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ABSTRACT
Introduction: Although several programs are designed to identify variants with 

low allelic-fraction, further improvement is needed, especially to push the detection 
limit of low allelic-faction variants in low-quality, ”noisy” tumor samples.

Results: We developed LoLoPicker, an efficient tool dedicated to calling somatic 
variants from next-generation sequencing (NGS) data of tumor sample against 
the matched normal sample plus a user-defined control panel of additional normal 
samples. The control panel allows accurately estimating background error rate and 
therefore ensures high-accuracy mutation detection.

Conclusions: Compared to other methods, we showed a superior performance 
of LoLoPicker with significantly improved specificity. The algorithm of LoLoPicker is 
particularly useful for calling low allelic-fraction variants from low-quality cancer 
samples such as formalin-fixed and paraffin-embedded (FFPE) samples.

Implementation and Availability: The main scripts are implemented in Python-2.7 
and the package is released at https://github.com/jcarrotzhang/LoLoPicker.

INTRODUCTION 

The detection of somatic mutations in tumors 
remains challenging. One of the major problems is that 
variants with low allelic-fractions that are commonly 
observed in tumor samples owing to normal tissue 
contaminations or cancer heterogeneity, are difficult 
to distinguish from systematic errors inherent to most 
sequencing technologies. Moreover, technical artifacts, 
such as C to T and G to A transitions can arise from the 
formalin-fixation process, which is widely used to preserve 
tissues in hospitals worldwide [1,2]. Therefore, additional 
filters against FFPE-specific errors are required [3]. 

NGS has emerged as an invaluable tool for 
discovering disease-causing genes. For many basic 
research or clinical laboratories, the number of samples 
being sequenced has increased dramatically. Some 
laboratories build their in-house databases to enable 
them filtering out false-positive calls that are specific to 
library preparation, protocols, instruments, environmental 
factors or analytical pipeline. Moreover, a panel of control 
samples provides an opportunity to precisely estimate 

background error rates, which can be used to increase the 
sensitivity of calling single nucleotide variants (SNVs) for 
sites with low error rate, and to reduce false positives for 
sites with high error rate [4]. 

Although several programs have been designed 
particularly to call somatic variants at low-allelic fraction, 
a caller that is able to detect low-allelic fraction variants 
in low-quality samples, such as FFPE samples is needed. 
Here we present LoLoPicker, a flexible variant caller 
for whole-exome sequencing (WES), whole-genome 
sequencing (WGS) and targeted re-sequencing analysis 
that can handle low-quality samples. This program allows 
users to provide a control panel consisting of normal 
samples processed using similar procedures as the tumor 
(e.g. FFPE samples). The control panel is used to calculate 
background error rate. Then, a binominal test is performed 
to determinate whether the tumor variant exceeds the 
background noise (Figure 1). LoLoPicker’s algorithm 
allows genome-wide variant calling with hundreds of 
control samples in a few hours. A detailed description of 
the algorithm is described in the Materials and Methods 
section. 
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RESULTS 

Benchmarking analysis 

To access the performance of LoLoPicker in 
comparison to other variant callers, we benchmarked 
LoLoPicker, MuTect [5], VarScan [6] and LoFreq [7] 
against two datasets, a true positive dataset and a false 
positive dataset. For the dataset containing true positives, 
somatic SNVs identified from WES of an ovarian 
tumor and validated by Sanger sequencing were used 

(Supplementary Table 1). The WES analysis of the ovarian 
tumor and its matched germline sample was published 
in our previous work [8]. To access the performance of 
detecting low allelic-fraction variants, BAM files of 
the ovarian tumor and the germline sample were mixed 
to ensure that the true positives described above were 
present at low allelic-fraction. In the mixed BAM file, the 
total coverage of the variants ranged from 39 to 715; the 
alternative read-count of variants ranged from 3 to 61; the 
allelic-fraction of variants ranged from 1% to 14%. We 
ran the four mutation callers using the mixed sample as 
the “new” tumor sample, and the original blood sample 
as the matched normal sample. For specificity, a sample 

Figure 1: Workflow of LoLoPicker. Step 1: LoLoPicker performs its raw somatic variant calling using tumor and its matched normal 
sample. Read filters and site filters are shown in order and listed in Table 1. Step 2: LoLoPicker takes the positions of the raw somatic 
variants identified from Step 1 and counts reads for each sites (same read filters applied) in each control sample provided in the user-defined 
control panel. Step 3: Where necessary, a K-means clustering is performed based on the allelic-fraction of the variant in each control 
sample, in order to identify control samples containing either germline variants or background errors at the given position. LoLoPicker then 
filters out recurrent germline variants identified from the control panel, merges the background errors and calculates the site-specific error 
rate. Finally, a binomial test followed by multiple-testing correction is performed. 
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that underwent WES twice in two different batches was 
used. The BAM file produced from the first batch was 
used as the tumor sample, and the one from the second 
batch was used as the matched normal sample. Therefore, 
any variants called by the four programs were considered 
as false positives. An example of data used for the 
benchmarking analysis is available in the LoLoPicker 
Github repository and the scripts used to generate the 
results are included in the Supplementary Information. 

