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HISTORICAL BACKGROUND AND CLINICAL PRESENTATION

The following is a short introduction to the historical background of this disease and its 
clinical symptomatology. Schizophrenia was originally named dementia praecox for “premature 
dementia.” In 1893, the German psychiatrist Emil Kraepelin separated the two psychoses with 
which this disorder had been confused: dementia praecox and manic depression. It was renamed 
schizophrenia by the Swiss psychiatrist Eugen Bleuler in 1908, meaning in Latin “split mind or 
split personality.”[42] It was not until the mid-20th  century that true schizophrenia was further 
separated from split (or multiple) personality hysteria — the latter, subsequently categorized as 
either a conversion reaction or a dissociative, identity disorder. Hollywood, though, continues 
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to confuse the two disorders — that is schizophrenia and 
hysteria — in their films.[41]

As one of us has written elsewhere, the two of the leading 
lights of psychiatry at the turn of the century, Austrian 
psychoanalyst Sigmund Freud (1856–1939) and German 
psychiatrist Emil Kraepelin (1856–1926) had conflicting 
approaches to mental illness, including schizophrenia. Freud 
recommended psychotherapy, which was almost always 
unsuccessful and unfeasible in severely mentally ill patients. 
Kraepelin, in contrast, preferred more aggressive intervention 
with electroconvulsive therapy and insulin shock therapy, the 
former often ineffective, the latter dangerous and no longer 
used. Thus, psychosurgery came into vogue; fortunately, it 
was soon supplanted by psychotherapy, which has proven 
much safer and most efficacious effective in Schizophrenia in 
at least 75% of patients.[42]

Necessarily in the original descriptions of the disease, the 
behavioral and sociological aspects of schizophrenia have 
been emphasized, but not it’s anatomic, biochemical, or 
pathophysiological substrates. For example, schizophrenia 
has been described as a functional mental illness that 
begins gradually, occasionally almost suddenly, striking in 
adolescence or young adulthood. No standard neuroimaging 
techniques disclosed any definitive pathological 
abnormalities in these patients. Moreover, there was no 
objective pathognomonic test that would confirm the illness, 
which is still diagnosed on the clinical symptomatology and 
observed behavior.

In his autobiography, Nobel-prize winner Eric R Kandel 
explains how, as a psychiatrist and research neuroscientist, he 
had attempted to apply the scientific method to psychiatry as 
a new “science of the mind.” He asserts that the human mind 
can be studied with biological tools to create this new science. 
He further asserts that in time all mental disorders, including 
those categorized as “functional” (or psychological, including 
schizophrenia by implication), will be found to have a 
structural, biochemical, and/or molecular basis, and that the 
old subjective criteria for psychiatric illnesses will completely 
give way to the new biological and scientific “science of the 
mind.”[58] We do not agree with this viewpoint, rather we agree 
with Sir John Eccles that the mind is a separate metaphysical 
entity from the material brain. This does not negate the idea 
that dysfunction of the brain can result in abnormal behavior 
and thought patterns of a psychological nature. The analogy 
of a radio fits here perfectly. The radio represents the brain 
with its complex of circuits, transistors, and other electronic 
components, while the mind would represent the invisible 
radio waves giving activity to the electronic contraption. Any 
abnormality of the “radio” would be manifested as a garbled 
radio message or static.

In medical school and in our psychiatry rotations, we 
learn about the four fundamental symptomatologies of 

schizophrenia, originally described by Dr.  Bleuler as the 
four as of schizophrenia: (1) looseness of associations, or 
disordered associations with a loss of contact with reality; 
(2) autism, a disordered conception of the world with a 
preference for fantasy rather than reality; (3) a disorder 
of affect, or an abnormal emotional state or mood; (4) 
ambivalence, a mixed feeling about a subject matter — one 
may be unconscious, but the contradictory attitudes may be 
indirectly expressed. Schizophrenia is also characterized by 
cognitive impairments, delusions, and hallucinations that are 
most frequently auditory.[91]

Neurophysiological disorders of the central nervous 
system neurotransmission and biochemical defects of 
neurotransmitters production, transport, reuptake, blockage, 
and degradation have provided the best theories for explaining 
the good to excellent responses in schizophrenic patients 
to a variety of neuropharmacological agents. In addition, 
defects in working memory associated with disconnection 
of the hippocampal formation with the prefrontal cortex and 
in neurotransmission in the dorsolateral prefrontal cortex 
and frontotemporal disconnection have implicated both 
the frontal and temporal lobes in the neuropathology of 
schizophrenia.[94,95]

IMMUNOEXCITOTOXICITY IN 
NEURODEGENERATIVE DISEASES AND 
SCHIZOPHRENIA

The leading author has written a number of papers on a 
newer hypothesis of neurodegenerative disease, of which 
schizophrenia is one.[13-16] This involves what he has 
described as immunoexcitotoxicity — that is an interaction 
between immune factors and glutamate receptors that 
leads to degeneration of specific groups of neurons and 
neural pathways. Central to this mechanism is prolonged 
or intermittent activation of the brain’s microglia, a major 
source of immune cytokines, chemokines, and other immune 
factors as well as the excitotoxins, glutamate, aspartate, and 
quinolinic acid.[14,15,13,58]

