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Non-alcoholic fatty liver disease (NAFLD) is an increasing problem worldwide and is 
associated with negative outcomes such as cirrhosis, hepatocellular carcinoma, insulin 
resistance, diabetes, and cardiovascular events. Current evidence shows that the 
immune response has an important participation driving the initiation, maintenance, and 
progression of the disease. So, various immune imbalances, from cellular to cytokines 
levels, have been studied, either for better compression of the disease pathophysiology 
or as biomarkers for severity assessment and outcome prediction. In this article, 
we performed a thorough review of studies that evaluated the role of inflammatory/
immune imbalances in the NAFLD. At the cellular level, we gave special focus on the 
imbalance between neutrophils and lymphocytes counts (the neutrophil-to-lymphocyte 
ratio), and that which occurs between T helper 17 (Th17) and regulatory T cells as 
emerging biomarkers. By extension, we reviewed the reflection of these imbalances 
at the molecular level through pro-inflammatory cytokines including those involved in 
Th17 differentiation (IL-6, IL-21, IL-23, and transforming growth factor-beta), and those 
released by Th17 cells (IL-17A, IL-17F, IL-21, and IL-22). We gave particular attention 
to the role of IL-17, either produced by Th17 cells or neutrophils, in fibrogenesis and 
steatohepatitis. Finally, we reviewed the potential of these pathways as new therapeutic 
targets in NAFLD.

Keywords: non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, neutrophil-to-lymphocyte ratio, Th17 
cells, Treg cells, interleukin-17

iNTRODUCTiON

Non-alcoholic fatty liver disease (NAFLD) is a health problem with increasing prevalence worldwide 
(1, 2), mainly due to the increased rates of obesity and type 2 diabetes (3, 4), with increasingly 
installation at an early age (4, 5). The prevalence of NAFLD in the general adult population is around 
25.24% (6), reaching 67.5 and 74% among those with obesity or diabetes, respectively (7), with 
10–12.2% of them having subclinical hepatic inflammation, known as non-alcoholic steatohepatitis 
(NASH), and/or fibrosis (8). NAFLD is associated with significant morbidity and mortality, increas-
ing the risk of cirrhosis, hepatocellular carcinoma (HCC), insulin resistance, metabolic syndrome, 
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diabetes, cardiovascular events, and cardiovascular and liver 
disease mortality (2, 9–13), being, therefore, recognized as a 
multisystem disease (14).

Recent investigations have highlighted the function of the 
immune response as a driver in the initiation, maintenance, 
and progression of NAFLD (15–17). General inflammatory/
immunity biomarkers, as C-reactive protein (CRP), interleu-
kins, have been associated with the occurrence and prognosis 
of NAFLD, including the link to vascular events (15, 18–21). 
In the cellular level, various immune imbalances have also 
emerged as biomarkers in NAFLD, from those in general white 
blood cells such as neutrophil-to-lymphocyte ratio (NLR), to 
specific lymphocytes subsets (22–24). The NLR expresses an 
imbalance in leukocytes with the dominance of neutrophils 
over lymphocytes and has been increasingly recognized as a 
predictor of outcomes in NAFLD (25), a role also shown in 
other chronic liver diseases such as viral hepatitis, liver cir-
rhosis, and HCC (26–28). Another described cellular imbalance 
is what occurs at the CD4+ cells level with the dominance of 
T helper 17 (Th17) subset over the regulatory T (Treg) cells, 
which results from the polarization of the differentiation of 
T helper cells, also present in NAFLD and other chronic liver 
diseases (24, 29–32). The functional equilibrium between Th17 
and Treg in peripheral blood is an important element to ensure 
the equilibrium between the defense and the autoimmunity; 
and there is an interplay and plasticity between these cells 
and their subsets, with cellular polarizations and different 
cytokine profiles in the presence of different stimuli (33–36). 
The cellular imbalances reflect at the molecular level through 
pro-inflammatory cytokines including those involved in Th17 
differentiation [IL-6, IL-21, IL-23, and transforming growth 
factor-beta (TGF-β)] (33, 37–39), and those released by Th17 
cells (IL-17A, IL-17F, IL-21, and IL-22) (29, 40–42).

In this article, we performed a thorough review of studies 
that evaluated the role of inflammatory/immune imbalances in 
the pathophysiology and outcome prediction in NAFLD. We 
focused the neutrophil/lymphocyte and Th17/Treg imbalances 
as emerging biomarkers at the cellular level; its reflection at 
the molecular level through pro-inflammatory cytokines with 
particular attention to the role of IL-17, either produced by Th17 
cells or neutrophils, in fibrogenesis and steatohepatitis. Finally, 
we reviewed the potential of these pathways as new therapeutic 
targets in NAFLD.

AN OveRview OF THe PReDiCTive 
ROLe OF GeNeRAL iNFLAMMATORY 
BiOMARKeRS iN NAFLD

Several inflammatory markers such as CRP and cytokines have 
been associated with NAFLD (15, 16, 20, 43). In a study with 
individuals without obesity, the presence of hs-CRP, with or 
without insulin resistance, was associated with higher prevalence 
of NAFLD, with a significant risk increase as increased the value 
of hs-CRP [odds ratio (OR) de 1.37; 95% confidence interval 
(CI): 1.06–1.77] for each 1 SD above (1.48 mg/L) (16). In another 
study, a positive association between the degree of steatosis and 

hs-CRP was observed (P  <  0.05) after adjusting for BMI (44). 
Additionally, an elevated CRP is a predictor of disease progres-
sion and severity, as shown that hs-CRP was significantly higher 
in cases of NASH than in simple steatosis (19, 45); furthermore, 
among patients with NASH, hs-CRP was significantly elevated 
in those with advanced fibrosis compared with those with mild, 
even after adjustment for confounders (19).

