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In 1991 Keiding published a relation between the age-specific prevalence and incidence of a chronic
disease (in Age-specific incidence and prevalence: a statistical perspective. J. Roy. Stat. Soc. A, 154,
371–412). For special cases alternative formulations by differential equations were given recently in
Brinks et al. (2013, Deriving age-specific incidence from prevalence with an ordinary differential
equation. Statist. Med., 32, 2070–2078) and in Brinks & Landwehr (2014, Age- and time-dependent
model of the prevalence of non-communicable diseases and application to dementia in Germany, Theor.
Popul. Biol., 92, 62–68). From these works, we generalize formulations and discuss the advantages of
the novel approach. As an implication, we obtain a new way of estimating the incidence rate of a chronic
disease from prevalence data. This enables us to employ cross-sectional studies where otherwise expen-
sive and lengthy follow-up studies are needed. This article illustrates and validates the novel method in a
simulation study about dementia in Germany.
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1. Introduction

One of the objectives of epidemiology is the description of health-related states and events in
populations. To achieve this objective, incidence and prevalence are important quantitative concepts.
Incidence refers to the occurrence of new cases in a specific health-related state during a time period,
whereas prevalence measures the proportion of subjects who are in the state at a point in time.
Both measures are fundamental in epidemiological research.

For analysing quantitative aspects of infectious diseases, state models (synonymously: compartment
models) are widely used and have a history going back at least to the 1920s (see, for example,
Brauer, 2005). With respect to chronic diseases, compartment models are less common and have
appeared later (Fix & Neyman, 1951). The infrequent use of mathematical models in this field is in
contrast to the tremendous worldwide burden of chronic diseases. For example, two-thirds of all global
cases of death in 2010 have been attributed to chronic diseases (Lozano, 2012). Hence, we feel the
urgent need to contribute to the mathematical understanding of the worldwide epidemics of chronic
diseases.

A typical model in the epidemiology of chronic diseases considers a population in three states:
healthy (H), diseased (I) and dead (D) (Keiding, 1991). Subjects of the population may undergo irre-
versible transitions between these states as shown in Fig. 1. The transition rates are the incidence i, and
the mortalities m0 and m1 of the healthy and the diseased subjects, respectively.

In many situations, it is important to keep track of different time scales (Keiding, 2006). Mortality,
for instance, crucially depends on the age of the subjects, but also on secular progress in hygiene,
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Fig. 1. Compartment model with three states and transition rates depending on different time scales: calendar time t, age a and
duration d.

nutrition and medical care. Hence, the rates i and m0 may depend on age a and on calendar time t.
In addition, the rate m1 may also depend on the duration d of the disease (Fig. 1).

In the literature, two approaches can be found in dealing with the state model and its transition
rates. Keiding (1991) chose a stochastic nomenclature, whereas the group around Murray & Lopez
preferred differential equations (Murray & Lopez, 1994, 1996; Barendregt et al., 2003). According
to the long tradition of differential equations in modelling infectious diseases, we follow the way of
differential equations. We show that our approach is able to obtain Keiding’s result (Keiding, 1991).

2. Methods

Let S(t, a) denote the absolute number of subjects aged a at time t in state H. Moreover, let C(t, a, d) be
the number of people age a at time t who are in state I for exact duration d. The total number of subjects
aged a at t who have the chronic disease is C�(t, a) = ∫ a

0 C(t, a, δ) dδ.
In this article, we made three assumptions:

1. The population is closed, i.e. there is no migration.

2. We consider only diseases contracted after birth. Thus, it holds C�(t, 0) = 0 for all t.

3. The functions S and C are sufficiently smooth.

2.1 Keiding’s equation

If we look at the change rates of the subjects in the states, balance equations for S and C can be
formulated as follows:

(∂t + ∂a)S(t, a) = −(m0(t, a) + i(t, a))S(t, a) (2.1)

(∂t + ∂a + ∂d)C(t, a, d) = −m1(t, a, d)C(t, a, d). (2.2)

For ease of notation we have written ∂x = ∂/∂x for x ∈ {t, a, d}. Equations (2.1–2.2) are partial
differential equations (PDEs) that describe the outflows from the states H and I, respectively. The first of
these equations implies that leaving the state H is a competing risk of the events Death without having
contracted the disease and Contracting the disease (Putter et al., 2007). The system of PDEs (2.1–2.2)
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is extended by the following initial conditions:

S(t − a, 0) = S0(t − a),

C(t, a, 0) = i(t, a)S(t, a).

