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Purpose: To develop a clinical–radiomics model based on radiomics features extracted from
MRI and clinicopathologic factors for predicting the axillary pathologic complete response
(apCR) in breast cancer (BC) patients with axillary lymph node (ALN) metastases.

Materials and Methods: The MR images and clinicopathologic data of 248 eligible
invasive BC patients at the Peking University First Hospital from January 2013 to
December 2020 were included in this study. All patients received neoadjuvant
chemotherapy (NAC), and the presence of ALN metastases was confirmed through
cytology pre-NAC. The data from January 2013 to December 2018 were randomly
divided into the training and validation sets in a ratio of 7:3, and the data from January
2019 to December 2020 served as the independent testing set. The following three types
of prediction models were investigated in this study. 1) A clinical model: the model was
built by independently predicting clinicopathologic factors through logistic regression. 2)
Radiomics models: we used an automatic segmentation model based on deep learning to
segment the axillary areas, visible ALNs, and breast tumors on post-NAC dynamic
contrast-enhanced MRI. Radiomics features were then extracted from the region of
interest (ROI). Radiomics models were built based on different ROIs or their combination.
3) A clinical–radiomics model: it was built by integrating radiomics signature and
independent predictive clinical factors by logistic regression. All models were assessed
using a receiver operating characteristic curve analysis and by calculating the area under
the curve (AUC).

Results: The clinical model yielded AUC values of 0.759, 0.787, and 0.771 in the training,
validation, and testing sets, respectively. The radiomics model based on the combination
of MRI features of breast tumors and visible ALNs yielded the best AUC values of 0.894,
0.811, and 0.806 in the training, validation, and testing sets, respectively. The clinical–
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radiomics model yielded AUC values of 0.924, 0.851, and 0.878 in the training, validation,
and testing sets, respectively, for predicting apCR.

Conclusion:We developed a clinical–radiomics model by integrating radiomics signature
and clinical factors to predict apCR in BC patients with ALN metastases post-NAC. It may
help the clinicians to screen out apCR patients to avoid lymph node dissection.
Keywords: breast cancer, radiomics, DCE-MRI, axillary lymph node, neoadjuvant chemotherapy
1 INTRODUCTION

Neoadjuvant chemotherapy (NAC) in breast cancer (BC) has the
abil ity to downstage axillary lymph nodes (ALNs).
Approximately 35%–63% of BC patients with positive ALNs
can achieve an axillary pathologic complete response (apCR)
post-NAC (1). Some studies have tried to perform sentinel
lymph node (SLN) biopsy (SLNB) to avoid ALN dissection
(ALND), but the detection rate of SLNs is low, and the false-
negative rate (FNR) is relatively high. The Z1071 study (2) and
the SENTINA study (3) showed that only after using a dual dye
technique with both vital blue dye and radiolabeled colloid, and
detecting at least 3 SLNs, can SLNB be considered safe in ALN-
positive BC patients post-NAC. Some other studies (4–6) have
shown that removal of the positive ALNs marked by clips pre-
NAC while performing SLNB can significantly reduce the FNR
of SLNB post-NAC. However, radiolabeled colloid and clip
markers are not available in most hospitals in China, and it is
not easy to achieve the requirement of detecting at least 3 SLNs;
hence, there are many restrictions on SLNB among ALN-positive
BC patients post-NAC. Currently in China, due to concerns
about the high FNR of SLNB post-NAC, the recommended
treatment for initial ALN-positive BC is ALND, which causes
loss of opportunity to preserve the axilla in patients with apCR
and increases the chance of suffering from ALND-related
complications, such as limited shoulder mobility, wound
infection, upper arm lymphedema, and paresthesia and pain in
the surgical area (7, 8).

Routine imaging examinations, such as ultrasound (US),
MRI, and positron emission tomography/CT (PET/CT), do not
perform well in identifying the status of ALNs post-NAC (9–11).
Recent studies have shown that MRI-based radiomics models
can predict whether there will be ALN metastasis in BC patients
(12–19). Some of these studies used the MRI radiomics features
alone to predict the ALN status and achieved good performance
(12, 13). Some other studies had combined the MRI radiomics
features with other variables such as clinicopathologic
characteristics (14, 16), pharmacokinetic parameters (15),
kinetic curve pattern (17), and peritumoral MRI features (19)
to build a combined model, which all showed better performance
than the radiomics model alone. However, all the above studies
used the MRI radiomics features of breast tumors to predict the
status of ALN, and there were only a few studies that included the
dedicated ALN MRI radiomics features in research (18, 20, 21).
Yu et al. found that MRI radiomics features of ALN region were
helpful for ALN metastasis prediction (18, 21). However, Samiei
2

et al. found that dedicated ALN MRI radiomics features did not
accurately predict ALN metastases in BC patients preoperatively
(20). But the majority of patients enrolled in these three studies
did not receive NAC, and none of the studies were specializing in
the identification of the ALN status post-NAC. Therefore, the
performance of MRI radiomics model in the identification of
ALN status post-NAC in initial ALN-positive BC patients is still
unclear. As mentioned above, the recommended post-NAC
treatment for the axilla in these patients is ALND. Accurate
identification of such patients with apCR can exempt ALND and
avoid its related complications. Consequently, the purpose of this
study was to add the dynamic contrast-enhanced MRI (DCE-
MRI) features of ALNs into the radiomics analysis and to build a
model that combines radiomics and clinicopathologic features to
predict apCR.
2 PATIENTS AND METHODS

This study was approved by the Ethics Committee of Peking
University First Hospital [IRB number: 2019(170)]. The
requirement of obtaining informed consent was waived, as it
was a retrospective study.

