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Purpose: The aim of this study was to outline a fully automatic tool capable of

reliably predicting the most suitable total knee replacement implant sizes for

patients, using bi-planar X-ray images. By eliminating the need for manual

templating or guiding software tools via the adoption of convolutional neural

networks, time and resource requirements for pre-operative assessment and

surgery could be reduced, the risk of human error minimized, and patients

could see improved outcomes.

Methods: The tool utilizes a machine learning-based 2D—3D pipeline to

generate accurate predictions of subjects’ distal femur and proximal tibia

bones from X-ray images. It then virtually fits different implant models and

sizes to the 3D predictions, calculates the implant to bone root-mean-squared

error and maximum over/under hang for each, and advises the best option for

the patient. The tool was tested on 78, predominantly White subjects

(45 female/33 male), using generic femur component and tibia plate designs

scaled to sizes obtained for five commercially available products. The

predictions were then compared to the ground truth best options,

determined using subjects’ MRI data.

Results: The tool achieved average femur component size prediction

accuracies across the five implant models of 77.95% in terms of global fit

(root-mean-squared error), and 71.79% for minimizing over/underhang. These

increased to 99.74% and 99.49% with ±1 size permitted. For tibia plates, the

average prediction accuracies were 80.51% and 72.82% respectively. These

increased to 99.74% and 98.98% for ±1 size. Better prediction accuracies were

obtained for implant models with fewer size options, however such models

more frequently resulted in a poor fit.

Conclusion: A fully automatic tool was developed and found to enable higher

prediction accuracies than generally reported for manual templating

techniques, as well as similar computational methods.
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1 Introduction

Prior to total knee replacement (TKR) procedures, surgeons

often manually evaluate the size and morphology of patient

femur and tibia bones using X-rays taken during preoperative

assessment (Tanzer and Makhdom, 2016). This information is

used to estimate the most appropriately sized TKR implant

components that will be required to achieve both a good

global fit, and minimize local areas of over/underhang (OUH),

typically from between 5 – 8 sizes (Hitt et al., 2003; Wernecke

et al., 2012). Poor implant size selection can result in increased

rates of complications, revisions, and patient pain post-surgery

(Culler et al., 2017; Schroeder and Martin, 2019; Buller et al.,

2018). The presence of regions of OUH ≥3 mm in particular is

highlighted as being clinically significant and directly linked with

cases of increased soft-tissue irritation, bleeding, osteolysis, laxity

in flexion, subsidence, and instability (Schroeder and Martin,

2019; Dai et al., 2014; Shao et al., 2020). Despite the importance

of achieving a good fit, the accuracy of manual X-ray assessment

and templating, for both femur components and tibia plates, can

be poor. Hernández-Vaquero et al. (2019) summarized the

reported accuracies from 10 different studies and found mean

selection accuracies of 59.2% for femur components and 60.7%

for tibia plates. With ±1 size permitted, mean scores of 97.4% and

96.4% were recorded respectively. Consequently, surgeons often

opt to implant a different size than estimated during preoperative

assessment (Sheth et al., 2017). This could lead to a higher chance

of human error, as well as longer procedures.

To attempt to improve the accuracy and reliability of pre-

operative size selection, other techniques besides manual X-ray

assessment and templating have been explored. Using

computerized tomography (CT) imaging was investigated by

Vaishya et al. (2018) and Kobayashi et al. (2012). The former

reported accuracies of 66% for femur components and 72% for

tibia plates, whilst the latter reported an accuracy of just 59% for

both. Using demographic factors such as patient height and shoe size

as a means of predicting implant size was investigated by Trainor

et al. (2018). They reported accuracies of 56/58% for femur

components and 56/63% for tibia plates respectively. Sershon

et al. (2017) used a combination of demographic variables

including height, weight, and sex to build a multivariate linear

regression model that achieved ±1 size prediction accuracies of

71–92% and 81–97% for a range of femur component and tibia plate

models. Optimum size prediction accuracies were not reported.