The first initial condition describes the number of (disease-free) newborns, and the second describes the
number of newly diseased persons at (t, a).

The PDEs with the initial conditions have the following solutions:

S(t, a) = S0(t − a) exp

(
−

∫ a

0
m0(t − a + τ , τ) + i(t − a + τ , τ) dτ

)
. (2.3)

C(t, a, d) = C(t − d, a − d, 0) exp

(
−

∫ d

0
m1(t − d + τ , a − d + τ , τ) dτ

)

= i(t − d, a − d)S(t − d, a − d) exp

(
−

∫ d

0
m1(t − d + τ , a − d + τ , τ) dτ

)
.

For brevity we define

M1(t, a, d) :=
∫ d

0
m1(t − d + τ , a − d + τ , τ) dτ .

Then, the total number C� of diseased subjects is

C�(t, a) =
∫ a

0
i(t − δ, a − δ)S(t − δ, a − δ) exp(−M1(t, a, δ)) dδ (2.4)

By inserting Equations (2.3) and (2.4) into the definition of the age-specific prevalence

p(t, a) = C�(t, a)

S(t, a) + C�(t, a)

we get the following theorem.

Theorem 2.1 (Keiding, 1991) The prevalence p(t, a) of those aged a � 0 at time t can be calculated by

p(t, a) =
∫ a

0 i(t − δ, a − δ)Mt,a(a − δ) exp(−M1(t, a, δ)) dδ

Mt,a(a) + ∫ a
0 i(t − δ, a − δ)Mt,a(a − δ) exp(−M1(t, a, δ)) dδ

, (2.5)

with

Mt,a(y) := exp

(
−

∫ y

0
m0(t − a + τ , τ) + i(t − a + τ , τ)dτ

)
.

Given the incidence rate i and the mortality rates mk , k = 0, 1, Equation (2.5) analytically describes
the prevalence p of the chronic disease for a specific age a and at a specific point in time t. The formula
reflects the complex interplay of the involved incidence and mortality rates.

Unfortunately, Equation (2.5) is rarely used in epidemiology or public health contexts. One of the
reasons may be that only a few researchers are aware of the equation and its potential. A huge advantage
of the equation is the possibility of simulating scenarios. For instance, in the context of planning future
health resources one might ask: What would be the effect of reducing the incidence of a specific chronic
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disease by 25% on the prevalence in the age group 60–80? What would be the effect of lowering the
mortality m1 of the diseased persons by 10%?

These are important questions in predicting the effects (e.g. outcomes, costs, budget impact etc.)
of interventions or health programmes. Thus, we think the equation can contribute in planning the
allocation of health resources or in the field of health policy decision-making.

2.2 Partial differential equations

In this section we formulate another relation between prevalence and incidence. We start with a lemma.

Lemma 2.1 The total number C� of diseased persons aged a � 0 at t, C�(t, a) = ∫ a
0 C(t, a, δ) dδ, is the

solution of the initial value problem

(∂t + ∂a)C
�(t, a) = −m�

1(t, a)C�(t, a) + i(t, a)S(t, a).

C�(t − a, 0) = 0

with

m�
1(t, a) :=

⎧⎪⎨
⎪⎩

∫ a
0 m1(t, a, δ)C(t, a, δ) dδ∫ a

0 C(t, a, δ) dδ
for C�(t, a) > 0

0 for C�(t, a) = 0.
(2.6)

Proof. May be found in Appendix. �

With the lemma we are able to derive the main result of this article.

Theorem 2.2 The age-specific prevalence p is the solution of the initial value problem

(∂t + ∂a)p = (1 − p)(i − p(m�
1 − m0)), (2.7)

with p(t, 0) = 0.