2.1 Patient Inclusion
We identified female primary BC patients aged at least 18 years
who were treated with NAC from January 2013 to December 2020
at our breast disease center. The inclusion criteria were as follows: i)
patients who had confirmed primary BC by core needle biopsy
(CNB); ii) CNB or fine-needle aspiration biopsy (FNAB)-
confirmed metastases in ipsilateral ALN; iii) patients with disease
staged T1–4N1–2M0; iv) DCE-MRIs were conducted pre- and post-
NAC; v) patients who had completed at least 4 cycles of NAC; vi)
ALND was conducted post-NAC; and vii) clinicopathologic data
were available. The exclusion criteria were as follows: i) occult BC;
ii) artifact on DCE-MRI; iii) patients had previously undergone
axillary surgery; iv) patients with multifocal tumors; and v) patients
with heterogeneous tumors.

2.1.1 Clinicopathologic Data
All patients were staged according to the 8th edition of the
American Joint Committee on Cancer Staging Manual (22). The
estrogen receptor (ER) status, progesterone receptor (PR) status,
and Ki67 expression were evaluated by immunohistochemistry
(IHC) (23). ER/PR positivity (+) was defined as ≥1% of tumor
cells with nuclear staining. Hormone receptor (HR) positivity (+)
December 2021 | Volume 11 | Article 786346
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was defined as ER (+) and/or PR (+). Human epidermal growth
factor receptor 2 (HER2) positivity (+) was determined
according to the American Society of Clinical Oncology
(ASCO) guidelines (24). Ki67 expression was defined as low
(≤30%) or high (>30%) (25). All patients were divided into the
following four subtypes according to HR and HER2 status: HR
+HER2−, HR+HER2+, HR−HER2+, and HR−HER2− [triple
negative (TN)]. Breast pathologic complete response (bpCR)
was defined as the absence of residual invasive or in situ
carcinoma in the surgical specimen (26). An apCR was defined
as the comple te absence of micrometas ta ses and
macrometastases in ALNs (26). The pathologic information of
all patients was evaluated by the breast pathology team of our
hospital and recorded in the patients’ medical records. Since
these assessments were objective and followed accepted
standards (23, 24), we did not reassess the pathology.

All patients underwent MRI and breast US pre- and post-
NAC. CNB or FNAB was performed in suspicious ALNs. The
NAC regimens were based on the National Comprehensive
Cancer Network (NCCN) guidelines (27) or the guidelines of
the Chinese Society of Clinical Oncology (CSCO) (25). All
patients received anthracycline and/or taxane-based NAC
regimens. For HER-2-negative patients, the regimens include
TA (docetaxel/doxorubicin), TX (docetaxel/capecitabine), TAC
(docetaxel/doxorubicin/cyclophosphamide), TC (docetaxel/
cyclophosphamide), and TP (docetaxel/carboplatin) (25, 27).
For HER2-positive patients, all the regimens were combined
with anti-HER2 therapy including TCH (docetaxel/carboplatin/
trastuzumab), TH (docetaxel/trastuzumab), and AC-TH
(doxorubicin/cyclophosphamide–docetaxel/trastuzumab). All
patients underwent breast-conserving surgery or total
mastectomy and ALND after NAC (26, 27). The excised
tissues were subjected to pathologic examination. The clinical
tumor response to NAC was evaluated by the Response
Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1)
(28) by MRI. With RECIST 1.1, we utilized the following
classifications for therapeutic response: complete response
(CR), primary tumor disappearance; partial response (PR),
30% or greater decrease in the longest diameter of the primary
tumor; progressive disease (PD), 20% or greater increase in the
longest diameter of the primary tumor; and stable disease (SD),
tumors that did not show either sufficient shrinkage to be
classified as PR or sufficient increase to be classified as PD (28).

The clinicopathologic data included age, menstrual status, HR
status, HER2 status, initial clinical T stage (cT), initial clinical N
stage (cN), histologic type, histologic grade, Ki67 expression, and
clinical tumor response to NAC (cTR). Clinicopathologic data
were obtained from patients’ medical records (Dr LG and LX,
response for the data collection).

2.1.2 MRI Acquisition Protocol
All MR images were acquired through a 3.0-T system machine
with 8-channel breast coils (Signa Excite, GE Medical Systems,
USA). After an intravenous injection of 0.1 mmol/kg of Gd-DTPA
(Magnevist, Bayer Schering Pharma, Germany), a 20-ml saline
solution was used to rinse at a flow rate of about 2 ml/s. The T1-
weighted images (T1WI) of DCE-MRI included 1 pre-contrast
Frontiers in Oncology | www.frontiersin.org 3
and 8 post-contrast images with fat saturation. The third post-
contrast T1WI of DCE-MRI post-NAC was analyzed for this
study. The DCE-MRI parameters were as follows: repetition time
(TR)/echo time (TE) = 4.53 ms/1.66 ms; field of view (FOV) = 34
cm × 34 cm; matrix = 384 × 384; slice thickness = 2.4 mm;
intersection gap = 0 mm; bandwidth = 62.5 Hz; single scan time =
58 s; and single-phase scanning slices = 106.