Inflammation in the brain, especially if prolonged, triggers 
excitotoxicity, which over time destroys, first synaptic 
connections, axons, and then eventually neuronal cell bodies 
— something seen in postmortem examinations of autistic 
brains.[14] Because microglia are the source of both immune 
cytokines and other mediators as well as excitotoxins 
one may conclude that inflammation within the brain is 
always accompanied by excitotoxicity.[14,31] Associated with 
immunoexcitotoxicity one also witnesses, as an intimate part 
of the process, high levels of reactive oxygen species (ROS) 
and reactive nitrogen species and lipid peroxidation products 
accumulating within these affected brain areas.[81] This has 
also been confirmed in cases of schizophrenia.[90]
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Both postmortem and most in vivo positron emission 
tomography (PET) scanning have demonstrated microglial 
activation in the affected areas of the brain of schizophrenia 
patients and autism spectrum disorder (ASD) 
patients.[47,111] Some PET scans for microglial activation 
did not show activation in unmedicated schizophrenia 
patients.[50,112] It has been suggested that in the case of 
medicated schizophrenic patients this may be because most 
scanned patients where on antipsychotic medications, but 
not all, and atypical forms of antipsychotic medications 
have been shown, in particular, to suppress microglial 
activation.[11,59]

Interestingly, the areas of the brain most affected in 
schizophrenia have been shown to have higher densities of 
microglia than are normally seen in healthy brains (28% 
higher in frontal cortex and 57% higher in temporal area).[47] 
The highest concentration of activated microglia occurred 
in Broadman area 9 an area characteristically affected in 
schizophrenia. We see this same finding in Parkinson’s 
disease, with the substantia nigra naturally having the highest 
density of microglia in the brain.[15] In the normal brain, 
there are relatively high concentrations of microglia in the 
limbic areas of the brain and prefrontal cortex as well. In this 
study, the researchers also found that the highest microglial 
density occurred in the gray matter of the frontal, temporal 
and cingulate cortex, whereas in the subcortical white 
matter microglial density was only increased in the frontal 
and temporal area, concentrated mostly at the junction with 
the gray matter. No microglial density concentration was 
seen in the cingulate and corpus collosum subcortical white 
matter areas. No clustering of the microglia was observed, 
suggesting a lack of microglial proliferation or recruitment. 
This would indicate microglial density occurring during 
early neurodevelopmental stages.

Microglial activation and resulting immunoexcitotoxicity, 
especially with priming, would explain the dysfunctional 
behavioral control and cognitive deficiency seen in 
schizophrenia as this process would alter dendritic and 
synaptic pruning, and also interfere with later plasticity. The 
studies of first episode schizophrenia patients have shown 
extensive network damage in drug treatment naïve patients, 
which is also seen despite antipsychotic drug treatment.[26]

Microglia priming is also a critical process in this disorder 
and most neurodegenerative diseases.[9,14,15] Priming is 
a state where microglia have a dramatic increase in the 
enzyme systems and cellular signaling responsible for 
producing the destructive elements released by fully active 
microglia, such as the excitotoxins and immune mediators 
(proinflammatory cytokines, interferons and chemokines). 
Despite priming of the microglia, these destructive 
elements are not released by the primed microglia at that 
time. A  subsequent immune challenge, either locally or 

systemically, will initiate full microglial activation and 
release of much higher levels of destructive elements 
than with unprimed microglia. Systemic inflammation 
is a major factor in microglial priming, but a number of 
environmental factors, both internal and external, can 
also prime microglia. Aging itself primes microglia.[48,100] 
Fully activated microglia experience induction of neuronal 
and inducible nitric oxide synthetase as well as COX-2 
production of proinflammatory prostaglandins.[14]

Activation of microglia in schizophrenia was first reported 
in 1999, where microglial activation was seen in the frontal 
cortex and hippocampus in 14  patients.[9] Since then, this 
has been confirmed in a number of studies.[47,50,66] The hypo 
glutaminergic theory of schizophrenia is based largely 
on the findings that many of the positive symptoms of 
schizophrenia improve significantly following stimulation 
by NMDA receptor agonist and that specific glutamate 
blocking drugs (phencyclidine [PCP] and ketamine) 
can induce a schizophrenia-like condition in normal 
volunteers.[51] Dopamine receptor stimulation does not 
improve the negative symptoms or cognitive deficits.[46,56 In 
addition, 20–30% of schizophrenia patients show only partial 
or no response to antipsychotic treatment.[105]

One of the main problems we find with this theory is that 
there is compelling evidence that immune/inflammatory 
events occurring in utero and during early postnatal 
development can increase the risk of schizophrenia later 
in life, usually around adolescence.[20,73] Thus, early in the 
course of the disorder, even before the obvious symptoms 
develop, one may see subtle psychological changes, 
indicating that the process begins much earlier and is not 
fully manifest until a great deal of destructions occurs in 
brain connectivity and neuronal loss.[12] We hypothesize 
that early in the course of the disease one witnesses 
immunoexcitotoxicity, which as the disease progresses we 
see a progressive loss of neurons and their connections in 
selected areas of the brain. A loss of these neural pathways 
leads to further brain dysfunction, especially in memory 
and behavior. It should be kept in mind that glutamate is 
the major transmitter for over 50% of the brain and 90% of 
the cortex.