Limited computational tools capable of predicting TKR implant

sizes from X-rays were identified. Zheng et al. (2018) developed an

X-ray based tool for pre-operative knee prosthesis planning named

“3X.” The authors reported size selection accuracies of 78% for

femur components and 70% for tibia plates, based on a study

featuring 23 subjects. Massé and Ghate (2021) more recently

developed a similar tool named “X-Atlas”, primarily aimed at

creating patient-matched cutting guides from X-ray images. The

study involved 45 subjects and utilized the Zimmer Biomet

“Persona” knee implant. Size selection accuracies of 53.3% for

femur components and 57.8% for tibia plates were reported.

Both these tools feature “semi-automatic” workflows that require

users to manually identify landmarks on the inputted X-ray images

and guide “live-wire algorithms” to extract the required bone

contours.

In recent years, prediction and classification tools have

been developed in other biomedical imaging applications

using machine learning techniques to enable automatic

workflows. U-Net convolutional neural networks (CNNs) in

particular are growing in popularity as highly accurate

classification and segmentation models can be trained with

a relatively low number of reference images (Ronneberger

et al., 2015). Example applications that have adopted this

technology include in the diagnosis of COVID-19

(Mohammed et al., 2021) (Narin et al., 2021) and for

detecting tuberculosis (Liu et al., 2018). In these studies,

CNNs were trained to recognize features and patterns in

X-ray images and extract the necessary information for

diagnosis, all without requiring any guidance from the user.

Furthermore, Cernazanu-Glavan and Holban (2013)

demonstrated the benefits of usings CNNs for X-ray-based

bone segmentation over alternative methods such as artificial

neural networks, principal component analysis and fuzzy

clustering. The authors highlighted the superior accuracy of

CNNs and that all other methods investigated required some

level of human intervention. In the case of computer assisted

TKR implant size selection, the tools outlined in previous

studies all featured workflows requiring trained users’

feedback (Zheng et al., 2018; Massé and Ghate, 2021).

Consequently, the authors do not believe that these “semi-

automatic” solutions adequately address the issues preventing

widespread adoption of computer assisted sizing tools in TKR.

The aim of this study was therefore to develop a proof-of-

concept, “fully” automatic alternative, facilitated by

employing CNNs in the workflow. Such a tool could lower

the possibility of human error, whilst reducing the burden on

hospitals relating to training, completing manual X-ray

templating, and driving software packages. Necessitating no

more imaging requirements over conventional manual X-ray

based methods would help avoid additional costs, radiation

exposure, and resource/time. Lastly, an automatic, X-ray

based tool could also be of benefit in less developed
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countries where implant variety and access to 3D imaging

would likely be more limited. The workflow of the developed

size prediction tool, from inputted X-rays to size selection, is

outlined. Its performance for the dimensions of five

manufacturer models is then analyzed via various fit

metrics and compared to the manual and semi-automatic

solutions detailed above.

2 Materials and methods

2.1 Datasets

Two datasets were utilized to train and test the size

prediction tool. Anterior-posterior (AP) and lateral X-ray

images, as well as high resolution (3T) magnetic resonance

imaging (MRI) scans, of knee joints were obtained from the

Osteoarthritis Initiative (OAI) (Nevitt et al., 2006). This

facilitated data to train image segmentation models within

the tool and provided the necessary pairing of X-rays with 3D

ground truth data to test the accuracy of the full workflow. 3D

Slicer was used to segment the OAI MRI data and generate 3D

bone models (Fedorov et al., 2012). Scaling of the X-ray data

retrieved from the OAI dataset was completed to address

geometric magnification effects and ensure consistency with

the MRI data in lieu of calibration artifacts being included. CT

scans with pre-segmented 3D femur and tibia models were

sourced from the Korea Institute of Science and Technology

Information (KISTI) (Lee and Lee, 2010). This data was used

for training aspects of the size selection tool as detailed in

Section 2.3. Both datasets consisted of male and female

subjects with a broad range of ages. The KISTI dataset

consisted purely of Asian Korean subjects, while the OAI

contained White, Black and Asian Americans. No subjects

used in training or testing had above mild levels of arthritis

(above grade 2 out of 4) according to Kellgren and Lawrence

(1956).