2.1.3 Dataset Allocation
A total of 248 patients were included. The data from January
2013 to December 2018 were randomly divided into the training
and validation sets in a ratio of 7:3. The data from January 2019
to December 2020 served as the independent testing set. The
training set included 125 patients (51 apCR and 74 non-apCR
cases), the validation set included 53 patients (23 apCR and 30
non-apCR cases), and the independent testing set included 70
patients (27 apCR and 43 non-apCR cases). The flowchart of
patient enrollment is shown in Figure 1.

2.2 Development of a Clinical Prediction
Model
The patients in the training set were divided into the apCR and
non-apCR groups. Univariate and multivariable analyses were
used to assess the difference in the clinicopathologic factors
between the two groups, and then, the independent
clinicopathologic predictive factors were used to develop the
clinical model for the prediction of apCR through
logistic regression.

2.3 Development of Radiomics Models
The radiomics analysis process in this study was as follows: i)
segmentation of the regions of interest (ROIs) on MRI; ii) image
pre-processing; iii) radiomics feature extraction; and iv)
radiomics model building and evaluation. The workflow of
MRI radiomics models developing is shown in Figure 2.

2.3.1 Segmentation of the Regions of Interest
on MRI
To extract the imaging features of ALNs, we designed two types
of ROIs. One was the axillary area on MRI, and the other was all
visible ALNs on MRI. We also included features of the primary
tumor in the analysis. A previously trained 3-dimensional (3D)
U-Net segmentation model based on deep learning in Python (v
3.6.0, https://www.python.org/) was used to automatically
segment the breast tumor, axillary area, and visible ALNs on
post-NAC DCE-MRI (29). While segmenting the axillary area,
the upper boundary was the top of the scan range; the lower
boundary was approximately flat with the fourth rib; the
posterior boundary was roughly composed of the anterior edge
of the latissimus dorsi, teres major, and subscapularis; and the
medial border was mainly the serratus anterior muscle
(including the lymphatic adipose tissue between the pectoralis
major and minor muscles and behind the pectoralis minor
muscle). If there was no visible tumor on the DCE-MRI post-
NAC, the radiologists segmented the tumor bed manually by the
presence of tumor bed fibrosis and/or anatomical landmarks
according to the pre-NAC MRI (radiologist NQ and radiologist
December 2021 | Volume 11 | Article 786346
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XW with 15 and 17 years of experience in radiological diagnosis,
respectively, response for the manually segmentation). All the
radiologists were blinded to the patients’ pathologic outcomes.
They separately performed manual segmentation for all cases
that needed manual segmentation. The Dice score between
radiologists NQ and XW was calculated as follows: Dice =
2(X∩Y)
X+Y , where X and Y denote the number of pixels in the

segmented images of Radiologists A and B, respectively, and X
∩ Y denotes the number of pixels in the overlapping part of the
two radiologists’ segmented images. In this study, in all patients
who had not achieved an apCR, at least one lymph node could be
seen in the axillae. However, among the patients who achieved
apCR, there were very few patients with no visible lymph nodes
in the axillae. At this time, we would determine the approximate
location of the ALN in the post-NAC MRI based on the position
of the ALNs shown in previous MRIs according to anatomical
landmarks and then use the deep learning model to generate a
substitute ROI with an average volume of all the segmented
lymph nodes in the corresponding area. All the automatically
segmented images were checked by two dedicated breast
radiologists on ITK-SNAP Version 3.6.0 (www.itksnap.org)
and manually modified if necessary (radiologists MM and XW,
response for the modified). A total of 30 random patients were
Frontiers in Oncology | www.frontiersin.org 4
selected, and radiologists MM and XW checked the images of
these 30 patients separately and modified them if necessary. The
Dice score between radiologists MM and XW in these 30 patients
was also calculated after checking the images. Examples of
segmentation are shown in Figure 3 . If there were
disagreements between the radiologists during the image
segmentation process, they reach a consensus according to the
viewpoint of the majority of radiologists who participated in
this study.

2.3.2 Image Pre-Processing and Radiomics
Feature Extraction
Three types of images were used for analysis in this study,
namely, “Original Images,” “Laplacian of Gaussian (LoG)
Images,” and “Wavelet Images.” “Original Images” were the
images without any transformation, while “LoG Images” were
the images with LoG filtered, and “Wavelet Images” were the
images with wavelet transformation. LoG filter was mainly used
to enhance image edge detection, while wavelet transformation
was used for image denoising and improving image quality. The
LoG filter was applied to the original images to obtain fine to
coarse textures (filter width: fine, s = 1.0; medium, s = 3.0;
coarse, s = 5.0). So there were 3 types of LoG images.
FIGURE 1 | Flowchart of patient enrollment. BC, breast cancer; NAC, neoadjuvant chemotherapy; CNB, core needle biopsy; FNAB, fine-needle aspiration biopsy;
ALN, axillary lymph node; ALND, axillary lymph node dissection; apCR, axillary pathologic complete response.
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The original images underwent a three-dimensional (i.e., x, y, and
z directions) wavelet transformation through the PyWavelet
package on Python. Each image was filtered by a high band-
pass filter or low band-pass in the three directions, thus resulting
in 8 combinations of different decompositions: LLH, LHL, HLL,
LHH, HHL, HLH, HHH, and LLL (H means high, and L means
low). Then the PyRadiomics software package in Python (https://
github.com/radiomics/pyradiomics) was used to extract
radiomics features. All characteristics were recorded and stored
in a quantitative form. A total of 14 types of shape features, 18
types of first-order statistical features, and 70 types of texture
features [n = 24 Gray Level Co-occurrence Matrix (GLCM) + 16
Gray Level Run Length Matrix (GLRLM) + 16 Gray Level Size
Zone Matrix (GLSZM) + 14 Gray Level Dependence Matrix
(GLDM)] were used for analysis in our study (Supplementary
Table 1). The shape features were only extracted from the
“Original Images,” while the first-order statistical and texture
features were extracted from all three types of images. Thus, the
extracted features contained 14 shape features, 216 first-order
statistical features [(1 Original Images + 3 LoG Images + 8
Wavelet Images) × 18], and 840 texture features [(1 Original
Images + 3 LoG Images + 8 Wavelet Images) × 70]. All shape
features, first-order statistical features, and texture features were
extracted from the visible ALNs and primary tumors. Among the
visible ALNs, the shape features were extracted from the lymph
node most suspected of showing metastasis, and when none of
the lymph nodes were suspected of showing metastasis, the
largest lymph node among them was designated as the lymph
node for extracting shape features. While extracting first-order
statistical features and texture features, the visible ALNs were
extracted as a whole. While extracting radiomics features in the
Frontiers in Oncology | www.frontiersin.org 5
axillary area, we only extracted the first-order features and
texture features because we believed that the shape features of
the axillary area did not represent the characteristics of ALNs.