Proof. By applying the quotient rule to p = C�

S+C� and substituting the expressions for (∂t + ∂a)S and
(∂t + ∂a)C� we get Equation (2.7). �

Before we describe the advantages of Equation (2.7), we show that it is a generalization of the
relations found in Brinks et al. (2013) and Brinks & Landwehr (2014). If m1 is independent from d, i.e.
m1(t, a, d) = m1(t, a), then it holds m1 = m�

1 and (2.7) becomes

(∂t + ∂a)p = (1 − p)(i − p(m1 − m0)), (2.8)

which has been shown in Brinks & Landwehr (2014). If in addition all rates are independent from t, one
obtains the ordinary differential equation as in Brinks et al. (2013). Hence, Equation (2.7) is an extension
of our previously published results if the mortality m1 of the diseased depends on the duration d. For
some chronic diseases, there is epidemiological evidence that d plays a crucial role for m1, for example,
in diabetes (Carstensen et al., 2008) and systemic lupus erythematosus (Bernatsky et al., 2006).

Compared with Keiding’s Equation (2.5) the PDE approach is simpler and has a greater flexibility,
which is illustrated in three points. The first point is a new possibility of estimating incidence rates
from prevalence data. This is an important application in epidemiology and is demonstrated in the next
section. The second advantage of the PDE approach becomes obvious, when the information about
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the mortality is not given in terms of the mortality rates m0 and m1 of the healthy and the diseased
population, respectively, but in terms of the general mortality m of the whole population and the relative
mortality R = m�

1/m0. While Keiding’s Equation (2.5) is not able to calculate the prevalence p in this
situation, the PDE is. A brief calculation using the relation m = pm�

1 + (1 − p)m0 shows that p is the
solution of the PDE

(∂t + ∂a)p = (1 − p)

(
i − m

p(R − 1)

p(R − 1) + 1

)
. (2.9)

The situation of given m and R is very common in epidemiology and public health. Often, the
general mortality m can be obtained from official vital statistics or life tables. The relative mortality R
is taken from disease-specific surveys. Then, Equation (2.9) is able to calculate the prevalence whereas
Keiding’s formula is not. An anonymous reviewer gave us the valuable hint that Brunet & Struchiner
(1999) also derived a relation between prevalence odds p/(1 − p), incidence i and mortalities mk , k =
0, 1, in terms of a PDE, which is similar to Equation (2.8). Similar to Keiding’s formula, the approach
of Brunet & Struchiner (1999) is not able to cope with the situation when m and R are given instead of
m0 and m1.

Remark 2.1 The fraction on the right-hand side in (2.9) is the population attributable fraction, a well-
known epidemiological quantity (Kirkwood & Sterne, 2003).

Finally, the greater flexibility of the PDE compared with Keiding’s and Brunet and Struchiner’s for-
mula is apparent if we release the assumption of a closed population. Keiding and Brunet & Struchiner
do not cover this case, whereas by an extension of the PDE (2.7) this is easily possible. The necessary
steps are described in Brinks & Landwehr (2014).

Remark 2.2 Equation (2.7) uses calendar time t and age a as underlying (independent) variables and
describes the change of the prevalence as a function of t and a. This may seen in the light of the cele-
brated McKendrick–Von Foerster Equation, which does the same for the population density (in a closed
population). For a review of the history and further references, see the excellent overview by Keiding
(2011).

2.3 Estimation of the age-specific incidence from two cross-sectional studies

The primary advantage of the PDE approach over Keiding’s Equation (2.5) is a possibility of deriving
incidence rates from prevalence data. We start with the observation that in contrast to (2.5), the PDE
(2.7) can be solved for the incidence rate i :

i = (∂t + ∂a)p

1 − p
+ p(m�

1 − m0). (2.10)

This equation provides a way to estimate the age-specific incidence from two cross-sectional studies.
Consider two points in time, t0 and t0 + Δ, Δ > 0, and assume we know the age-specific mortalities
m0(·, a) and m�

1(·, a) at calendar time t0 + Δ/2. Then, Equation (2.10) is the basis for the following
algorithm:

Algorithm 2.1 (Incidence from two cross-sections) Let the age-specific prevalence p(·, a) be given at
t0 and t0 + Δ, Δ > 0. Set t̃ = t0 + Δ/2.