2.2 Test subjects

Due to the retrospective nature of the study, it was not possible

to control the X-ray imaging process. Subjects’ X-rays were instead

FIGURE 1
Top level workflow of the automatic 2D—3D reconstruction pipeline (top row–femur, bottom row–tibia): (A) CNN segmentation of input
X-rays, (B) extracted bone contours, (C) contours aligned in 3D space, (D) PDMs used to transform contours into sparse point clouds which are then
fitted to base shapes of SSMs, (E) 3D model predictions.

TABLE 1 Test subject demographical information.

Total, (%)

Overall 78

Sex

Female 45 (57.7)

Male 33 (42.3)

Ethnicity

White 73 (93.6)

Black 4 (5.1)

Asian 1 (1.3)

Knee

Left 40 (51.3)

Right 38 (48.7)

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Burge et al. 10.3389/fbioe.2022.971096

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.971096


visually screened to ensure appropriate anatomical alignment and

clarity in both AP and lateral projections. Figure 1 illustrates

correctly captured X-rays with the scan taken straight on with

both the medial and lateral condyles pointing forward in the AP

projection, and side on with the posterior surfaces of the femur

condyles aligned in the lateral view. 78 subjects were found to be

suitable and were taken from the OAI dataset to test the size

prediction tool. The test subjects ranged from 46 to 79 years old,

and their demographics are summarized in Table 1. KISTI subjects

were used purely for training the tool as the dataset only contained

CT data without accompanying X-ray images.

2.3 2D—3D pipeline

Like in Zheng et al. (2018) and Massé and Ghate (2021), the

size prediction tool initially utilizes inputted AP and lateral X-ray

images to generate 3D estimations of patients’ femur and tibia

bones before component size predictions can be made. To

achieve this automatically, the 2D—3D pipeline developed in

Burge et al. (2022a), Burge et al. (2022b) was utilized. The key

aspects of the workflow, built using Python 3, are summarized

below and illustrated in Figure 1.

The first step of the 2D—3D process utilizes CNNs to

isolate the femur and tibia bones from the surrounding soft

tissue in the inputted X-ray images, as shown in Figure 1A.

Four U-Net CNN image segmentation models (one for each

X-ray projection of each bone) are used in the tool. The

models were built using TensorFlow and a U-Net

architecture, based on Ronneberger et al. (2015), was

adopted (illustrated in Figure 2). To better capture the

bone profiles occupying a large proportion of the X-ray

images, an additional filter resolution level (16 x 16 pixels)

was incorporated. The number of filter channels used in each

layer and learning rate were adjusted to achieve the best

validation results. Batch size was set at 10 with 100 epochs

and model weights were saved after each iteration. Once

training had finished, the weights with the lowest validation

loss were selected for each model to minimize overfitting.

176 X-ray image/mask pairs were developed from the OAI

dataset to train each model. 20 of these (~10%) were reserved

for validation (separate to those used to test the full tool). It is

noted that to build well generalized CNN models, capable of

reliably segmenting any inputted X-ray, thousands of varied

training images would likely be required (Liu et al., 2018). Due

to the proof-of-concept nature of this study, and lack of

suitable training data, it was deemed acceptable to mitigate

this by adjusting the contrast/brightness settings of the

inputted subject X-ray images to improve compatibility

with the CNN models when testing the size prediction tool.

After segmentation, a Cany edge detector is applied to extract the

four bone contours (Figure 1B) which are then aligned in 3D space as

FIGURE 2
Architecture of U-Net CNN X-ray segmentation models from inputted X-ray image (left) to predicted mask (right). Each box corresponds to a
multi-channel feature map with those shaded grey indicating where channels have been copied from previous layers. The number of channels is
denoted on top of each box with the size provided at the lower left (2562 = 256 × 256 pixels). Arrows denote different operations such as
convolutions.
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shown in Figure 1C. Point depth models (PDMs) are applied to

estimate the third dimension of the points along each contour and

create a sparse 3D point cloud of reference coordinates (Figure 1D).