2.3.3 Radiomics Model Development and Evaluation
In the training set, the radiomics models were developed by
following the four processes: data normalization (four methods),
dimension reduction (two methods), feature selection (four
methods), and classification (seven methods) (Tables 1, S1 in
the Supplementary Material). All possible combinations of the
methods were used for building radiomics models. Several
methods in each process were used in order to provide more
choices for the model building and to choose more suitable
modeling methods. Four types of radiomics models were built,
namely, a model based on the MRI features of the axillary
region (Model 1), a model based on the MRI features of visible
ALNs (Model 2), a model based on the MRI features of breast
tumor (Model 3), and a model based on the combination of the
breast tumor and the axillary region or visible ALNMRI features,
depending on Model 1 and Model 2, whichever would perform
better (Model 4). The performance of all the radiomics models
for predicting apCR was investigated in the training and
validation sets. The radiomics model of each type with the best
performance between the training and validation sets would be
selected as the final model of each type. When several models had
the same or quite similar prediction performance, a model that
included the fewest features was chosen in order to reduce the
complexity of the model and the risk of non-generalization. All
the works related to radiomics model development and
evaluation were completed through Feature Explorer Pro
(FAEPro, V 0.3.4) in Python (v 3.6.0) (30).
FIGURE 2 | The workflow of MRI radiomics model development. LoG, Laplacian of Gaussian; PCA, principal component analysis; PCC, Pearson correlation
coefficient; KW, Kruskal–Wallis; RFE, recursive feature elimination; SVM, support vector machine; LR, logistic regression; LASSO, least absolute shrinkage and
selection operator; RF, random forest; ALNs, axillary lymph nodes.
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2.4 Development of a Clinical–Radiomics
Model
A clinical–radiomics model was built by integrating MRI features
used in the best radiomics model and clinical factors used in the
clinical model. The clinical–radiomics model was developed in the
training set and then evaluated in the validation and testing sets.
Frontiers in Oncology | www.frontiersin.org 6
2.5 Statistical Analysis
The chi-square test was used to compare the categorical variables
between the training and validation sets. The variables between
the apCR and non-apCR groups in the training set were also
compared by chi-square test and the variables with significant
differences (p < 0.05) were submitted to the multivariate analysis
FIGURE 3 | Representative images segmentation (A1–A3 for the axilla; B1–B3 for the visible ALNs; C1–C4 for the primary tumor with non-bpCR; D1–D4 for the
primary tumor with bpCR; C1 and D1 were the pre-NAC MRIs, while C2 and D2 were the post-NAC MRIs). A3, B3, and C4 were automatically segmented by the
deep learning model. The breast tumor bed (D3) was manually segmented based on the anatomical landmarks according to the pre-NAC MRI (D1).
December 2021 | Volume 11 | Article 786346
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using logistic regression, and the hazard ratios (HRs) and 95% CIs
were calculated. After multivariate analyses, the clinical model was
builtwith the independentpredictive clinical factors (p<0.05) in the
training set by logistic regression. The predictive performance of all
modelswas assessedusing a receiveroperating characteristic (ROC)
curve analysis and by calculating the area under the curve (AUC).
The sensitivity, specificity, accuracy, positive predictive value
(PPV), and negative predictive value (NPV) were calculated at a
cutoff value that maximized the value of Youden’s index in the
training set. Calibration curves were used to show the agreement
between the predicted probability of apCR and real observed
probability in the clinical–radiomics model. Decision curve
analysis (DCA) was used to evaluate the clinical decision value of
each model. For all statistics, p < 0.05 was considered statistically
significant, and all tests were two-tailed. R software (version 4.1.0,
www.r-project.org) was used to conduct all statistical analyses.
3 RESULTS