Other inflammatory biomarkers associated with NAFLD and 
its progression are cytokines. The expression of interleukin-6 
(IL-6) is markedly increased in the liver cells of patients with 
simple steatosis (P  <  0.005) or NASH (P  <  0.010) compared 
to normal subjects (46). IL-6 expressed in hepatocytes, and 
its level in the blood, correlates positively with the degree of 
liver inflammation, and fibrosis (46). Another key cytokine in 
NAFLD is interleukin-17 (IL-17) (41). The activation of the 
IL-17 axis has shown to have a central role in the progression 
from NAFLD to NASH in experimental studies (15, 24, 41, 42). 
The role of IL-17 family cytokines will be discussed further 
elsewhere in this paper. Similarly, TGF-β, a cytokine known by 
its fibrotic effect in many organs is involved in the progression 
of NAFLD (47, 48). In a study that evaluated the gene expres-
sion of this cytokine in NAFLD, there was a marked increase 
in TGF-β1 gene expression in patients with NASH compared 
with simple steatosis (P = 0.0002) (49). In another study with 
1,322 healthy subjects without other risk factors, serum TGF-β3 
levels was significantly higher in those who developed NAFLD 
than in those who did not (mean 554 vs. 285 pg/ml; P = 0.002) 
after 4 years of follow-up; and as the TGF-β3 tertiles increased, 
there was a significant increase in NAFLD incidence (6.3, 38.0, 
and 55.7% for the first, second, and third tertiles, respectively; 
P < 0.05) (50).

The inflammatory response seems to be an important media-
tor of many NAFLD-associated outcomes such as the HCC by 
creating an inflammatory microenvironment (28, 51), cardio-
vascular disease by promoting atherogenesis (52, 53). Table  1 
summarizes the clinical studies that have assessed the role of 
general inflammatory biomarkers and cytokines to predict 
outcomes in NAFLD.

THe ROLe OF CeLLULAR iMMUNe 
iMBALANCeS iN NAFLD

In the last 5  years, many cellular imbalances in the immune 
response have been associated with NAFLD and its prognosis 
(23, 25), which have brought a cellular background to what 
was  observed through pro-inflammatory cytokines. These 
cellular imbalances range from the simple increase in the total 
count of leukocytes (23) to specific lymphocytes subpopula-
tions (25). This was remarkable in a study with 3,681 healthy 
subjects in which, as increased the WBC count quartile above 
the lowest, there was a significant increase in NAFLD risk in 
both men [OR (95% CIs): 1.48 (1.10–1.98), 1.59 (1.18–2.14), 
and 1.84 (1.35–2.51) for the second, third, and fourth quartiles, 
respectively]; and women [OR (95% CIs): 1.15 (0.67–1.96) 1.88 
(1.13–3.11), and 2.74 (1.68–4.46) for the second, third, and 
fourth quartiles, respectively] (23). Among these imbalances, 
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TABLe 1 | Clinical studies that have assessed the role of general inflammatory biomarkers and cytokines to predict outcomes in NAFLD.

Reference Biomarker Number of patients Results

Park et al. (16) CRP 120 non-obese patients 
with NAFLD and 240 
matched controls

Multivariate analysis showed that CRP (OR = 1.37; 95% CI 1.06–1.77 per 1 SD increase) and 
HOMA-IR [OR = 2.28; 95% CI: 1.67–3.11, per 1 SD (0.63)] were independent risk factors for 
NAFLD in non-obese patients

Yoneda et al. 
(19)

Hs-CRP and 
CRP mRNA

100 patients with NAFLD 
(29 with steatosis and 71 
with NASH)

Patients with NASH had significantly elevated serum hs-CRP (P < 0.0048) and increased 
intrahepatic expression of the CRP mRNA (P = 0.0228) than those with simple steatosis. In 
addition, patients with advanced fibrosis stages (F3–4) had a significantly higher serum hs-CRP 
than those with mild (F1–2) (P < 0.0384), even after adjustment for confounders

Oruc et al. (54) CRP 50 NAFLD cases and 50 
healthy controls

Serum CRP levels were significantly higher in simple steatosis and NASH groups compared to 
healthy controls (mean: 7.5 and 5.2 vs. 2.9 mg/dl, respectively, P < 0.01)

Riquelme et al. 
(18)

Hs-CRP 832 Hispanic subjects 
who underwent abdominal 
ultrasound

The prevalence of NAFLD was 23%. A high hs-CRP (>0.86 mg/L) was associated with NAFLD in 
multivariate analysis (OR 2.9; 95% CI 1.6–5.2); as was a high body mass index, abnormal aspartate 
aminotransferase, and insulin resistance

Zimmermann 
et al. (44)

Hs-CRP 627 obese adults A positive association between degree of steatosis and hs-CRP was observed (P < 0.05), and this 
effect remained significant after adjusting for BMI, lobular inflammation, hepatocyte ballooning, and 
fibrosis

Wang et al. 
(55)

Hs-CRP 8,618 initially NAFLD-free 
Chinese subjects who 
underwent annual health 
screen

The hs-CRP level was independently associated with NAFLD. The incidence ratio of NAFLD 
increased significantly with increasing hs-CRP quartiles either in man (21.1, 18.6, 24.8, and 31.1% 
for the first, second, third, and fourth quartiles, respectively), and in females (6.2, 6, 11.4, and 
19.5% for the first, second, third, and fourth quartiles, respectively). The association was stronger in 
females than in males