The femur and tibia reference point clouds are independently fitted to

two statistical shape models (SSMs) (one for each bone) via an

iterative point method. The SSMs then morph base femur and

tibia shape models to fit the reference points as closely as possible.

For the PDMs and SSMs, 3D bone models (20 and 100 respectively)

were used from the KISTI dataset for training.

The outputs from the 2D—3D pipeline are predictions of

subjects’ distal femur and proximal tibia anatomies in the form of

3D surface mesh models (Figure 1E). These can subsequently be

used by the tool to approximate the most appropriately sized

implant components.

2.4 Implant designs and sizes

Generic base models of TKR femur components and tibia plates

were designed based on widely used commercial products

(Figure 3A). The base models were scaled (Figure 3B) to the sizes

listed for five manufacturers’models as reported in size charts within

FIGURE 3
Method for evaluating fit of implant model on subject ground truth anatomy (top row–femur, bottom row–tibia): (A) Generic implant
component designs, (B) edges of scaled components, (C) scaled components fitted to subject 3Dmodel predictions, (D) scaled components fitted to
subject ground truth anatomy. Dashed box in (A) shows detail not included in fit analysis. Red squares in (C) and (D) show the location of the
maximum OUH.

TABLE 2 Femur component sizing chart, detailing themanufacturer, model, size identifier, and ML/AP dimensions (obtained from respective surgical
technique manuals).

Zimmer Biomet
(NexGen)

DePuy
(Sigma)

Smith & Nephew
(Legion)

Maxx Orthopedics
(Freedom)

Stryker
(Scorpio)

Id. ML
(mm)

AP
(mm)

Id. ML
(mm)

AP
(mm)

Id. ML
(mm

AP
(mm)

Id. ML
(mm)

AP
(mm)

Id. ML
(mm)

AP
(mm)

‘B’ 58 50 ‘1.5’ 57 53 ‘2’ 58 50 ‘A’ 54 51 ‘3’ 57 51

‘C’ 64 54.5 ‘2’ 60 56 ‘3’ 62 55 ‘B’ 58 54 ‘4’ 60 54

‘D’ 68 58 ‘2.5’ 63 58 ‘4’ 66 59 ‘C’ 62 58 ‘5’ 62 56

‘E’ 72 62 ‘3’ 66 61 ‘5’ 70 62 ‘D’ 64 60 ‘6’ 65 58

‘F’ 76 66 ‘4’ 71 65 ‘6’ 73 66 ‘E’ 66 62 ‘7’ 67 61

‘5’ 73 69 ‘7’ 77 70 ‘F’ 70 66 ‘8’ 70 63

‘8’ 80 75 ‘G’ 74 70 ‘9’ 72 65

‘H’ 78 74 ‘11’ 77 70

‘13’ 82 75
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their respective surgical technique manuals (Tables 2 and 3). This

method was used as access to the official geometry of all the

manufacturer models and sizes utilized within the study was not

possible. Nor was acquiring physical samples for reverse engineering.

Utilizing generic implant shapes also allowed for the test models to be

easily controlled/edited for the purposes of the study.

The height of the 3D femur components was kept proportional

by scaling the Z dimension in line with the AP and ML dimensions.

The design of the base femur component was subtly adjusted for each

model to reflect differences in transepicondylar (ML) width between

the designs and ensure consistency with the dimensioning used in

each of the surgical manuals. The design of the base tibia plate was

kept constant and only the 2D profile was used like in prior studies

(Shao et al., 2020; Clary et al., 2014). A 2D analysis was sufficient for

the tibia plate because the components only interface with the resected

bone on a singular 2D face.