3.1 Characteristics of the Patients
The clinical characteristics of the entire training, validation, and
testing sets are shown in Table 2. All characteristics were not
significantly different between the training and validation sets (p
> 0.05). An apCR was observed in 101 (40.7%) cases (training set,
n = 51; validation set, n = 23; and testing set, n = 27).
3.2 The Clinical Model for Predicting an
Axillary Pathologic Complete Response
On univariable analysis, cN, HR status, and cTR were
significantly associated with apCR (p < 0.05, Table 3) in the
training set. After multivariate analyses based on logistic
regression, cN, HR status, and cTR were independent
predictors and were selected to build the clinical model to
predict apCR (Table 3). The clinical model yielded AUC
values of 0.759 in the training set, 0.787 in the validation set,
and 0.771 in the testing set for predicting an apCR (Figure 4A).
Frontiers in Oncology | www.frontiersin.org 7
3.3 Radiomics Models for Predicting an
Axillary Pathologic Complete Response
The mean Dice score between radiologists NQ and XW in
manually segmented cases was 0.864, and the mean Dice score
between radiologists MM and XW in the 30 automatically
segmented cases after the manual correction was 0.948,
indicating good image segmentation consistency between
researchers. After dimension reduction of feature matrices, the
feature selector selected the top 20 features of each model for
modeling. The outputs of radiomics models were the predicted
probabilities of patients belonging to the two categories (i.e.,
apCR or non-apCR). We called the predicted probabilities of
apCR “radiomics signatures” and used them to perform the ROC
analysis. Finally, Models 1, 2, and 3 using six, nine, and six
features, respectively, yielded the best performance (i.e., AUC
value) in predicting an apCR. Model 1, Model 2, and Model 3
yielded AUC values of 0.786, 0.924, and 0.878 in the training set
and 0.670, 0.766, and 0.751 in the validation set, respectively
(Figures 4B–D). The performances of Model 2 and Model 3
were similar, and both of them were better than Model 1. Hence,
we built Model 4 based on the combination of MRI features of
breast tumors and ALNs. Finally, Model 4 with six features (four
from the breast tumor and two from the ALNs) yielded the best
performance. The AUC values of Model 4 were 0.894 in the
training set and 0.811 in the validation set. Therefore, Model 4
was the best-performing radiomics model and was selected as the
final radiomics model. We tested Model 4 in the independent
testing set, and it yielded an AUC value of 0.806 for predicting
apCR (Figure 4E). The modeling processes of the 4 radiomics
models are shown in Table 4, and the final selected radiomics
features of the 4 radiomics models are listed in Table 5.

3.4 The Clinical–Radiomics Model for
Predicting an Axillary Pathologic
Complete Response
Radiomics signatures provided by Model 4 showed significant
differences (p < 0.001) between the apCR and non-apCR patients
in the training set. After multivariate logistic regression with the
independent clinical predictors (cN, HR status, and cTR),
radiomics signatures, HR status, and cN were independent
predictors of apCR (Supplementary Table 2). The clinical–
radiomics model was built based on these independent
predictors through logistic regression in the training set. The
clinical–radiomics model yielded AUC values of 0.924, 0.851,
and 0.878 in the training set, validation set, and testing set,
respectively (Figure 4F). To show Model 4 more intuitively and
to increase its clinical applicability, we established a nomogram
to display Model 4 (Figure 5). The calibration curves showed
good consistency between the predicted probability by the
nomogram and the observed probabilities in the three
sets (Figure 6).

3.5 Comparison of the Performance
of Models
The optimal cutoff values for predictive apCR of each model
were determined in the training set, which maximized the
TABLE 1 | Alternative methods at every step of the modeling process.

Modeling Steps Methods

Normalization None
Mean
Z-score
Min–max

Dimension reduction Pearson correlation coefficient (PCC)
Principal component analysis (PCA)

Feature selection Recursive feature elimination (RFE)
ANOVA
Kruskal–Wallis test (KWT)
Relief

Classification Least absolute shrinkage and selection operator (LASSO)
Random forest (RF)
Support vector machine (SVM)
Decision tree
XGBoost
Adaboost
Logistic regression (LR)
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value of Youden’s index. The cutoff values of the clinical
model, Model 4, and the clinical–radiomics model were
0.486, 0.640, and 0.361, respectively. Based on the cutoff
values, the accuracy, sensitivity, specificity, PPV, and NPV of
the clinical model, Model 4, and clinical–radiomics model
were calculated in the training, validation, and testing sets
(Table 6). Taken together, the clinical–radiomics model
performed the best in the three sets, and Model 4 was
slightly better than the clinical model. The DCA showed that
the net benefit of using the clinical–radiomics model to predict
an apCR was greater than that of the two other models in the
training, validation, and testing sets (Figure 7).
Frontiers in Oncology | www.frontiersin.org 8
4 DISCUSSION

In this study, we designed three types of models to predict apCR
in initial ALN-positive BC patients post-NAC.We found that the
clinical–radiomics model that integrated clinicopathologic
factors and MRI signature had better predictive performance
than the clinical model or radiomics model alone. Previous
studies (31–34) have shown that patients who had BCs with
HER2 positivity, TN subtypes, high Ki67 expression, higher
histological grade, lower initial cN, and good tumor response
to NAC were more likely to achieve apCR. All these
characteristics were included in our study, and we found that
TABLE 2 | Clinicopathologic characteristics of patients.