Cayón et al. 
(49)

TGF-β1 and 
leptin systems

90 subjects with NAFLD 
(55 with NASH and 35 with 
simple steatosis)

There was a marked increase in intrahepatic gene expression of TGF-β1 (P = 0.0002), leptin 
receptor mRNA (P = 0.0016), and its protein (P < 0.05) in patients with NASH. A strong correlation 
was shown between leptin receptor gene expression and TGF-β1 gene expression (P = 0.023)

Wei et al. (50) TGF-β3 1,322 healthy subjects 
without other risk factors, 
followed during 4 years

After 4 years of follow-up, the cumulative incidence of NAFLD was 25.3% (334/1,322). Those who 
developed NAFLD had higher serum TGF-β3 levels than those who did not (mean 554 vs. 285 pg/
ml; P < 0.002); and the incidence increased significantly with increasing TGF-β3 tertiles (6.3, 38.0, 
and 55.7%, for the first, second, and third tertiles, respectively; P < 0.05)

Wieckowska 
et al. (46)

IL-6 and IL-6 
mRNA

50 patients with suspected 
NAFLD

IL-6 mRNA expression was markedly increased in the livers of patients with NASH than in those 
with simple steatosis (P < 0.005) or normal biopsies (P < 0.010). There was a positive correlation 
between hepatocyte IL-6 mRNA expression and degree of inflammation, stage of fibrosis, plasma 
IL-6 levels, and degree of systemic insulin resistance

Bahcecioglu 
et al. (56)

TNF-α and IL-8 42 patients (28 with NASH 
and 14 with cirrhosis) and 
15 healthy controls

Serum TNF-α levels were significantly higher in patients with NASH and cirrhosis than in healthy 
controls (P < 0.05). Serum IL-8 levels in patients with NASH (P < 0.001) and cirrhosis (P < 0.05) 
were significantly higher than in the healthy control group

Coulon et al. 
(43)

TNF-α, IL-6, 
and TNF-α 
mRNA

92 subjects (30 obese with 
steatosis, 32 with NASH, 
and 30 healthy controls)

In comparison with controls, serum IL-6 was significantly high both in simple steatosis (mean 
2.863 vs. 1.224 pg/ml; P < 0.001) and NASH patients (mean 3.136 vs. 1.224 pg/ml; P < 0.001), 
whereas serum TNF-α elevation was only significant in NASH group (mean 1.803 vs. 1.405 pg/ml; 
P = 0.026). Patients with NASH had a significantly higher expression of TNF-α mRNA in liver tissue 
than those with simple steatosis

Seo et al. (57) TNF-α 363 apparently healthy 
subjects

At 4 years of follow-up, the cumulative incidence of NAFLD was 29.2% (106/363). Those who 
developed NAFLD had higher serum TNF-α levels than those who did not (mean 3.65 vs. 3.15 pg/
ml; P < 0.01). The incidence of NAFLD increased significantly with increasing TNF-α tertiles 
(22.6, 35.8, and 41.5%, for the first, second, and third tertiles, respectively; P < 0.05). The risk of 
developing NAFLD was significantly higher in the highest tertile of TNF-α than in the lowest (OR, 
2.20; P < 0.05)

Paredes-
Turrubiarte 
et al. (58)

TNF-α and 
IL-10

102 morbidly obese Patients with NAFLD showed increased TNF-α than those with morbidly obese subjects but 
without NAFLD (mean 37.41 vs.31.41 pg/ml, P < 0.046). Serum levels of IL-10, in contrast, were 
decreased in NAFLD (mean 61.05 vs. 76.40 pg/ml, P < 0.002), which suggests an imbalance 
between the pro-inflammatory and anti-inflammatory cytokines

Tang et al. (29) IL-17, IL-21, 
and IL-23

58 human liver specimens 
(14 with NASH and 40 
controlsb)a

There was a significant increase of IL-17(+) cells infiltrating the liver of NASH patient and increased 
gene expression of Th17 cell-related cytokines (IL-17, IL-21, and IL-23). Hepatic Th17 cells and 
IL-17 were associated with steatosis and pro-inflammatory response in NAFLD and facilitated the 
transition from simple steatosis to steatohepatitis

Okumura et al. 
(59)

LECT2 231 Japanese adult tested 
for LECT2

Serum LECT2 was significantly high in patients with fatty liver than in those without (mean 48.7 vs. 
140.5 ng/ml; P < 0.001)

HOMA-IR, homeostasis model assessment-insulin resistance; IL-10, interleukin-10; IL-17, interleukin-17; IL-21, interleukin-21; IL-23, interleukin-23; IL-6, interleukin-6; mRNA, 
messenger RNA; NASH, non-alcoholic steatohepatitis; LECT2, leukocyte cell-derived chemotaxin 2; TNF-α, tumor necrosis factor-alpha.
aThe study included animal experiments.
bControl specimens obtained from the liver tissues besides resected hemangiomas.
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we highlight that which occurs at the level of T helper cellular 
subsets (Th17/Treg imbalance), and that between neutrophils 
and lymphocytes counts (expressed by NLR).

The Th17/Treg imbalance
An important cellular imbalance that has emerged as a cellular 
background in the role of the inflammatory response in NAFLD 
is the Th17/Treg imbalance. In a study with 94 subjects (30 with 
NASH, 31 with NAFLD, and 43 healthy controls), patients with 
NASH (and in less degree with steatosis) had a lower frequency 
of T regulatory cells in peripheral blood, in comparison with con-
trols (30). In addition, the progression from steatosis to NASH 
was marked by a higher frequency of Th17 cells in the liver and 
an increased Th17/resting T regulatory cell ratio in the liver and 
in peripheral blood (30).