2.5 Size prediction and accuracy
calculation

To predict which femur component and tibia plate sizes are the

most suited for a subject, the tool systematically fits each implant

model and size to the 3D estimates of the subject’s anatomy using an

iterative closest point method (Figure 3C). Two fit metrics were

calculated after each size fitting including the global root-mean-

squared error (RMSE), and local maximum OUH. The RMSE

calculation was performed between the surface of the positioned

component and the subject anatomy as described by Eq. 1:

RMS error �
�����������∑N

i�1(xi − x̂i)2
N

√
(1)

where N is the number of points and xi − x̂i is the Euclidian

distance between each point of the component surface and

the bone. The maximum OUH was reported as the Hausdorff

distance (h) anywhere between the edges of the component

(C) to the edges of the bone (B), as described by Eq. 2 and

shown in Figure 3. The distance (d) between each point along

the component edges (c) and the bone (b) was calculated as

the Euclidian distance.

h(C,B) � max c∈C {min b∈B { d(c, b)}} (2)

For the femur, the fit analysis was completed in 3D assuming

that the bone would be resected from the lateral view to the same

standard dimensions as the mating faces on the femur

component being fitted. For the tibia, the RMSE and

maximum OUH were calculated using the 2D profile of the

tibia plate and a cross-section profile taken at the intended

resection point on the tibia bone. In practice, the necessary

resection depth is determined by the surgeon, however, for

the purposes of this study, the resection plane was located

2 mm below the height of the widest point of the tibia medial

condyle, parallel with the surface of the medial plateau. Rotation

of the tibia plate was limited to about its central axis and no

flexion or extension was permitted. This approach consistently

facilitated the largest possible surface area for stability,

minimized bone loss (Schnurr et al., 2011), and enabled a

continuous, flat resection plane to be created through the

bone. Once RMSE and maximum OUH were recorded for

each component size, the options for each model that

achieved the lowest errors were outputted as the tool predictions.

2.6 Results analysis

After predictions were made, all sizes for each implant model

were positioned on 3D ground truth models via an iterative closest

point method and the resultant RMSE and maximum OUH values

were calculated (Figure 3D). Ground truth models were created for

each test subject by manually segmenting their MRI data as

TABLE 3 Tibia plate sizing chart, detailing the manufacturer, model, size identifier, and ML/AP dimensions (obtained from respective surgical
technique manuals).

Zimmer Biomet
(NexGen)

DePuy
(Sigma)

Smith & Nephew
(Legion)

Maxx Orthopedics
(Freedom)

Stryker
(Scorpio)

Id. ML
(mm

AP
(mm)

Id. ML
(mm)

AP
(mm)

Id. ML
(mm)

AP
(mm)

Id. ML
(mm)

AP
(mm)

Id. ML
(mm

AP
(mm)

‘1’ 56 41 ‘1’ 59.2 39 ‘1’ 60 42 ‘1’ 59 40 ‘3’ 61 40

‘2’ 62 41 ‘1.5’ 61.8 40.7 ‘2’ 64 45 ‘2’ 62 40 ‘4’ 63 42

‘3’ 67 46 ‘2’ 64.6 42.6 ‘3’ 68 48 ‘3’ 66 42 ‘5’ 66 44

‘4’ 70 46 ‘2.5’ 67.1 44.2 ‘4’ 71 50 ‘4’ 66 46 ‘6’ 68 45

‘5’ 74 50 ‘3’ 69.6 45.8 ‘5’ 74 52 ‘5’ 71 48 ‘7’ 71 47

‘6’ 77 50 ‘4’ 74.9 49.3 ‘6’ 77 54 ‘6’ 72 50 ‘9’ 77 51

‘5’ 80.6 53.1 ‘7’ 81 56 ‘7’ 76 52 ‘11’ 82 54

‘6’ 86.8 57.2 ‘8’ 85 59 ‘8’ 78 54 ‘13’ 88 58
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described previously. The “ground truth best” size for the individual

(in terms of each fit metric, implant component, and model) was

recorded as the option which resulted in the lowest calculated error

when fitted to the subject’s 3D ground truth model. If the tool

predicted the same as the ground truth best, the prediction was

deemed to be correct. Spearman’s correlation coefficients were

calculated and used to evaluate the impact on performance due

to continuous variables such as subject age.