Because samples used in this benchmarking analysis 
were fresh-frozen samples, we used 500 germline, non-
cancer samples from unrelated individuals that were 
processed for WES in the same way as the fresh-frozen 

samples (as described in Materials and Methods) for our 
control panel. The control panel was also provided to 
MuTect to enable its panel of normal filtering mode. As 
suggested by MuTect, the “--normal_panel” option allows 
an additional filter from a panel of normal samples that 
can further improve MuTect’s specificity [5]. For variant 
calling, default parameters were applied to all programs, 
except in VarScan, “--min-coverage 0”, and “--min-var-
freq 0” were used to allow calling low allelic-fraction 
variants, and in MuTect, the “--normal_panel” option 
under MuTect’s artifact detection mode was applied. The 
performances of the four mutation callers were visualized 
by ROC analysis based on the binomial p-value of 

Table 1: Number of true positives and false positives called by LoLoPicker, MuTect, VarScan and LoFreq in the 
benchmarked analysis, suggesting high sensitivity and specificity of LoLoPicker. 

*Number of false positives called by MuTect is reduced to 15, when we apply the “--normal_panel” option in MuTect using 
the same controls as LoLoPicker.

Figure 2: ROC analysis. The performances of LoLoPicker, MuTect, VarScan, and LoFreq in calling SNVs at low allelic-fraction (1-
10%) are compared using the benchmarked samples. LoLoPicker showed increased sensitivity and specificity compared to other methods. 
The ROC analysis is based on the binomial p-value of LoLoPicker, the tumor Fstar LOD score of MuTect, the somatic p-value of VarScan, 
and the VCF quality score of LoFreq.
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LoLoPicker, the tumor Fstar LOD score of MuTect, the 
somatic p-value of VarScan, and the VCF quality score 
of LoFreq. The ROC analysis was conducted using the 
ROCR package [9]. As the results, both LoLoPicker and 
MuTect showed the highest sensitivity, and LoLoPicker 
showed the highest specificity compared to other programs 
(Figure 2, Table 1). 

Analyzing fresh-frozen tumor sample 

We then applied LoLoPicker, MuTect and VarScan 
to analyze a real tumor sample with its matched germline 
sample from a glioblastoma (GBM) patient (GBM_9). 
Because the tumor sample is a fresh-frozen sample 
processed similarly to the benchmarked samples, we ran 
LoLoPicker and MuTect against the same control panel as 
used in the benchmarking analysis. The average coverage 
of GBM_9 was 59X for the tumor sample, and 78X for 
the matched blood sample. When parallelized in 8 threads, 
LoLoPicker finished analyzing the WES data of GBM_9 
with its blood sample against 500 control samples in 
approximately 2.5 hours. 

As the results, LoLoPicker called 60 somatic 
variants, while MuTect and VarScan called 182 variants 
and 503 variants, respectively. Most of the low allelic-
fraction variants were not called by more than one 
method (Figure 3A). Known GBM driving mutations 
were identified, including p.R174X in TP53, p.K27M 
in H3F3A, p.R1480X in ATRX, and p.H1047R in 
PIK3CA. Only LoLoPicker successfully identified all four 
mutations. MuTect discarded the TP53 mutation because 
it found more than one read supporting the variant in 
the blood sample. The TP53 mutation is later validated 
as a real somatic mutation using targeted re-sequencing. 
LoLoPicker retained this mutation because we consider 
overlapping read-pair covering the same variant as one 
(Figure 3B). Notably, the PIK3CA mutation showed a 
low allelic-fraction at 6%. VarScan missed the PIK3CA 
mutation, suggesting again that the sensitivity of VarScan 
for detecting low-allelic fraction variants is not as high as 
LoLoPicker and MuTect. 