In experimental models, liver infiltration by Th17 cells 
showed to be a critical element for NASH initiation and 
development of fibrosis in wild-type mice, and this infiltration 
was accompanied by an increase in the production of pro-
inflammatory cytokines (IL-6, TNF-α, and TGF-β) (42). In 
another study using mice fed with high-fat diet (HFD), there 
was a significant increase of Th17 cells in the liver (P < 0.02) 
and the abdominal adipose tissue (AAT) (P < 0.01), without a 
concurrent increase of Treg (60). NASH and metabolic altera-
tions occurred in mice-fed HFD, and Th17 cells (either AAT 
or liver-derived) positively correlated with NASH (60). Other 
studies have shown in parallel that the reduction, dysfunction, 
or disproportionate number of Treg cells contributes to the 
progression to NASH because Treg cells play a critical role 
in regulating the inflammatory processes in the liver (24, 29, 
30). This cellular imbalance is accompanied by the activation 
of the IL-17 axis, and an increase of other pro-inflammatory 
cytokines such as IL-6, and TNF-α (42, 58); and its value has 
been highlighted by the demonstration that therapies targeted 
to reverse this imbalance have shown the potential to alleviate 
steatosis and the progression to NASH (32, 61, 62).

Lymphocytes Site-Specific Source
An important element to consider is the site specificity of lym-
phocytes in NAFLD, as shown in an experimental study where it 
was observed that the cells infiltrating the liver were labeled lym-
phocytes that migrated predominantly from mesenteric lymph 
nodes (MLN) than from spleen, bone marrow, or thymus (63), 
suggesting that the gut is the primary source of cellular elements 
involved in NAFLD pathogenesis, which is in turn affected by the 
microbiota (64, 65).

Neutrophil-to-Lymphocyte Ratio as a 
Cellular Biomarker in NAFLD
Neutrophil-to-lymphocyte ratio is a derivative biomarker obtained 
from the absolute counts of neutrophils and lymphocytes. NLR 
is a cellular imbalance (with the dominance of neutrophils 
over the lymphocytes) that has been found to be related to a 
lot of diseases that share the chronic inflammatory response as 
critical in pathogenesis, such as cancer and cardiovascular dis-
eases (66, 67). In a nationally representative American sample, 
including 9,427 subjects, the average NLR was 2.15 in the general 

population, and values above these were found in those with 
chronic inflammatory states including cardiovascular diseases 
and diabetes (68). The potential of NLR as a biomarker has also 
been shown in liver diseases, which reflects the pathologic effects 
of the dominance of activated neutrophils, an important effector 
cell of the innate immunity, in diseases of this organ (69, 70).

NLR and NAFLD Severity
In NAFLD, the NLR is associated with high disease severity, 
as found in a study with 101 patients where NASH patients 
had higher NLR compared with those without (mean 2.5 vs. 
1.6, P < 0.001) (25). NLR showed a good correlation with the 
NAFLD activity score and its individual components (steatosis, 
inflammation, and ballooning P < 0.001), and advanced fibrosis 
stages (F3–4) compared with lower stages (F1–2) (median 
2.9 vs. 1.8, respectively, P  <  0.001) (25). In another study 
including 873 patients with biopsy-proven NAFLD (and 150 
healthy controls), NLR was higher in NASH patients than in 
non-NASH cases (mean 2.6 vs. 1.9, respectively, P  <  0.001); 
and similarly, patients with advanced fibrosis stages (F3–4) had 
a higher NLR compared with those in early (F1–2) (mean 2.5 
vs.1.8, respectively, P  <  0.001) (71). In study comparing the 
role of this biomarker in three liver diseases (NASH, HBV, 
and HCV hepatitis), NLR was significantly higher in NASH 
patients compared to HBV, and HCV, or controls (P <  0.001, 
P < 0.001, and P < 0.001, respectively) (22), suggesting a higher 
contribution of this imbalance in NASH than in other chronic 
liver diseases.

NLR and NAFLD Prognostisis
Besides being a marker of disease severity, NLR is also a predic-
tor of mortality (72). In a study including 570 patients with 
end-stage cirrhosis (including 54 due to NAFLD) listed for liver 
transplantation, NLR ≥ 5 was associated with higher 3-month 
mortality (OR 6.02, P < 0.043); and as increased NLR, there was 
a significant increase in proportion of patients who died within 
3  months of listing (3, 13.8, and 37.3%, for NLR  <  2, 2–4.9, 
and ≥5, respectively, P  <  0.001) (72). NLR is also a predictor 
of higher NAFLD score, advanced fibrosis, and severe ascites 
(25, 71, 72).

NLR in NAFLD-Associated Conditions
The role of NLR seems to begin long before and extend beyond 
the NAFLD. This is evident because subjects with obesity and 
diabetes, which are the main risk factors for NAFLD, show higher 
average NLR in relation to controls (68, 73), and among patients 
with morbid obesity, the mean NLR values were significantly 
higher in those who developed type 2 diabetes (T2DM) than 
those who did not (mean 4.11 vs. 3.46, P < 0.001) (73), showing 
that a higher inflammatory states precedes both (NAFLD and 
T2DM) obesity-related outcomes.

A high NLR remains an independent predictor of poorer 
outcome even in those that evolved to terminal stages of 
chronic liver disease – cirrhosis and/or HCC (27, 74, 75). In the 
 evolution of patients with HCC undergoing radiofrequency 
ablation, or surgical resection, a high NLR predicted poor 
outcomes with higher recurrence and mortality rates (74–77) 
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TABLe 2 | Clinical studies on the value of cellular immune imbalances as drivers and predictors of outcomes in NAFLD.