430 R. BRINKS AND S. LANDWEHR

1. Approximate p(t̃, a) by

p(t̃, a)
.= 1

2

[
p

(
t0 + Δ, a + Δ

2

)
+ p

(
t0, a − Δ

2

)]
. (2.11)

2. Similarly, approximate (∂t + ∂a)p at (t̃, a) by

(∂t + ∂a)p(t̃, a)
.= 1

Δ

[
p

(
t0 + Δ, a + Δ

2

)
− p

(
t0, a − Δ

2

)]
. (2.12)

3. Estimate the age-specific incidence by Equation (2.10):

i(t̃, a) = (∂t + ∂a)p(t̃, a)

1 − p(t̃, a)
+ p(t̃, a)(m�

1(t̃, a) − m0(t̃, a)).

While the last step in Algorithm 2.1 is mathematically exact, the algorithm comprises two
approximation steps (indicated by the ‘

.=’ sign), which are sources for errors. First, an error occurs for
approximating the prevalence p(t̃, a) by the mean of p(t0, a − Δ/2) and p(t0 + Δ, a + Δ/2) in Equation
(2.11). The second error arises in estimating the partial derivative (∂t + ∂a)p by the finite difference in
(2.12).

In both approximations, the underlying idea is linearization, i.e. the assumption that the intermediate
value in (2.11) and that the derivative in (2.12) can be approximated by linear functions. If the preva-
lence p was a linear function, both steps would yield the associated exact values and the errors would
be equal to zero. In practical applications, one would not choose the time lag Δ between the two cross-
sections too long [but long enough to gain a reliable estimate in (2.11) and (2.12)].

3. Example

For illustration of the practical relevance, we apply the theory to an example motivated by dementia in
German males. The mortality m0 of the non-diseased is chosen to be

m0(t, a) = exp(−9.0 + 0.085a − t loge(1.01)),

which is an approximation of the age-specific mortality of the male German population aged � 50 in
the past six decades (Federal Statistical Office of Germany, 2011). The calendar time t is given in years
since 1960.

The age-specific incidence of dementia is assumed to be

i(t, a) = i(a) = exp(−12.8 + 0.11a), a � 50. (3.1)

This is an approximation of the observed rate in males (Ziegler & Doblhammer, 2009). As there
are indications that the age-specific incidence is relatively stable (Qiu et al., 2009), we consider it to be
independent from calendar time t.

Concerning the mortality m1 of the men with dementia, we examine two cases: m1 being independent
and being dependent on the disease duration d. In both cases, we use Keiding’s Equation (2.5) to calcu-
late the age-specific prevalence of dementia in the years 2010 and 2015. This mimics two cross-sectional
studies with a time lag of 5 years (Δ = 5). The two cross-sections are used to derive the age-specific inci-
dence rate in at t = 2012.5 by Algorithm 2.1. As we know the true incidence underlying the simulation,
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Fig. 2. Age-specific prevalence in 2010 and 2015 (example without duration dependency).

we can compare the estimates of Algorithm 2.1 with the true values given by (3.1). In this way, we
compare our estimate with our own input and do not need additional data for validation.

3.1 Independence from duration

In the first example, we assume that the mortality m1 of the diseased is independent from the duration
d. Even more, m1 is considered proportional to m0 : m1(t, a, d) = m�

1(t, a) = R m0(t, a). The relative
mortality R(= m1/m0) is chosen to be R = 2.63, which is the average value of the relative mortality in
the first 6 years after diagnosis of dementia in a comparable English population (Rait et al., 2010).

The age courses of the prevalence in 2010 and 2015 are calculated by Keiding’s Equation (2.5)
in steps of 2.5 years length a = 60, 62.5, . . . , 97.5, 100. The integrals have been calculated using
Romberg’s method, which allows a prescribed accuracy (Dahlquist & Björck, 1974). The results are
shown in Fig. 2.