We selected 14 SNVs identified from GBM_9. 
Variants that were called by both LoLoPicker and MuTect, 
or called by MuTect only but with potential implication in 

Figure 3: A. Venn diagram of variants in GBM_9 called from different tools. a. Number of total variants called by LoLoPicker, MuTect 
and VarScan. b. Number of low allelic-fraction (<10%) variants called by the three callers. B. Snapshot of IGV showing TP53 mutation 
(p.R174X) in GBM_9 and its matched blood sample. MuTect filtered out this mutation because three reads supporting the variant are 
observed in the blood sample. However, two of them were overlapping read-pair (highlighted in red), which are counted as one in 
LoLoPicker. The third read has low mapping quality less than 30. Therefore, this mutation is retained in LoLoPicker.
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cancer were selected for targeted re-sequencing validation 
(Table 2). The goal of this validation is to assess whether 
LoLoPicker missed true variants. All the selected variants 
were not previously reported in public sequencing 
databases including dbSNP, 1000 genome and Exome 
Variant Server (EVS). We found that variants called by 
both programs were all validated; whereas variants called 
by MuTect but rejected by LoLoPicker were all failed 
validation, including four variants with higher coverage 
(>=5X) supporting the alternative base. Our results 
suggested the high specificity of LoLoPicker without 
rejecting true variants as a trade-off. 

Other somatic variants may exist in GBM_9. 
Variants reported in the Catalogue of Somatic Mutations 
in Cancer (COSMIC) were enriched among variants called 
by LoLoPicker (10%) compared to 2% of LoLoPicker-
rejected calls. By contrast, among the variants called 
by MuTect and VarScan, 7% and 2% were reported 
in COSMIC, respectively. MuTect also rejected 5% 
COSMIC reported variants (Figure 4A). This suggested 
that compared to MuTect and VarScan, LoLoPicker called 
more cancer-related variants. Moreover, LoLoPicker 
identified 131 germline variants in GBM_9 from the 
control panel of 500 non-cancer, germine samples (Figure 
4B). All these variants were previously reported in the 
dbSNP database. 

Analyzing FFPE tissue 

In our previously published work on small cell 
carcinoma of the ovary, hypercalcemic type (SCCOHT), 
we showed that only one gene – SMARCA4 – was 
recurrently mutated in our case cohort and was responsible 
for this disease [10]. Because the SCCOHT samples 
have a very simple spectrum of somatic mutations, 
they are ideal for identifying FFPE-related problems. 
Therefore, we tested LoLoPicker, MuTect and VarScan 
on the tumor and its matched normal tissue of an FFPE-
SCCOHT sample (UN5) sequenced by WES. A control 
panel consisting 35 FFPE samples was provided to both 
LoLoPicker and MuTect. All the three programs called 
the SMARCA4 mutation (c.2275-1 G>T). Although 
very few variants other than the SMARCA4 mutation 
were expected, MuTect and VarScan called 483 and 143 
variants, respectively. Moreover, MuTect only filtered 
out 19 variants using its ““--normal_panel” option. By 
contrast, LoLoPicker identified 87 variants. After filtering 
out dbSNP reported variants, 42 variants were retained in 
LoLoPicker, whereas 384 and 101 variants were retained 
in MuTect and VarScan, respectively. Among the 42 
variants called by LoLoPicker, 21 (50%) of them were C 
to T or G to A transitions; whereas 82% of the variants 
called by MuTect were C to T or G to A. Moreover, 
most of the LoLoPicker rejected calls (91%) were these 
transitions (Figure 4C). These transitions are possible 
artifacts related to the FFPE protocol [2,3]. 

Table 2: Variants in GBM_9 selected for targeted re-sequencing validation and their status in LoLoPicker and 
MuTect calls 

All selected variants are not previously reported in public databases.  
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DISCUSSION 

LoLoPicker is tailored for calling low allelic-
fraction, somatic variants. Compared to other programs, 
LoLoPicker showed the highest sensitivity and more 
importantly, a dramatically improved specificity, thus 
emphasizing the importance of precisely measuring the 
background error rate from additional control samples, 
rather than from the matched normal sample solely. 
Compared to MuTect’s method that ruling out any 
variants or artifacts seen more than once in the control 
panel, LoLoPicker’s statistical framework allowed higher 
specificity and filtered out more FFPE-related artifacts. 
Although we mainly demonstrated the performance 

of LoLoPicker in WES analysis, this program is also 
feasible for WGS and targeted re-sequencing analysis. 
Recommended parameters for analyzing WGS and 
targeted re-sequencing data are provided in the 
Supplementary Information. The runtime of LoLoPicker 
depends on the sample size of the control panel. Notably, 
the LoLoPicker algorithm can be easily parallelized to 
allow genome-wide variant calling against hundreds of 
control samples in a few hours. 