Reference Cellular 
biomarker

Number of patients Results

Lee et al. 
(23)

WBC 3,681 healthy subjects who 
underwent medical checkup

The risk of NAFLD increased significantly as WBC increased. Compared with the lowest WBC 
count quartile, the respective ORs (95% CIs) for the second, third, and fourth quartiles were 
1.48 (1.10–1.98), 1.59 (1.18–2.14), and 1.84 (1.35–2.51) for men; and 1.15 (0.67–1.96), 1.88 
(1.13–3.11), and 2.74 (1.68–4.46) for women

Wang et al. 
(83)

WBC count 15,201 participants without NAFLD 
who underwent health checkups 
between 2005 and 2011

There were 3,376 new cases of NAFLD, and WBC count was a predictor of its incidence. 
Compared with the lowest WBC quartile (Q1), the HRs (95% CIs) were 1.09 (0.97–1.21), 1.17 
(1.05–1.30), and 1.15 (1.03–1.28) for Q2, Q3, and Q4 quartiles, respectively, after adjusting for 
potential confounders

Alkhouri 
et al. (25)

NLR 101 patients with suspected 
NAFLD who underwent liver biopsy

Patients with NASH had a higher NLR than those without (median 2.5 vs. 1.6, P < 0.001). 
The NLR correlated with the NAFLD activity score and its individual components (steatosis, 
inflammation, and ballooning P < 0.001). Patients with advanced fibrosis (F3–4) had higher NLR 
than those in lower fibrosis stages (F1–2) (mean 2.9 vs. 1.8, P < 0.001). Each one-unit increase 
in NLR increased by 70 and 50% the likelihood of having NASH and fibrosis, respectively

Shahawy 
et al. (84)

NLR 90 subjects (30 with NASH, 30 
with simple steatosis, and 30 
healthy control)

NLR levels were significantly higher in NASH and simple steatosis groups compared to healthy 
controls (mean: 2.19, 1.55, and 1.19, respectively, P < 0.001)

Leithead 
et al. (72)

NLR 570 patients with end-stage 
cirrhosis (54 due to NAFLD) listed 
for liver transplantation

After adjusting for MELD, NLR ≥ 5 was associated with higher 3-month mortality (OR 6.02, 
P = 0.043). The proportion of patients who died by 3 months of listing was 3, 13.8, and 37.3% 
for NLR < 2, 2–4.9, and ≥5, respectively, P < 0.001. The listing NLR increased with increasing 
severity of ascites (median: 2.2, 3.1, and 4.6, for no ascites, controlled ascites, and refractory 
ascites, respectively, P < 0.001). NLR had positive correlation with listing serum bilirubin 
(r = 0.277, P < 0.001), listing INR (r = 0.156, P < 0.001), MELD score (r = 0.297, P < 0.001), 
and negative correlation with serum albumin (r = −0.090, P = 0.033), and serum sodium 
(r = −0.453, P < 0.001)

Yilmaz et al. 
(22)

NLR 102 patients (38 with NASH, 19 
with HCV, and 45 with HBV) and 
35 healthy controls

NLR was significantly higher in NASH patients compared to controls, HBV, and HCV patients 
(P < 0.001, P < 0.001, and P < 0.001, respectively); and was positively associated with 
NAFLD activity scores (r = 0.861, P < 0.001), liver fibrosis (β = 0.631, P < 0.001), and NASH 
(β = 0.753, P < 0.001)

Abdel-Razik 
et al. (71)

NLR 873 patients with biopsy-proven 
NAFLD (120 with NASH and 753 
with simple steatosis) and 150 
healthy controls

Patients with NASH had higher NLR than those without (mean: 2.6 vs. 1.9, respectively, 
P < 0.001). The NLR correlated positively with NAFLD activity score, pro-inflammatory 
cytokines, and CRP (P < 0.001). In addition, patients with advanced fibrosis stages (F3–4) had 
a higher NLR than those with mild (F1–2) (mean 2.5 vs.1.8, respectively, P < 0.001); with the 
highest specificity (79.2%) and sensitivity (69.4%) for identification of advanced fibrosis at NLR 
cutoff of 2.4 (AUC = 0.732, P < 0.001)

Rau et al. 
(30)

Th17 and the  
T regulatory 
cells

51 patients [30 with NASH and 31 
with NAFLD (without histology)] 
and 43 healthy controls

Patients with NASH (and in less degree with steatosis) had a lower frequency of T regulatory 
cells in their peripheral blood, in comparison with controls. Progression from steatosis to NASH 
was marked by a higher frequency of Th17 cells in the liver, and an increased Th17/resting Treg 
ratio in the liver and in peripheral blood

NLR, neutrophil-to-lymphocyte ratio; WBC, white blood cell.
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and poor overall survival even after a curative liver resection 
(76). And even in those undergoing liver transplantation, a 
high NLR was associated with poorer overall and recurrence-
free survival (78).

Neutrophils as Important Source of IL-17 in Liver 
Diseases
Recent investigations have found that neutrophils are themselves 
an important source of IL-17 in the human liver, especially in 
late fibrosis stages (56, 70). Therefore, these researches come to 
bring a pathophysiological background to the predictive role 
of elevated NLR in this disease, while it occurs with an impor-
tant IL-17 axis activation, besides other possible mechanisms 
beyond our understanding. This role of neutrophils as a source 
of IL-17 has just been found in other organic diseases such as 
the kidney (79) and airways (80).