Characteristic No. (%) p-Value

Entire set (n = 248) Training set (n = 125) Validation set (n = 53) Testing set (n = 70)

Age, years 0.44
≤40 49 (19.8) 25 (20.0) 8 (15.1) 16 (22.9)
>40 199 (80.2) 100 (80.0) 45 (84.9) 54 (77.1)

Menopausal 0.51
Premenopausal 134 (54.0) 68 (54.4) 26 (49.1) 40 (57.1)
Postmenopausal 114 (46.0) 57 (45.6) 27 (50.9) 30 (42.9)

Histological type 0.68
Invasive ductal carcinoma 232 (93.5) 114 (91.2) 50 (94.3) 68 (97.1)
Invasive lobular carcinoma or others 16 (6.5) 11 (8.8) 3 (5.7) 2 (2.9)

Clinical T stage 0.61
1 26 (10.5) 16 (12.8) 6 (11.3) 4 (5.7)
2 172 (69.4) 80 (64.0) 39 (73.6) 53 (75.7)
3 39 (15.7) 20 (16.0) 6 (11.3) 13 (18.6)
4 11 (4.4) 9 (7.2) 2 (3.8) 0 (0)

Clinical N stage 0.76
1 170 (68.5) 82 (65.6) 36 (67.9) 52 (74.3)
2 78 (31.5) 43 (34.4) 17 (32.1) 18 (25.7)

HR 0.60
Negative 107 (43.1) 56 (44.8) 26 (49.1) 25 (35.7) 0.27
Positive 141 (56.9) 69 (55.2) 27 (50.9) 45 (64.3)

HER2
Negative 134 (54.0) 67 (53.6) 31 (58.5) 36 (51.4)
Positive 114 (46.0) 58 (46.4) 22 (41.5) 34 (48.6)

Subtypes 0.30
HR+HER2− 89 (35.9) 48 (38.4) 17 (32.1) 24 (34.3)
HR+HER2+ 52 (21.0) 21 (16.8) 10 (18.9) 21 (30.0)
HR−HER2+ 62 (25.0) 37 (29.6) 12 (22.6) 13 (18.6)
HR−HER2− 45 (18.1) 19 (15.2) 14 (26.4) 12 (17.1)

Histological grade 0.26
1, low 8 (3.2) 6 (4.8) 1 (1.9) 1 (1.4)
2, intermediate 132 (53.2) 75 (60.0) 27 (50.9) 30 (42.9)
3, high 108 (43.6) 44 (35.2) 25 (47.2) 39 (55.7)

Ki67 0.75
≤30% 71 (28.6) 36 (28.8) 14 (26.4) 21 (30.0)
>30% 177 (71.4) 89 (71.2) 39 (73.6) 49 (70.0)

Clinical tumor response 0.50
SD 31 (12.5) 17 (13.6) 4 (7.5) 10 (14.3)
PR 192 (77.4) 96 (76.8) 45 (84.9) 51 (72.9)
CR 25 (10.1) 12 (9.6) 4 (7.6) 9 (12.8)

Axillary pathologic complete response 0.75
Yes 101 (40.7) 51 (40.8) 23 (43.4) 27 (38.6)
No 147 (59.3) 74 (59.2) 30 (56.6) 43 (61.4)
December 2021 | Volume 11 | Article
HR, hormone receptor; HER2, human epidermal growth factor receptor 2; SD, stable disease; PR, stable disease; CR, complete response; T, tumor; N, node; p, c2 test between the
training and validation cohorts.
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cN, HR status, and clinical tumor response to NAC were
significantly associated with apCR on univariable analysis. This
is consistent with previous research. After multivariate analyses,
cN, HR status, and clinical tumor response to NAC were all
independent predictors. The clinical model was built using these
independent predictors, and the model performed moderately on
the training, validation, and testing sets.

Unlike many previous studies that used MRI features of
breast tumors to predict the status of ALN (12–17, 19), we
included dedicated ALNMRI features for research in the present
study. We designed two types of ROIs to include the radiomics
features of ALNs: one was the axillary area on the MRI, and the
other was the visible lymph nodes in the axillary region. In
addition to ALNs, the axillary area included features of other
tissues within the axilla; thus, it was not particularly precise but
was easy to perform image segmentation. The visible ALNs more
accurately contained the radiomics features of ALNs, but it was
not easy to perform image segmentation. Since the response of
ALNs to NAC is closely related to the response of primary breast
tumors to NAC (31, 32), we also included MRI features of
primary breast tumors in the analysis. We believed that the
Frontiers in Oncology | www.frontiersin.org 9
post-NAC MRI features of the tumor can reflect the tumor’s
response to NAC, and we hypothesized that there are differences
among those tumors with different responses to NAC.

Before extraction of the radiomics features, accurate
segmentation of the ROI is a key step in radiomics research.
Segmentation methods include manual, semi-automatic, and
fully automatic methods (35). Manual segmentation is time-
consuming, and it increases the labor burden. In this study, we
used a deep learning model to automatically segment the ROIs,
which was time-saving and labor-saving. To segment the ROIs
more accurately, radiologists checked the automatically
segmented images and made corrections whenever necessary;
hence, the reliability of the research was assured.

We built four radiomics models through various
combinations of the features extracted from each ROI. Finally,
Model 1 yielded an AUC value of 0.673 in the validation set, its
predictive performance was poor, and it was not better than the
clinical model. The performances of Model 2 and Model 3 were
similar to those of the clinical model in the validation set, and
both of them were better than Model 1. These results suggested
that the radiomics features of breast tumors or ALNs can be used
TABLE 3 | Univariable and multivariate analyses of apCR post-NAC in relation to clinicopathologic characteristics in the training cohort.

