemental material). To accommodate potential sample
variability, we chose a higher concentration, 1 �g/ml (150.7 nM), for
subsequent FISH experiments. Therefore, unless otherwise noted, sam-
ples were hybridized with 1 �g/ml (150.7 nM) probe at 46°C, with shak-
ing, overnight in 15% formamide for cultured cells in acrylamide-based
hydrogel blocks or 25% formamide for sputum samples (or growth rate
standards). Each ~1-mm3 sample was incubated in 500 �l hybridization
buffer (180 �l of 5 M NaCl, 20 �l of 1 M Tris-HCl [pH 7.6], 2 �l 5%
[wt/vol] SDS, 150 or 250 �l formamide [for 15% and 25% formamide
solutions, respectively], and Milli-Q H2O to 1 ml) in a 1.5-ml culture tube.
All solutions were filter sterilized (0.2-�m filter). To remove excess probe,
cultured cells in hydrogel blocks were washed in 50 ml 337.5 mM FISH
wash buffer (3,375 �l of 5 M NaCl, 1 ml of Tris-HCl [pH 7.6], 500 �l of
0.5 M EDTA [pH 7.2], 100 �l of 5% SDS, and Milli-Q H2O to 50 ml) at
48°C for 6 h in a water bath, without shaking. Embedded sputum samples,
and also cultured cells in hydrogel blocks used as standards for sputum
experiments, were washed in 84 mM FISH wash buffer (840 �l of 5 M
NaCl, 1 ml of Tris-HCl [pH 7.6], 500 �l of 0.5 M EDTA [pH 7.2], 100 �l
of 5% SDS, and Milli-Q H2O to 50 ml) at 48°C for 6 h in a water bath,
without shaking. Samples were then incubated in 250 �l refractive index
matching solution (RIMS) (12) (40 g of HistoDenz; catalog number
D2158; Sigma) in 30 ml of 0.02 M phosphate buffer with 0.1% Tween 20
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and 0.01% sodium azide) with 10 �g/ml DAPI at room temperature (RT)
with gentle shaking, protected from light, for at least 24 h before imaging.

HCR. HCR involves a hybridization step with an unlabeled DNA
probe. This probe contains a specific sequence tag (the specific sequences
used here were termed B1, B3, and B4) that triggers the oligomerization of
pairs of fluorescently labeled DNA hairpins (the amplification step; for
more details, see Choi et al. [15]).

(i) Hybridization. Samples were hybridized in 500 �l of HCR hybrid-
ization buffer (100 �l of 20� sodium chloride-sodium citrate [SSC],
100 mg dextran sulfate [catalog number D6001; Sigma], 200 �l forma-
mide [for a 20% formamide solution] or 250 �l formamide [for a 25%
formamide solution], and Milli-Q H2O to 1 ml) with 30 nM initiator
probe at 46°C, with shaking, for 24 or 48 h. For EUB338, NON338, and
STA3 probes, 25% formamide buffer was used. For the Streptococcus
probe mixture (Str and Str56 probes, each at 20 nM), the Pseudomonas
probe mixture (PseaerA, PseaerB, Pae997, and PSE227; each at 20 nM),
and for BET42a, 20% formamide was used. All solutions were filter ster-
ilized. Excess probe was removed by washing each sample in 50 ml of
42 mM FISH wash buffer (420 �l of 5 M NaCl, 1 ml of Tris-HCl [pH 7.6],
500 �l of 0.5 M EDTA [pH 7.2], 100 �l of 5% SDS, and Milli-Q H2O to
50 ml) at 52°C for 6 h in a water bath, without shaking. For sputum
samples from patients 4 and 5, samples were hybridized for 48 h. For
sputum samples from patient 1, samples were hybridized for 24 h.