3 Results

3.1 2D—3D model generation

The accuracy of the 2D—3D process was evaluated by Burge

et al. (2022b) by comparing the tool’s bone surface estimations with

subjects’ 3D ground truth models. A mean RMSE of 1.09 mm (SD

0.18 mm) for the femur and 0.98 mm (SD 0.15 mm) for the tibia

across the 78 subjects were reported.

3.2 Size selection accuracy

The accuracy of the femur component size selection for

each model is reported in Table 4 and in Table 5 for tibia

plates. Tables 4 and 5 demonstrate that high levels of

accuracy for the size selection tool across the five implant

model sizes for both implant components were obtained in

terms of RMSE and maximum OUH. Minimal difference in

prediction accuracy was observed across the five tibia plate

models for males and females. For femur components

however, males achieved 87.27% for both RMSE and

maximum OUH, whilst accuracies of 71.11% and 60.44%

were recorded for females respectively. Calculating

Spearman’s correlation coefficients showed no strong

correlations between prediction accuracies and subject age

for both femur components (RMSE = −0.03, maximum

OUH = 0.02) and tibia plates (RMSE = 0.21, maximum

OUH = 0.25) were present.

3.3 Implant fit

For the sizes deemed to be the best by the size prediction tool

for each model and each of the test subjects, the resulting fit on

the ground truth models were recorded for both metrics. These

results are shown in Table 6 for femur components and Table 7

for tibia plates, alongside the best possible results. The tables

show that the results obtained using the predictions made by the

tool for both component types were on average only marginally

inferior to the best possible outcomes in terms of both RMSE and

maximum OUH.

TABLE 4 Femur component size prediction accuracies for each manufacturer model sizings. Size prediction accuracy is shown in terms of RMSE and
maximum OUH, as well as allowing for ± one model size.

Model (no. Sizes) RMSE correct (%) RMSE ±1 correct (%) Max OUH correct (%) Max OUH ±1 correct (%)

Zimmer Biomet (5) 85.90 100.00 75.64 100.00

DePuy (6) 84.62 100.00 83.33 100.00

Smith & Nephew (7) 75.64 100.00 64.10 100.00

Maxx Orthopedics (8) 73.08 100.00 65.38 100.00

Stryker (9) 70.51 98.72 70.51 97.44

Mean 77.95 99.74 71.79 99.49

TABLE 5 Tibia plate size prediction accuracies for each manufacturer model sizings. Size prediction accuracy is shown in terms of RMSE and
maximum OUH, as well as allowing for ± one model size.

Model (no. Sizes) RMSE correct (%) RMSE ±1 correct (%) Max OUH correct (%) Max OUH ±1 correct (%)

Zimmer Biomet (6) 87.18 100.00 74.36 98.72

DePuy (8) 85.90 100.00 82.05 100.00

Smith & Nephew (8) 65.38 100.00 62.82 98.72

Maxx Orthopedics (8) 83.33 98.72 69.23 97.44

Stryker (8) 80.77 100.00 75.64 100.00

Mean 80.51 99.74 72.82 98.98
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Figures 4, 5 show the proportion of subjects achieving

maximum OUH <3 mm for the various femur component

and tibia plate model sizes. The figures demonstrate that the

level of subjects attaining below the threshold was on average

10% less for femur components compared to tibia plates and the

levels varied significantly between the different manufacturer

model sizes. The proportion of subjects seeing maximum OUH

of ≥3 mm was on average 12% higher than the ground truth best

when the tool’s size predictions were used.

4 Discussion

The most important outcome from this study is that a fully

automatic, X-ray based TKR size prediction tool was developed and

shown to be reliable for a range of implant model sizes and test

subjects. For both femur components and tibia plates, the tool more

accurately predicted the ground truth best size in terms of RMSE

compared to maximumOUH. Nevertheless, the accuracies for both

metrics were consistently high with the ground truth best size

TABLE 6 Femur component mean RMSE and mean maximum OUH results for ground truth (GT) best sizes and predictions, split by manufacturer
model sizings.