Based on the age course of the prevalence in Fig. 2, we apply Algorithm 2.1 with m�
1(t, a) =

2.63 m0(t, a). The results are shown in Table 1.
Comparing the true and the calculated incidence rates, we see that the absolute value of the relative

error for all ages a = 62.5, . . . , 97.5 is less than 2%.

3.2 Duration dependency

The second example mimics the mortality m1 being dependent on the duration since onset of the disease.
According to the values reported in the study of Rait et al., we model

m1(t, a, d) = R(d) m0(t, a).
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Table 1 Comparison between the true and the calculated age-specific
incidence rates in the first example.

Age a True incidence Calculated incidence Relative error (%)
62.5 0.0026718 0.0027006 1.08
65.0 0.0035175 0.0035542 1.04
67.5 0.0046309 0.0046861 1.19
70.0 0.0060967 0.0061226 0.42
72.5 0.0080266 0.0080156 −0.14
75.0 0.0105672 0.0105659 −0.01
77.5 0.0139120 0.0138738 −0.28
80.0 0.0183156 0.0181919 −0.68
82.5 0.0241131 0.0238324 −1.16
85.0 0.0317456 0.0312618 −1.52
87.5 0.0417941 0.0411196 −1.61
90.0 0.0550232 0.0540997 −1.68
92.5 0.0724398 0.0712442 −1.65
95.0 0.0953692 0.0938397 −1.60
97.5 0.1255564 0.1238085 −1.39

Again, we calculate the age-specific prevalence in the years 2010 and 2015 using Keiding’s Equation
(2.5). The resulting age-specific prevalence is similar to the prevalence shown in Fig. 2.

If we want to extract the age-specific incidence as in the previous section, we should know m�
1.

Although m�
1 may be accessible by epidemiological surveys, in our setting we do not know the exact

rate, because the distribution C(t, a, d)/
∫ a

0 C(t, a, δ)dδ in Equation (2.6) is unknown. We present two
ways to overcome this problem in practice: (a) we apply Algorithm 2.1 as in the previous section with
setting m�

1(t, a) = m1(t, a) = 2.63 m0(t, a). The value 2.63 is the average of all the reported relative
mortalities from year 1 to year 6 after diagnosis. (b) In the study by Rait et al. it has been observed that
the persons aged > 90 die quite soon after diagnosis of dementia. Thus, we set m�

1(t, a) = 2.755 m0(t, a)

for a > 90, where 2.755 is the average relative mortality from year 1 to year 4 after diagnosis. The
comparisons of the estimated incidence rates with the true values are shown in Table 2. The third and
fourth columns refer to method (a) and the fifth and sixth columns refer to method (b).

Although the relation m1(t, a, d) = R(d) m0(t, a) that has been used to generate the input data has
not been utilized in Algorithm 2.1, the estimated age-specific incidence rates deviate only slightly for
a < 90, namely less than 2% in absolute terms. For ages 90 and more, the deviations increase with
age in method (a), which has given rise to increase the relative mortality of this age group in method
(b). The rationale behind method (b) is that in the age group � 90 only a small percentage survive � 5
years after diagnosis. Thus, averaging the relative mortality over years 1 to 6 gives too much weight
on the later years after diagnosis, when the relative mortality is lower than in the early years after
diagnosis.

4. Summary

In this article we have formulated and proven a new relation between the age-specific prevalence, the
incidence and the mortality rates in terms of a PDE. The relation generalizes differential equations pub-
lished recently in Brinks et al. (2013) and Brinks & Landwehr (2014). Compared with the relations
from Keiding (1991) and Brunet & Struchiner (1999), the PDE is simpler and has a greater flexibility.
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Table 2 Comparison between the true and the calculated age-specific incidence rates in the
second example.