Other Cellular imbalances in NAFLD
Other immune system cells that have been found imbalanced in 
frequency and that appear to be involved in the cross talk with 
hepatocytes, hepatocellular damage, and in the transition from 
NASH to HCC are natural killer T cells and CD8+ lymphocytes 
(81, 82). Table 2 summarizes the clinical studies that evaluated 
the role of cellular imbalances as drivers and predictors of 
outcomes in NAFLD.

UNDeRLYiNG MeCHANiSMS, PATHwAYS, 
AND ReLATiONSHiP BeTweeN CeLLS 
AND CYTOKiNeS iN NAFLD

The understanding of the pathophysiological mechanisms link-
ing the cellular and cytokines immune imbalances to NAFLD is 
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still limited, and a subject of ongoing studies, as is the clarification 
between initiators and perpetuator imbalances. However, recent 
studies have been consistent in pointing out the hyperactivation 
of the interleukin-17 axis and TGF-β signaling pathway as the 
central elements in the pathogenesis of NAFLD, as well as other 
chronic liver diseases independently of underlying cause (15, 24, 
29, 31, 48). So, the sum of the various imbalances in the immune 
system results in the dominance of activated pro-inflammatory 
pathways over the regulatory, as shown by a concurrent imbal-
ance in Th17/Treg cells (30), culminating in the activation of 
the IL-17 axis.

Neutrophils and interleukin-6
As shown in Table  2, NLR is one of the most studied cell 
imbalances in recent times on outcome prediction in NAFLD. 
Neutrophils are the main cells of innate immunity, and its 
dominance is associated with the polarization to a more pro-
inflammatory response, including its participation in the IL-17 
activation chain, a key cytokine in organic fibrosis (85, 86). This 
occurs because neutrophils (and macrophages) produces the 
IL-6, as the main cytokine, which is in turn important in the 
differentiation of Th17 cells from naive T helper cells (37, 38, 
87). On the other hand, a recent study showed that neutrophils 
are themselves an important source of IL-17 in the human liver, 
especially in late fibrosis stages (70). In addition to the IL-17 axis 
activation, the predominance of neutrophils may be associated 
with other mechanisms such as oxidative stress and activation/
release of matrix metalloproteinases (MMPs) (88, 89).

The Th17/Treg Differentiation and  
the iL-17 Axis Activation
The Th17 differentiate from the naive T helper cells in the pres-
ence of IL-6, TGF-β, IL-21, and IL-23 (37, 38, 90). Th17 cells 
secrete the IL-17, IL-21, and e IL-22, being important in immu-
nity against extracellular infectious agents such as bacteria and 
fungi but also contribute in the immunopathogenesis of many 
diseases such as psoriasis and tumors (51, 91–93). IL-17 is the 
most studied Th17-secreted cytokine in liver disease (15, 41, 42). 
The differentiation of Treg, the functional counterpart of Th17 
cells, has the TGF-β as a pivotal factor in the presence of retinoic 
acid (94–97). The main function of the Treg cells is to regulate 
different aspects of the immune response in order to ensure the 
immunologic tolerance (98, 99). The dynamic Th17/Treg bal-
ance in peripheral blood is an important element to ensure the 
equilibrium between the defense and the autoimmunity and is 
regulated by various factors, such as IL-6, IL-10, TGF-β, and the 
microbiome (33, 34, 90, 100). So, these cells and their precursors 
are interconnected and have plasticity, which causes to direct 
their response, in the presence of different stimuli, to different 
cellular type and/or cytokine profile (34–36). For example, in 
the presence of pro-inflammatory cytokines such as IL-6, IL-1β, 
and TNF-α, the normal TGF-β-driven Treg differentiation is 
shifted to Th17 differentiation (33, 90). So, neutrophils (and 
macrophages), through the production of the IL-6, participates 
in the IL-17 activation chain; and IL-17, in turn, is an important 
in granulopoiesis (101) and participates in neutrophil recruit-
ment and organs infiltration after initial injury, and induces 

neutrophils cytokines and chemokines production, promoting 
further injury (24, 79, 102–104).

The Role of IL-17 Axis Activation and Associated 
Signaling Pathways in Fibrogenesis and 
Steatohepatitis
Interleukin-17 is a pro-inflammatory cytokine that is known to 
be produced mainly by T helper lymphocytes sub type 17 (Th17) 
and neutrophils, as discovered more recently, which is associated 
with the progression of NAFLD (15, 24, 41, 70). In the liver, the 
IL-17 exacerbates the liver tissue inflammation (29, 105, 106), 
enhancing tissue leukocytes infiltration (107), is a mediator of 
the cross talk between the immune system and liver cells (85, 
108–111), has a profibrotic effect as noted in liver biopsies (70, 
85, 86), among several others effects. In addition, is a potent 
stimulator of production of other inflammatory mediators, such 
as tumor necrosis factor (TNF-α), interleukin-1 (IL-1), and IL-6 
(85, 111, 112). And by induction of IL-6 production in the hepatic 
cells and serum, it mediates the cross talk between liver cells, the 
innate, and adaptative immune responses (85, 109, 113) and has a 
feedback on its axis at both local and systemic level (40).

In experimental studies, the activation of the IL-17 axis showed 
to be central to the development of NAFLD and progression to 
NASH and fibrosis (15, 41, 85, 110). And the neutralization or 
the lack of this axis caused significant attenuation of obesity, 
methionine choline-deficient diet (MCDD), or schistosoma-
induced liver inflammation and fibrosis (15, 41, 42, 86, 104, 
114). In addition, livers of IL-17(−/−) mice were protected from 
NASH development (42).