Characteristic Axillary pathologic complete response No. (%) p1 value OR 95% CI95% CI p2 value

No (n = 74) Yes (n = 51)

Age, years
≤40 16 (21.6) 9 (17.6) 0.59
>40 58 (78.4) 42 (82.4)

Menopausal
Premenopausal 39 (52.7) 29 (56.9)
Postmenopausal 35 (47.3) 22 (43.1) 0.65

Histological type
Invasive ductal carcinoma 67 (90.5) 47 (92.2)
Invasive lobular carcinoma or others 7 (9.5) 4 (7.8) 1

Clinical T stage
1 9 (12.2) 7 (13.7)
2 47 (63.5) 33 (64.7)
3 12 (16.2) 8 (15.7)
4 6 (8.1) 3 (5.9) 0.96

Clinical N stage
1 38 (51.4) 44 (86.3) <0.001 5.58 2.21–15.98 <0.001
2 36 (48.6) 7 (13.7)

HR
Negative 24 (32.4) 32 (62.7) <0.001 3.03 1.36–6.93 0.007
Positive 50 (67.6) 19 (37.3)

HER2
Negative 43 (58.1) 24 (47.1)
Positive 31 (41.9) 27 (52.9) 0.22

Histological grade
1, low 5 (6.7) 1 (2.0)
2, intermediate 46 (62.2) 29 (56.9)
3, high 23 (31.1) 21 (41.1) 0.29

Ki67
≤30% 26 (35.1) 10 (19.6)
>30% 48 (64.9) 41 (80.4) 0.06

Clinical tumor response
SD/PR 71 (95.9) 42 (82.4)
CR 3 (4.1) 9 (17.6) 0.03 5.00 1.25–26.17 0.033
De
cember 202
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HR, hormone receptor; HER2, human epidermal growth factor receptor 2; SD, stable disease; PR, stable disease; CR, complete response; T, tumor; N, node; apCR, axillary pathologic
complete response; p1 value, c2 test between the apCR and non-apCR cohorts; p2 value, multivariate analysis result.
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FIGURE 4 | The receiver operating characteristic (ROC) curves of all the models. AUC, area under the curve.
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to predict apCR. Therefore, we discarded Model 1 and built
Model 4 based on the combination of MRI features of breast
tumors and ALNs. Our purpose was to detect whether the
combined model could improve the prediction performance.
The result obtained indicated that Model 4 performed better
than all the other radiomics models and the clinical model.
Therefore, Model 4 was selected as the final radiomics model.

After integration of clinical factors and MRI radiomics
signature to build a combined model, the clinical–radiomics
model had a significantly improved predictive ability in all the
three sets. The DCA also shows that the net benefit of using the
clinical–radiomics model to predict an apCR was greater than
that of using the radiomics model and clinical model in the three
sets. All these results indicate that the clinical–radiomics model
can help us to more accurately identify patients who have
achieved an apCR.
Frontiers in Oncology | www.frontiersin.org 11
Few previous studies had included dedicated ALN MRI
radiomics features in the prediction of ALN metastasis in BC
patients (18, 20, 21). Yu et al. found that radiomics features
extracted from ALNs were better than radiomics features
extracted from primary tumors for ALN status identification,
and the clinical–radiomics nomogram accurately predicted ALN
metastasis in the development and validation cohorts (AUC, 0.92
and 0.90, respectively) (18). Another study also conducted by Yu
et al. showed that the ALN-tumor radiomics signature for ALN
status prediction showed a high prediction quality with AUCs of
0.88, 0.87, and 0.87 in the training cohort, external validation
cohort, and prospective-retrospective validation cohort,
respectively. The model incorporating tumor and ALN MRI
radiomics features and clinicopathologic characteristics further
improved the performance for ALN status prediction (21). Our
results were similar to those of the two studies, but the difference
was that the patients included in their studies were treated with
or without NAC. In addition, the primary endpoint of these two
studies was not predicting an apCR, while all the patients
included in our study had ALN metastasis confirmed by
pathology pre-NAC. The current recommended treatment for
these patients post-NAC is still ALND. For patients with ALN
negative, SLNB can be used to determine the status of the axillary
post-NAC. That is to say, it is more necessary to build a model to
predict the status of ALN in initial ALN-positive patients post-
NAC. Our research filled this gap. There is also a study that
found that dedicated axillary MRI radiomics features did not
accurately predict ALN metastases in BC patients preoperatively
(20). However, the sample size of this study was too small, and
the conclusion needs further verification.

The best radiomics model, Model 4, contained one shape
feature, four first-order statistical features, and one texture
feature. The shape features include two- or three-dimensional
descriptors derived from ROI and are regarded as vital features to
evaluate the characteristics of tumors (35, 36). The first-order
statistical features indicate the statistical value of the image
intensity and are used to evaluate the homogeneous patterns
and variability in an image (35, 36). The texture features indicate
the spatial inter-dependency or co-occurrence of information
across neighboring voxels of the image and are used to evaluate
the intertumoral heterogeneity (35, 36). The shape features, first-
order statistical features, and texture features were widely used in
the studies on the identification of ALN status (12–18, 35, 36).
Previous studies had reported that the texture features could
reflect the breast tumor molecular subtypes and lymphocyte
infiltration (37). The texture features could reflect the BC
heterogeneity combined with the first-order statistical features
(38). And the genetic characteristics could be predicted by the
TABLE 4 | Construction process of the 4 radiomics models.