Samples provided in the control panel are essential 
in estimating the background error rate. The more 
normal samples are included in the control panel, the 
more accurate error rate will be measured. However, we 
suggest that samples processed and aligned similarly to 

Figure 4: A. Proportion of variants reported in COSMIC. Variants used in this plot are either called or rejected by LoLoPicker, MuTect 
or VarScan in GBM_9. B. K-means clustering distinguishes germline variants from background noise. Identified germline variants (red 
circles) and background errors (black circles) from 500 germline, non-cancer samples. At this position, one SNP (rs61731354) is found 
in five samples with mean allelic-fraction at 0.35 (red star). Sequencing artifacts are found in 130 samples at the site with mean allelic-
fraction at 0.02 (black star). C. Percentage of C to T and G to A transitions in LoLoPicker and MuTect produced results. 91% of the variants 
rejected by LoLoPicker in UN5 (FFPE_LoLoPicker_rejected) are C to T and G to A transitions; whereas 57% of the variants called by 
LoLoPicker (FFPE_LoLoPicker_called) are these transitions. By contrast, 81% of the variants called by MuTect in UN5 are C to T and 
G to A transitions (FFPE_MuTect_called). These transitions are known FFPE artifacts and are enriched in our FFPE sample compared to 
our fresh-frozen sample (non-FFPE_LoLoPicker_rejected), suggesting the necessity of using LoLoPicker’s statistical framework to reduce 
false positives related to batch effects. 
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the tumor sample should be used. For example, using 
500 control samples that processed similarly to the fresh-
frozen tumor samples, we reduced the false calls to 3 in 
the benchmarked dataset, and we rejected all the variants 
that were not validated by targeted re-sequencing but were 
called by MuTect in GBM_9. However, using this control 
panel, LoLoPicker called more false positives in the FFPE 
sample, UN5 (112 false calls, considering the only cancer-
driving event was the SMARCA4 mutation), compared to 
86 false calls (before filtering out dbSNP variants) using 
FFPE samples as our controls, even though the sample 
size of the FFPE-control panel was as small as 35. 

Although the specificity of LoLoPicker was 
significantly improved compared to other programs, 
there were false positive calls retained in LoLoPicker 
generated results. In the benchmarking analysis, the 
three false positives were all previously reported in the 
dbSNP database, suggesting that they might be germline 
variants from foreign DNA contamination. LoLoPicker 
could not filter out these variants, because they were not 
recurrently present in the control panel. Therefore, we 
suggest that as the number of control samples available 
for a single research group is usually limited, the final 
calls of LoLoPicker should be further filtered against 
public databases, such as dbSNP, 1000 genome, EVS 
and ExAC. Additional filter against public databases also 
identified more germline variants in GBM_9 and UN5 
which were missed from the control panel. Moreover, 
the increased number of false positive calls in the FFPE 
sample analysis was associated with the lack of sufficient 
support from the control panel – even though LoLoPicker 
merged all the reads from 35 samples, some sites were 
not well covered in the control panel due to the exome-
capture efficiency bias and therefore, LoLoPicker was not 
able to identify potential artifacts in some regions. The 
performance of LoLoPicker in the FFPE analysis might be 
further improved, if we were able to obtain more FFPE-
normal samples for the control panel. Finally, we notice 
that our current model is not suitable for indel calling and 
therefore, further efforts should be made to develop novel 
methods, for instance, a machine learning algorithm [11] 
in order to detect low fraction, somatic indels. 

In conclusion, we showed that our new somatic 

mutation caller, LoLoPicker had superior performance 
compared to other popular callers, particularly with 
significantly improved specificity in calling low-allelic 
fraction variants. This program can handle WES, WGS 
and targeted re-sequencing data, as long as the users have 
control samples that are sequenced and aligned in the 
same way as the test tumor sample. The variant calling 
results can be improved with a smaller sample size of the 
control panel (e.g. 35 controls used in the FFPE analysis). 
When the sample size is large (e.g. 500 germline samples 
used in the fresh-frozen sample analysis), LoLoPicker can 
finish the analysis in a few hours on a dual-core machine. 
LoLoPicker is particularly useful for calling variants from 
FFPE samples. As FFPE samples are commonly used, our 
method will significantly benefit the current clinical cancer 
research. 