Model (no. Sizes) Mean GT best RMSE
(mm)

Mean
prediction RMSE (mm)

Mean GT best max
OUH (mm)

Mean prediction max OUH
(mm)

Zimmer Biomet (5) 1.26 1.31 3.55 3.70

DePuy (6) 1.06 1.09 2.95 3.02

Smith & Nephew (7) 1.05 1.14 2.89 3.29

Maxx Orthopedics (8) 0.99 1.04 2.67 2.91

Stryker (9) 1.03 1.10 2.87 3.16

Mean 1.08 1.13 2.99 3.22

TABLE 7 Tibia plate mean RMSE and mean maximum OUH results for ground truth (GT) best sizes and predictions, split by manufacturer model
sizings.

Model (no. Sizes) Mean GT best RMSE
(mm)

Mean
prediction RMSE (mm)

Mean GT best max
OUH (mm)

Mean prediction max OUH
(mm)

Zimmer Biomet (6) 1.73 1.77 3.48 3.63

DePuy (8) 1.11 1.19 2.52 2.70

Smith & Nephew (8) 1.11 1.25 2.53 2.85

Maxx Orthopedics (8) 1.31 1.38 2.91 3.20

Stryker (8) 1.10 1.21 2.48 2.71

Mean 1.27 1.36 2.78 3.02

FIGURE 4
Boxplot illustrating proportion of test subjects achieving
maximum OUH < 3 mm for various femur component model
sizings. Both ground truth (GT) best possible size and tool
prediction results shown.

FIGURE 5
Boxplot illustrating proportion of test subjects achieving
maximum OUH < 3 mm for various tibia plate model sizings. Both
ground truth (GT) best possible size and tool prediction results
shown.
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predicted on average 78%of the time (in terms of RMSE) and 72%of

the time (in terms of maximum OUH) for femur components. For

tibia plates the prediction accuracies were 81% in terms of RMSE

and 73% in terms of maximum OUH. These increased to 99–100%

for ±1 size for both metrics and component types. The prediction

accuracy of the tool was not found to be sensitive to subject age, nor

was it sensitive to sex for predicting tibia plate size. However,

16–27% higher accuracies were achieved for male subject femur

component size selection. This was likely due to the large White

American male dimensions in the test population– often requiring

the upper limits of the femur component size ranges or beyond.

Females on the other hand utilized a broader range of smaller sizes

whichmade predicting the correct optionmore challenging. Using a

more balanced group of subjects, featuring ethnicities typically

requiring smaller implant sizes such as Asian Chinese (Li et al.,

2019), would likely reduce this effect and result in similar prediction

accuracies between sexes.

Another key finding was the proportion of subjects obtaining

clinically significant levels of OUH, even when the best possible

sizes were used, was above 30% for all implant models evaluated.

This aligns with results reported by previous studies (Wernecke

et al., 2012; Mahoney and Kinsey, 2010) where the performance of

non-customised implants, particularly with a limited number of

size options, was shown to be poor. In this study, the model with

the fewest number of sizes (the Zimmer Biomet NexGen),

performed the worst in terms of the resulting mean RMSE,

maximum OUH, and proportion of subjects achieving

maximum OUH <3mm, whilst models with more sizes

generally performed better. Nevertheless, for the tool’s size

prediction accuracies, the opposite was found. The Zimmer

Biomet NexGen (5/6 sizes) obtained the best results, whilst the

Stryker Scorpio (9 sizes) achieved the lowest accuracy for femur

components (both in terms of RMSE). Comparing the results for

the Smith & Nephew Legion and the Maxx Orthopedics Freedom

tibia plate sizes showed considerable differences in prediction

accuracies and resulting fits, despite an equal number of sizes.

It is again emphasized that these results do not reflect the true

performance of the named manufacturer models as generic base

models were used in the analysis. However, the importance of

selecting the optimum sizing dimensions, not just enough options,

is highlighted. For models with many similar sizes, it was often

observed that when the tool failed to predict the best possible size,

the optimal component dimensions would have been close to the

center of two options. As a result, the resulting RMSE and/or

maximumOUH for the predicted size were only marginally worse.