Radiomics Processes Model 1 (Axillary MRI) Model 2 (ALN MRI) Model 3 (Tumor MRI) Model 4 (ALNs and Tumor MRI)

Data normalization None None Min–max Mean
Dimension reduction PCA PCC PCC PCC
Feature selection KWT RFE ANOVA KWT
Classification Adaboost Adaboost Adaboost RF
December 2
ALNs, axillary lymph nodes; PCA, principal component analysis; PCC, Pearson correlation coefficient; RFE, recursive feature elimination; KWT, Kruskal–Wallis test; RF, random forest.
TABLE 5 | Key features used in the four radiomics models.

Model
name

Key features

Model 1 PCA_feature_5
PCA_feature_6
PCA_feature_53
PCA_feature_58
PCA_feature_79
PCA_feature_89

Model 2 wavelet-HHH_firstorder_Mean
wavelet-HLH_firstorder_Mean
wavelet-LHH_glszm_SmallAreaLowGrayLevelEmphasis
wavelet-LHL_firstorder_Skewness
wavelet-HHL_firstorder_Skewness
wavelet-LLH_glcm_ClusterShade
log-sigma-3-0-mm-3D_glcm_ClusterShade
log-sigma-5-0-mm-3D_firstorder_Skewness
log-sigma-5-0-mm-
3D_gldm_LargeDependenceLowGrayLevelEmphasis

Model 3 original_shape_SurfaceVolumeRatio
original_shape_Sphericity
wavelet-LHH_glcm_Correlation
wavelet-LHH_glcm_MCC
log-sigma-3-0-mm-3D_firstorder_Skewness
log-sigma-5-0-mm-3D_firstorder_Skewness

Model 4 mass-original_shape_SurfaceVolumeRatio
mass-wavelet-LHL_firstorder_Median
mass-wavelet-LLH_firstorder_RootMeanSquared
Lymphnode-wavelet-HHH_firstorder_Mean
mass-log-sigma-5-0-mm-3D_firstorder_90Percentile
Lymphnode-wavelet-
LHH_glszm_SmallAreaLowGrayLevelEmphasis
H, high; L, low; GLCM, Gray Level Co-occurrence Matrix; GLSZM, Gray Level Size Zone
Matrix; GLDM, Gray Level Dependence Matrix.
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shape and texture features (39). The alliance of these radiomics
features could detect the BC microenvironment (21). In other
words, MRI radiomics features can reflect the biological behavior
of breast tumors. All this biological information of BC can be
used to predict tumor metastasis and NAC response (40, 41).
This may be the reason why we can use MRI radiomics features
Frontiers in Oncology | www.frontiersin.org 12
to predict an apCR. Due to the large number of MRI radiomics
features, as well as the difference in the purposes and methods
used in these studies, the specific radiomics features ultimately
selected for modeling were mostly different. But the shape feature
of surface volume ratio and the texture feature of GLSZM
included in our study has already been used to predict ALN
status previously (18, 21). Our research also proves that the first-
order statistical features can be used to predict apCR, which is
consistent with previous research.

Our study has some limitations. First, this was a retrospective
study at a single center with a small sample size, and further
verification is needed by multicenter studies in the future.
Second, the biological behaviors of different molecular subtypes
of BC are different, but we did not analyze different molecular
subtypes separately. In the future, we will collect more cases and
differentiate subtypes to perform subtype-specific research.
Third, due to the special position of breast MRI examination,
the axillary area in some patients may not be completely covered
by breast MRI, which may affect the radiomics analysis. As an
exploratory research, this study is a preliminary attempt. In the
future, we will consider covering the axillary area as much as
possible by changing the examination position or using special
axillary coils. Fourth, we regarded the pathologic results of
ALND as the gold standard for identifying apCR, and the
visible ALNs on the MRI were assessed as a whole. Currently,
we could not achieve a one-to-one correspondence between
ALNs and pathologic results. In the future, we may be able to
use measures, such as placing marker clips in the ALNs to
achieve this purpose. Fifth, only the third phase of post-
FIGURE 5 | Nomogram for prediction of apCR. The different values of each variable correspond to a point at the top of the graph, and the sum of the points of all
variables corresponds to total points. The line from the total point to the bottom is the probability of apCR. HR, hormone receptor: 0 means negative, 1 means
positive. cN, clinical N stage; apCR, axillary pathologic complete response.
FIGURE 6 | Calibration curves of the clinical–radiomics model for the
training, validation, and testing sets.
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contrast DCE-MRI was included for radiomics analysis. Adding
more MRI sequences may improve the predictive performance of
radiomics models. We plan to include more MRI sequences for
study in the future. Finally, only the pre-NAC MRI was included
in the study. The pre-NAC MRI features were often used to
predict whether the primary breast tumor would achieve a
complete pathologic response in previous studies (42, 43). We
believe that the use of post-NAC MRI radiomics features can
reduce the influence of confounding factors such as different
treatment schemes and cycles in predicting apCR. In the future,
we will consider adding pre-NAC radiomics features for
further analysis.
5 CONCLUSION

As a preliminary attempt, this research included the MRI
features of ALNs for radiomics analysis. The radiomics model
based on post-NAC MRI features of breast tumors and ALNs
showed good performance in predicting an apCR. We also
Frontiers in Oncology | www.frontiersin.org 13
combined the clinical factors and radiomics signature to build
a clinical–radiomics model, which further improved the
predictive ability for apCR. Finally, for future application in
clinical practice, research is needed to test the feasibility of
avoiding ALND and performing instead SLNB in patients
predicted by the clinical–radiomics model to achieve an apCR.
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