MATERIALS AND METHODS 

Step 1: raw somatic variant calling 

In order to identify raw, somatic variants, 
LoLoPicker first walks through the tumor and its matched 
normal sample sequences and identifies sites with reads 
containing non-reference bases using pysamstats (https://
github.com/alimanfoo/pysamstats). Then for each of these 
potential variants, LoLoPicker performs two classes of 
filtering: read filtering and site filtering (Table 3). After 
filtering out low base/mapping quality reads, overlapping 
read-pair covering the same variant, meaning that they 
sequence a variant from the same DNA fragment, are 
counted as one. This allows us to remove poorly supported 
variants for WES or WGS analysis, where sequencing 
depth can be low in some regions. For example, variants 
supported by only two reads and both reads are from the 
same pair are filtered. 

Step 2: inspecting the control cohort 

At a given site where a raw, somatic variant is 
observed in the tumor sample from Step 1, LoLoPicker 

Table 3: LoLoPicker’s filtering steps in order and the default settings applied in WES analysis.
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takes the user-provided panel of control samples from 
unrelated, non-cancer individuals and counts reads for 
each control sample at this position along with the same 
read filters as described in Table 3. The allelic-fraction 
of the variant is subsequently calculated in each control 
sample. 

Step 3: core statistical framework 

Again, at a given site where a variant is observed 
in the tumor sample, LoLoPicker chooses samples from 
the control panel that contain background errors (e.g. 
we select samples with an allelic-fraction of the variant 
typically less than 10%, because we consider that most 
low allelic-fraction variants in germline, non-cancer 
samples are unlikely to be real variants). If the variant 
is present at high allelic-fraction (>10%) in any control 
sample, a K-means clustering is performed on the site 
based on the variant allelic-fraction of all control samples 
in the panel. We consider control samples in the cluster 
with larger mean containing germline variants, and control 
samples in the cluster with smaller mean containing low-
fraction artifacts. If the variant is observed recurrently 
in the control panel as a germline variant, this variant is 
unlikely to be important for cancer development and is 
therefore flagged and excluded from further consideration. 
The K-means clustering is performed on all sites 
independently. 

LoLoPicker then merges the reads from all the 
background errors identified from the control panel. These 
errors are used to calculate a site-specific error rate. The 
error rate is calculated as the ratio of the total number of 
reads supporting the alternative base and the total number 
of reads covering the site: 

 

We model the read count of a specific site to be 
distributed by a binomial distribution: 

X ~ Binom(n, p)
X = number of reads supporting the alternative base 

in the tumor sample; n = number of total reads in the 
tumor sample; p = site-specific error rate calculated from 
the control panel. 

A binomial test is performed, followed by multiple-
testing correction (Bonferroni) with a cut-off of 0.05 
for significance. To assess whether a site is sufficiently 
covered to be sensitive enough to detect a mutation, 
the statistical power of the binomial test of each site is 
calculated. We keep sites that are covered with at least 
80% power to detect a mutation with 30% allelic-fraction 
for the tumor sample, and a mutation with 50% allelic-
fraction for the matched normal sample, considering 
that the allelic-fraction of a heterozygous mutation in 

the tumor sample can be reduced owing to normal tissue 
contamination.  

Sequencing and alignments 

Whole-exome library preparation, exome capture 
and sequencing were performed using our standard 
protocols at the McGill University and Génome Québec 
Innovation Centre. For germline and fresh-frozen tumor 
samples, the Agilent SureSelect kits were used, following 
the manufacturer’s protocols. FFPE tissue-derived DNA 
was captured using the Nextera Rapid-Capture Exome 
kit. The paired-end sequencing was performed using 
Illumina HiSeq 2000 with 100-bp length. High-quality 
trimmed reads were aligned to the UCSC hg19 reference 
genome with Burrows-Wheeler aligner (BWA) version 
0.5.9 [12]. Indels were re-aligned using the Genome 
Analysis Toolkit (GATK) IndelRealigner [13]. Reads 
marked as PCR duplicates by Picard were excluded from 
further analysis (http://picard.sourceforge.net/). To ensure 
the best performance of MuTect and LoFreq, GATK 
BaseRecalibrator was used to increase the base quality 
score accuracy. Targeted re-sequencing was performed 
using a MiSeq sequencing platform with an average 
coverage of 5000X. Primers used in the experiments were 
shown in Supplementary Table 2. Finally, a Fisher’s exact 
test was performed to identify somatic variants from the 
tumor and the matched germline sample.
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