Age a True incidence Calc. inc.a Rel. errora (%) Calc. inc.b Rel. errorb (%)
62.5 0.0026718 0.0026940 0.83 0.0026940 0.83
65.0 0.0035175 0.0035196 0.06 0.0035196 0.06
67.5 0.0046309 0.0046868 1.21 0.0046868 1.21
70.0 0.0060967 0.0062091 1.84 0.0062091 1.84
72.5 0.0080266 0.0081738 1.84 0.0081738 1.84
75.0 0.0105672 0.0107598 1.82 0.0107598 1.82
77.5 0.0139120 0.0141145 1.46 0.0141145 1.46
80.0 0.0183156 0.0186430 1.79 0.0186430 1.79
82.5 0.0241131 0.0244683 1.47 0.0244683 1.47
85.0 0.0317456 0.0318820 0.43 0.0318820 0.43
87.5 0.0417941 0.0414960 −0.71 0.0414960 −0.71
90.0 0.0550232 0.0537769 −2.27 0.0537769 −2.27
92.5 0.0724398 0.0693771 −4.23 0.0739852 2.13
95.0 0.0953692 0.0889364 −6.75 0.0951201 −0.26
97.5 0.1255564 0.1134120 −9.67 0.1215714 −3.17
aAssumed relative mortality 2.63.
bAssumed relative mortality 2.63 for a �90 and 2.755 for a > 90.

The flexibility has been illustrated in three points: (i) a new way of deriving incidence rates from preva-
lence data, (ii) the use of the method if the general mortality is given instead of the mortality rates of
the healthy and diseased and (iii) the possible extension in case of migration. A fourth aspect may be
mentioned if we allow a transition from the disease state (I) back to the state (H). Again the PDE is
capable to deal with this situation and Keiding is not, see Brinks & Landwehr (2014) for details.

The new method of deriving incidence rates from prevalence data may be very useful in
epidemiology. While prevalence data may be obtained by cross-sectional studies, the estimation of
incidence rates mostly require lengthy and costly follow-up studies. Especially in low or middle income
countries data about incidence of many diseases have not been surveyed yet. Furthermore, in some
situations, estimates from cross-sectional data might be more reliable than estimates by follow-up stud-
ies. For example, in surveying occurrence of health states where subjects might feel uncomfortable
or even stigmatized, losses to follow-up or withdrawals of consent are very likely. An anonymous
cross-section may be found more acceptable and less intrusive for study participants than repetitive
re-examinations.

With a view to practical applications of Algorithm 2.1, apart from the approximation errors,
sampling errors in surveying the age-specific prevalence have to be considered. The sampling error
depends on several parameters and a discussion is beyond the scope of this article. For an introduction
about this issue we refer to Brinks et al. (2013) and the associated technical appendix, where sampling
error was assessed in simulation studies. Error bounds arising from uncertainties in raw population data
may be obtained by bootstrap methods as described and demonstrated in Brinks et al. (2013).

In summary, we have presented a new relation between the age-specific prevalence, the incidence
and the mortality rates. The relation is applicable in many contexts from epidemiology, public health
and demography. Furthermore, it is simpler and more flexible than a previously found equation. With
our findings, we hope to contribute to the quantitative understanding of how basic epidemiological rates
and processes may impact global health and burden of chronic diseases.
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Appendix: Proof of Lemma 2.1

We have to show that C� is the solution of the PDE (∂t + ∂a)C� = −m�
1C� + iS. With ∂ = ∂t + ∂a it

holds:

∂C�(t, a) = ∂

∫ a

0
C(t, a, δ) dδ

=
∫ a

0
∂C(t, a, δ) dδ + C(t, a, a)

=
∫ a

0
(∂t + ∂a + ∂d)C(t, a, δ) dδ −

∫ a

0
∂dC(t, a, δ) dδ + C(t, a, a)

= −
∫ a

0
m1(t, a, δ) C(t, a, δ) dδ −

∫ a

0
∂dC(t, a, δ) dδ + C(t, a, a)

= −m�
1(t, a)C�(t, a) − (

C(t, a, a) − C(t, a, 0)
) + C(t, a, a)

= −m�
1(t, a)C�(t, a) + i(t, a) S(t, a).

For the second equality Leibniz’s integral rule has been used.
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