To better align with the approach taken by surgeons in said

scenarios, the tool could be configured to always downsize the

component when minimal difference in fit is predicted between

two sizes (Dai et al., 2014).

Comparing the results to those available in the literature for

manual planning/templating, the size prediction accuracy of the tool

was shown to be considerably better than the average reported

across the 10 studies summarized by Hernández-Vaquero et al.

(2019). This was also true when compared to studies that utilized CT

data for manual templating (Vaishya et al., 2018; Kobayashi et al.,

2012). Therefore, due to the high accuracies obtained without the

need for user feedback or training, it is anticipated that hospitals

could realize considerable time and resource savings and reduce the

possibility of human error by adopting the tool. In terms of other

computational approaches, comparing the tool to results detailed

previously for prediction models based on subject demographics

(Trainor et al., 2018; Sershon et al., 2017) showed significantly

improved performance was possible by using the approach outlined

in this study. The tool achieved a better average tibia plate size

prediction accuracy and matched the level reported for femur

components (in terms of RMSE) when compared to the solution

published by Zheng et al. (2018). When compared to the results

reported by Massé and Ghate (2021), the tool was on average >20%
more accurate in selecting the best size for both component types.

This study has therefore shown that fully automating the size

prediction tool did not compromise accuracy, but similar or

better results were in fact obtained. Moreover, the tools

developed by Zheng et al. (2018) and Massé and Ghate (2021)

were only tested on 23 and 45 subjects respectively, compared to

78 in this work. The authors also only used single implant models

and one global fit metric in the cited studies. By exploring a range of

implant model sizes and employing both global and clinical fit

metrics to evaluate performance, this study has provided a more

comprehensive assessment of the developed tool’s robustness and

applicable use with various products.

The performance of the tool could be further improved by

controlling the alignment and quality of the inputted X-ray images

to ensure compatibility with the 2D—3D pipeline (Burge et al.,

2022b). Due to the datasets available, the testing of the tool was

limited to predominantly White Americans without severe arthritis

degeneration, whilst the modules of the tool were principally trained

using Asian Korean data. Differences in performance between sexes

and with age were evaluated in the study, however, with the data

available it was not possible to analyze potential biases across

ethnicities and/or the impact of arthritis severity on performance.

For the development of future implant size prediction tools, it is

encouraged that larger datasets, featuring hundreds of subjects with

various ethnicities, ages, sexes and Kellgren and Lawrence grades, all

imaged with consistent alignments/scan settings, be obtained. This

would help better generalize the CNN models and improve

robustness across the full range of potential patient

demographics. Moreover, to further reduce overfitting,

regularization techniques such as drop-out layers could be

incorporated into the CNN model architecture. It should be

noted that the method for determining the best fitting implant

designs varied between the studies referenced. The best size in most

of the referenced studies was determined by a medical professional

during or after surgery. This study however was completed without

clinical work and used computational fit metrics to determine

performance (like in Zheng et al. (2018)). Future work could

seek to test the size prediction tool against size choices made
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during real surgical procedures to provide a more realistic means for

comparison. Furthermore, generic implant designs, scaled to

published manufacturer model size charts, were used instead of

official geometries. Going forwards, it is hoped manufacturers will

adapt the framework of the tool for use with commercially available

products.

5 Conclusion

In this study a computational TKR size prediction tool was

developed that uses two X-ray images to assist clinicians with

selecting the best implant sizes for patients. The tool achieved

selection accuracies superior to those reported for manual

templating, as well as when compared to other computational

alternatives. By removing the need for manual templating or

guiding semi-automatic software tools, the tool could minimize

the time and resource required for TKR preoperative assessment,

increase surgeons’ confidence in the outcomes, and minimize the

possibility of size changes during surgery, whilst still achieving

reliable size prediction results. This could also help reduce

surgery time, minimize the level of component inventory

required, lessen surgeon accountability for determining the

right size implants, and ultimately improve outcomes for

patients. Finally, the tool could be used to assess the need for

customised solutions, or for a bespoke selection of implants

depending on patient morphology.
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