One of the mechanisms by which the IL-17A exerts its profi-
brotic effect is using the TGF-β signaling pathways, promoting 
an upregulation of its receptor on hepatic stellate cells (48, 109). 
In addition, IL-17 inhibits the natural TGF-β-driven Treg dif-
ferentiation by the pro-inflammatory environment it promotes, 
and by stimulating the IL-6 production, the most potent inductor 
of Th17 cells differentiation (38, 87, 90, 111), thereby enhancing 
further Th17/Treg imbalance (29, 33, 39, 115).

The relationship of the IL-17, NLR, and fibrosis has been 
found in other liver diseases such as viral hepatitis (116, 117), 
cirrhosis, and HCC (27, 28), which suggests the involvement of 
common points in pathogenic pathways (22, 31, 116–118). The 
maintenance of these imbalances seems to favor the inflamma-
tory microenvironment, which would explain their prognostic 
implications, and therapeutics potentials, from NAFLD, to cir-
rhosis, and HCC (28, 51). In addition, the role of the IL-17 axis 
in fibrogenesis has been shown in organs other than the liver, 
including the heart (119, 120), lung (121), and kidney (122). This 
model has been reasonably proven by evidence of elevation of 
neutrophils, Th17, and related cytokines, both in the systemic 
circulation and in the liver (28, 29, 70). So, is this inflammatory 
arsenal that would act in both hepatic inflammatory infiltration 
and in fibrogenesis.

Deficient Synthesis or Release of  
Anti-inflammatory and Antifibrotic Cytokines
The NAFLD immune imbalances, in addition to the above, 
appears to be also associated with deficient synthesis or release 
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FiGURe 1 | A simplified scheme of imbalanced immune response, 
connecting the cellular and cytokines imbalances with the activation 
of iL-17 axis and the progression of NAFLD. Metabolic disorders lead to 
immune imbalances in the peripheral blood and/or in the liver that are 
expressed at the cellular level by Th17/Treg imbalance and by the dominance 
of neutrophil over lymphocytes. These are reflected in imbalanced soluble 
factors with the dominance of pro-inflammatory and profibrotic over the 
anti-inflammatory and antifibrotic, which culminates in the Th17/IL-17 axis 
hyperactivation. In the liver, these imbalances are responsible for the 
recruitment and organ infiltration by neutrophil (102, 103), for increased 
hepatic gene expression of Th17-related cytokines (IL-17, IL-21, and IL-23) 
(29), resulting in steatohepatitis and fibrosis. The extra-hepatic effect, is 
increased production and release of neutrophils (101), and greater 
polarization to Th17 response, increasing further cellular imbalances, and 
acting as a feedback loop. Th17-secreted cytokines are listed in red.
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of anti-inflammatory and antifibrotic cytokines as IL-10 (58, 61), 
IL-4 (61, 123), IL-22 (42), and interferon gamma (IFN-γ) (124) 
that have a protective effect by suppressing the maturation of 
Th17 cells or counterbalancing the IL-17 effects (42, 61, 125–127). 
For example, Treg requires IL-10 signaling to suppress the Th17 
cell-mediated inflammation (100), and this anti-inflammatory 
cytokine was decreased in morbidly obese patients with NAFLD 
(58). Figure 1 shows a simply proposed model connecting the 
cellular to cytokines imbalances, including the activation of the 
IL-17 and the progression of NAFLD.

eMeRGiNG AND POTeNTiALS 
THeRAPeUTiCS AGeNTS TARGeTiNG 
THe iMMUNe ReSPONSe iN NAFLD

The immune imbalances underlying the evolution of NAFLD has 
been explored as therapeutic targets for new drugs (or pleiotropic 
effects of old drugs) with the potential to slow the disease progres-
sion (114, 128).

Targeting the iL-17 Axis and 
Related Signaling Pathway
Statins
Some of the drugs that have emerged with therapeutic poten-
tial in NAFLD are statins (129–131). Recent studies have 

increasingly highlighted the immunomodulatory role of statins 
(132–134); and shown in some diseases (other than NAFLD), 
its potential to interfere in the IL-17 axis, both by inhibiting the 
differentiation of Th17 cells, decreasing the production of IL-17 
(62, 133, 135, 136), and inducing upregulation and recruitment 
of Treg (133, 137–139), shifting thus T cells response to Treg 
dominance (134, 140), which has an anti-inflammatory role and 
is a coordinator of immunologic tolerance (98, 99). This effect 
was also evident in atherosclerosis where the administration of 
statins was associated with the accumulation of T regulatory 
cells in atherosclerotic plaque (141, 142). Among the mecha-
nisms underlying this effect on Treg induction is by modulating 
the TGF-β1 signal transduction (139). It is very likely that other 
pleiotropic effects, often unpredictable on statins, may partici-
pate in the mediation of this benefit, such as those related to the 
antioxidant effect (143).

In NAFLD, the use statins reduced the risk of both NASH 
(OR 0.57, P = 0.055) and fibrosis (OR 0.47, P = 0.011) (144). In a 
study involving 42 patients with dyslipidemia and biopsy-proven 
NASH who underwent treatment with atorvastatin (10 mg/day) 
for 12 months, atorvastatin improved NASH activity score and 
increased liver to spleen density ratio, and this improvement 
was accompanied by a significant reduction of inflammation 
markers (145). In parallel, atorvastatin significantly decreased 
liver transaminase, γ-glutamyl transpeptidase, low-density 
lipoprotein cholesterol, and triglycerides (145). In another study 
with 20 patients with HIV and biopsy-proven NASH, the use 
of rosuvastatin ameliorated NASH in 19 of 20 patients within 
12  months (130). Given this known plausibility of immune 
imbalances in NAFLD pathophysiology and the effect of statins 
in reestablishing the balance, studies with appropriate design are 
needed to confirm or refute this effect.