(ii) Amplification. Before amplification, hairpin pairs were heated to
95°C for 1.5 min in a thermocycler in separate PCR tubes. Hairpins were
then cooled at room temperature (RT) for at least 30 min while protected
from light. Each hairpin in a pair was added at 1:25 from a 3 �M stock to
a final concentration of 120 nM in HCR amplification buffer (100 �l 20�
SSC, 100 mg dextran sulfate, and Milli-Q H2O to 1 ml) for acrylamide-
based hydrogel blocks and sputum 1, or at 1:12.5 to a final concentration
of 240 nM for sputum from patients 5 and 4. A 120-�l volume of ampli-
fication buffer with the appropriate hairpin mixture was then added to
each sample in a 1.5-ml centrifuge tube. Samples were incubated at RT
with gentle shaking for 48 h. For sputum samples from patients 4 and 5,
samples were amplified for 48 h. For sputum samples from patient 1,
samples were amplified for 24 h. After amplification, samples were washed
in 50 ml of 337.5 mM FISH wash buffer at 48°C for 3 h in a water bath,
without shaking. Samples were then incubated in 250 �l RIMS with
10 �g/ml DAPI (1:1,000 from 10-mg/ml stock solutions in dimethyl sul-
foxide) at RT with gentle shaking for at least 24 h before imaging.

FISH probes were dilabeled with the indicated fluorophores, with one
fluorophore at the 5= end and one at the 3= end. Three HCR initiator/hairpin
systems were used in this study: B1, B3, and B4. For B1 initiator probes, the
sequence 5=-TATAGCATTCTTTCTTGAGGAGGGCAGCAAACGGGAAG
AG-3=was added to the 3= end of the indicated DNA probe. For B3 initiator
probes, 5=-TAAAAAAGTCTAATCCGTCCCTGCCTCTATATCTCCACT
C-3=was added to the 3= end of the indicated DNA probe.

For B4 initiator probes, 5=-ATTTCACATTTACAGACCTCAACCTA
CCTCCAACTCTCAC-3= was added to the 3= end of the indicated DNA
probes. DNA hairpins conjugated to either AlexaFluor 488, AlexaFluor
594, or AlexaFluor 647, as indicated, were used with the appropriate ini-
tiator probe sets. Hairpins conjugated to fluorophores were purchased
from Molecular Instruments.

Lectin staining. When indicated, lectin staining was performed im-
mediately before incubation in RIMS/DAPI. WGA conjugated to rhoda-
mine (vector RL-1022) was used for lectin staining. Samples were incu-
bated in 1 ml of 50 �g/ml WGA in 1� PBS at RT, with shaking, for 24 h.
They were then washed for another 24 h at RT, with shaking, in 1 ml of 1�
PBS before incubation in RIMS/DAPI.

Imaging. Prior to imaging, samples were incubated at RT overnight,
with shaking, in RIMS with 1 �g/ml DAPI. Samples were then mounted
on slides in 0.9 mm or 1.7 mm CoverWell perfusion chambers (Electron
Microscopy Services) with a coverslip on the top. Imaging was performed
using a Zeiss LSM 780 confocal microscope or a Zeiss LSM 880 confocal
microscope with either a Plan-Apochromat 10�/0.45-numerical aperture

M27 objective (working distance [wd], 2.0 mm) or an LD LCI Plan-
Apochromat 25�/0.8-numerical aperture Imm Corr DIC M27 multi-
immersion objective (wd, 0.57 mm), using glycerol as the immersion
fluid. All images and Z-stacks were collected in 12-bit mode, with at least
a 1,024-by-1,024 scan format and a line averaging of 2. Image reconstruc-
tions were made with Imaris imaging software (Bitplane) or the FIJI dis-
tribution of ImageJ (39, 40). Image analysis was chiefly performed using
the 3D object counter plug-in (41) in FIJI to identify and quantify fluo-
rescently labeled objects. The R package was used to make box plots and
for t test analysis (42).

Aggregation analysis. Aggregation measurements were performed
from HCR-stained samples using probes listed in Table 1 (probes that did
not withstand the HCR wash step are also shown). Laser power and gain
settings were adjusted for each sample so that the brightest objects were
just below saturation. For image analysis, the 3D object counter from
ImageJ was utilized to record the fluorescence volume of each object.
Objects were then binned according to volume. The fluorescence volume
of each object in a given bin was summed, and each bin sum was divided
by the total fluorescent volume of the entire Z-stack to obtain a propor-
tional volume value for each bin.

Growth rate analysis. For growth rate measurements, HCR was per-
formed on sputum samples and, in parallel, on logarithmic or stationary-
phase bacteria (of the appropriate species) embedded in acrylamide-based
hydrogel blocks that had been cleared for 5 days (unless otherwise noted).
All HCR for growth rate measurements was performed with hairpins con-
jugated to Alexafluor488. After the typical HCR hairpin wash, all samples
were hybridized with EUB338 di-labeled with CY5 in 25% formamide for
24 h. Samples were then washed in 84 mM FISH wash buffer for 3 h at
48°C in a water bath with no shaking. Samples were incubated with RIMS/
DAPI for at least 24 h at RT with gentle shaking before imaging. During
image acquisition, laser power and gain settings were adjusted for each
sample in the HCR channel (Alexafluor488) so that the brightest objects
were just below saturation. Laser power and gain settings for the FISH chan-
nel (CY5) were adjusted for so that the brightest objects in logarithmic phase
culture standards were just below saturation. Once adjusted for logarithmic
standards, the FISH settings were kept constant for the stationary-phase stan-
dard and for all sputum samples. For image analysis, the 3D object counter
from ImageJ was used to perform segmentation from the HCR channel. The
redirect option was used to measure fluorescence of each HCR-identified
object in the FISH channel. The threshold and minimum size settings in 3D
object counter were kept constant for all samples in a set. Objects were binned
by average fluorescence intensity, and then the relative frequency of each bin

TABLE 1 DNA probes used in this study

Probe (reference), description Sequence (5=–3=)
Probes used successfully

EUB338 (43), universal GCTGCCTCCCGTAGGAGT
NON338 (44), reverse complement of

EUB338
ACTCCTACGGGAGGCAGC

PseaerA (45), for Pseudomonas GGTAACCGTCCCCCTTGC
PseaerB (45), for Pseudomonas TCTCGGCCTTGAAACCCC
Pae997 (46), for Pseudomonas TCTGGAAAGTTCTCAGCA
PSE227 (47), for Pseudomonas AATCCGACCTAGGCTCATC
Str (48), for Streptococcus CACTCTCCCCTTCTGCAC
Str56 (49), for Streptococcus ATCCTGCGTTCTACTTGC
BET42a (50), for Betaproteobacteria GCCTTCCCACTTCGTTT
STA3 (51), for Staphylococcus GCACATCAGCGTCAGT
Universal 515 (52) CGTATTACCGCGGCTGCT

GGCAC
Probes that did not withstand HCR

wash conditions
Ppu646 (53), for Pseudomonas CTACCGTACTCTAGCTTG
Staaur-16S69 (54), for Staphylococcus GAAGCAAGCTTCTCGTCCG
Ach-221 (55), for A. xylosoxidans CGCTCYAATAGTGCAAGGTC
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was calculated by dividing the number of objects in each bin by the total
number of objects for each sample. Histograms were then created from the
relative frequency of each bin.

Colocalization analysis. For colocalization analysis, HCR was per-
formed on sputum samples with two separate probes and two corresponding
hairpin sets, one conjugated to AlexaFluor488 and one conjugated to Alex-
afluor647. Z-stacks were obtained with a 25� objective. The 3D object coun-
ter plug-in was used for each channel to obtain threshold images and identify
objects with a minimum size of 5 voxels. The two binary Z-stacks (one from
each channel) were multiplied together, and objects in the product Z-stack
(with a size of at least 3 voxels) were counted with a 3D object counter. The
number of objects in the product Z-stack was divided by the number of ob-
jects in each original Z-stack to yield the percent colocalization.
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