Vitamin D
Another agent that has shown important participation on Th17/
Treg lymphocytes differentiation and IL-17 axis modulation is 
vitamin D and its isoforms (146–148). In the liver, studies have 
shown a significant association between vitamin D deficiency 
or insufficiency with NAFLD, principally in men and diabetics 
patients (149–152), and increased significantly the risk of NASH, 
fibrosis, and NASH severity in both adults and children with 
NAFLD (5, 153). Vitamin D supplementation in subjects with 
NAFLD reduced liver fibrosis through counteracting TGF-β-
induced fibrogenesis (154, 155) and reduced the inflammatory 
response and insulin resistance as surrogate outcomes (155, 156). 
In one of these studies, patients with NASH had higher levels of 
TGF-β1 than those with simple steatosis, and the improvement of 
the inflammation and fibrosis after treatment was accompanied 
by a reduction in TGF-β1 levels (155). In the experimental model, 
the supplementation slowed the development and progression of 
NASH (157). So, available vitamin D compounds or vitamin D 
receptor agonists can bring another target to treat NAFLD, either 
as by modulating the IL-17 axis or other mechanisms.

Monoclonal Antibodies
It is worth remembering that there are already monoclonal 
antibodies against IL-17 (secukinumab and ixekizumab), already 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Paquissi Immune Imbalances as Therapeutic Targets in NAFLD

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 490

released for the treatment of rheumatic diseases that have activa-
tion of IL-17-axis as a crucial point in its pathogenesis (91), and 
the newest and attractive tregalizumab a monoclonal antibody 
that binds to CD4 T cells and induces Treg activation (158). 
Considering the key role of IL-17 in NAFLD, these agents may 
have a protective effect on the progression of NAFLD. In fact, in 
experimental studies, anti-IL-17 antibody improved hepatic stea-
tosis by suppressing interleukin-17-related fatty acid metabolism 
(159). However, there are no clinical studies that have tested the 
use of this agent in NAFLD.

Probiotics and Retinoic Acid
Another aspect that opens new therapeutic potentials is the con-
sideration of the intestine as a primary source of lymphocytes 
in NAFLD, and the modulator role of microbiota in this cellular 
population (64, 65). In fact, the administration of lactobacillus 
and other probiotics shows to decrease Th17 cell population 
and IL-17 secretion, while increasing Treg cell population 
(160–162). In addition, it has been shown that retinoic acid 
has an important role as a modulator of the cell response dif-
ferentiation in gut, favoring to the Treg cells (94, 95, 163, 164). 
So studies with retinoic acid or its receptor agonists may bring 
the next NAFLD treatments targeting the IL-17 axis. It wins a 
particular interest by the observation that low levels of retinoic 
acid in serum or its receptor in hepatic tissue are associated with 
higher severity of NAFLD (165); and the demonstration that 
the administration of all-trans retinoic acid ameliorates hepatic 
steatosis in experimental research (166). Like statins, retinoic 
acid modulates the TGF-β1 signal transduction inducing to Treg 
response, and this may be one of the mechanisms underlying its 
beneficial effect (95, 97).

Other Potential Agents
Several other agents have the potential to act on the IL-17 
axis (shifting the Th17/Treg balance in favor of Treg domi-
nance), including agents such as rennin–angiotensin system 
blockers and digoxin (51, 142, 167). In a study including 159 
hypertensive patients, the association of telmisartan with rosu-
vastatin showed a synergistic effect on ameliorating Th17/Treg 

functional imbalance, with a significant decrease in Th17 cells 
frequency, IL-17, IL-6, TNF-α, IL-1β, IL-2, IFN-γ, hs-CRP, and 
MCP-1, TGF-β3 (142). In another study, animals treated with 
digoxin, which also inhibits Th17 differentiation, presented with 
reduced levels of circulating Th17 cells and serum IL-17A, associ-
ated with reduced liver steatosis, liver immune cell infiltration, 
and liver injury; and increased glucose tolerance and insulin 
sensitivity than non-treated mice (51). Other substances able to 
shift the imbalance of Treg/Th17 cells to Treg dominance and 
that have shown to relieve NAFLD are 3, 3′-diindolylmethane 
and flavonoids (32, 61).

CONCLUSiON AND FUTURe DiReCTiONS

The available studies point to an important value of immunes 
imbalances, either at cellular or cytokines levels, in the pathogen-
esis of NAFLD. Particularly, the imbalances between neutrophils 
and lymphocytes counts (NLR) and at T helper cellular subsets 
(expressed by Th17/Treg imbalance). The reflection of this at the 
molecular level is a pro-inflammatory environment that includes 
IL-6, TNF-α, and TGF-β, and culminates in the hyperactivation of 
the IL-17 axis. The knowledge of this participation can help better 
understand the pathogenesis, offer non-invasive tools to evaluate 
the disease, and support the development of new therapeutic 
targets. Among these targets, the IL-17 axis and related signal-
ing pathway is a potential; and agents such as statins, vitamin 
D, retinoic acid, probiotics, and monoclonal antibodies against 
IL-17 have a promissory perspective.

New studies should be designed for clarification between 
initiators, and perpetuator imbalances, and to prove the overall 
clinical utility of these imbalances as potential disease biomarkers. 
The effectiveness of therapies targeting the various mediators and 
pathways involved in disease pathogenesis should be evaluated 
by well-designed clinical randomized trials with adequate sample 
size and with histological assessment of the disease.
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