ASDS AND SCHIZOPHRENIA: A POSSIBLE LINK

It is also important to appreciate that schizophrenia and 
ASDs share core symptoms and overlap in many ways 
pathologically, mainly by extensive microglial activation, 
anatomical changes, and similar behavioral attributes.
[25,64,73] Common to both conditions are deficits in social 
interaction and cognition. In both conditions one sees 
disruption of cognitive processing, disruption of emotional 
processing and abnormalities in sensory gating functions of 
the brain.[64,73] Anatomically, they also share abnormalities 
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in the cerebellum, insular cortex, right parahippocampus, 
posterior cingulate, putamen, claustrum, left thalamus, 
and fusiform gyrus.[16,109] Pinkman et al. also noted the 
two conditions also share a deficit pattern during neuronal 
activation triggered during social cognition task, specifically 
within the amygdala, fusiform gyrus, and ventrolateral 
prefrontal cortex.[87]

In addition, there appears to be a strong genetic link 
associated with both, and interestingly, a number of these 
genes have to do with control of microglial function 
(TREM2, TLRs, TYRO proteins, etc.).[90] Despite the genetic 
link, an environmental trigger appears to be essential in both 
disorders.

Research has clearly shown that early life events can have 
lasting impacts in the brain and behavioral function 
throughout life.[8,12] The strongest link to schizophrenia 
has been the observation that prenatal infections increase 
the risk of both autism and schizophrenia.[32,70] It has been 
shown that cytokines play an important role in brain 
development.[10,22] While it was first assumed that the 
infectious organisms were responsible for the increased 
incidence of schizophrenia in the offspring, subsequent 
studies demonstrated that the responsible factors were 
immune mediators. This was demonstrated by the 
use of non-infectious immune stimulators such and 
lipopolysaccharide (LPS) and Poly I:  C (double stranded 
RNA molecule).[62] Both LPS and Poly I: C have been shown 
to elevate the levels of cytokines in the placenta, amniotic 
fluid, fetus, and fetal brain.[6]

Of the pro-inflammatory cytokines involved, IL-6 appears 
to play the major role. The studies have shown that blocking 
IL-6, using genetic or pharmacologic methods, prevented 
the long-term anatomical, and behavioral consequences of 
exposure to Poly I: C.[99]

It has also been shown that animals born to mothers 
who sustained an immune challenge during gestation 
demonstrated a specific set of abnormalities in brain 
function, such as deficits in working memory, abnormal 
executive function, impaired discrimination, and deficits in 
both spatial and non-spatial information processing.[32,72,85]

While there are many similarities between autism and 
schizophrenia, there are also major differences, such as 
excessive brain growth in the early stages of ASDs. This 
tends to disappear over time as the disorder progresses. 
One major difference is that with ASDs is that with ASDs 
brain inflammation is long-term and continuous, extending 
into adulthood.[113] One sees a 50-fold increase in TNF-
alpha levels in cases of autism, far higher than we see in 
schizophrenia.[27] Data from autopsy studies and microglial 
scanning studies suggest that in the schizophrenia the brain 
inflammation is more intermittent throughout the disease 

process. More recent studies suggest that in schizophrenia we 
are seeing inflammation beginning in prenatal life extending 
even into adulthood.[18] Despite this, chronic inflammation 
is less often seen with schizophrenia and IL-6 levels are only 
modestly elevated, as opposed to what is seen in ASDs.[89] 
Experimentally, a single dose of Poly I: C only produces acute 
inflammation in the fetus rather than extending into 
adulthood.[80,88]

INFLAMMATION AND SCHIZOPHRENIA

The studies have shown that patients with recent onset 
schizophrenia demonstrate activation of pro-inflammatory 
networks and inflammatory mediators.[74] Rather 
than continuous immune activation we may be seeing 
multiple hits throughout early years of the person’s life 
occurring during development and during the long phase 
of progression. This would constitute a priming effect. 
Evidence for a priming effect comes from the observation 
that early life (prenatal or neonatal) exposure to immune 
stimulants cause an excessively vigorous immune reaction 
in the infant when stimulated. For example, we see higher 
levels of IL-6 and TNF following immune stimulation by 
phytohemagglutinin and LPS in schizophrenic patients than 
with normal controls.[79]

It has also been shown that success in treatment parallels 
lowering of these inflammatory cytokines.[77] Progressive 
brain atrophy occurs during the course of the disorder 
associated with either multiple hits or a lower grade, but 
continuous level of inflammation, less intense than we see 
with ASDs. Inflammation is also associated with childhood 
traumas and are associated with a proinflammatory 
phenotype and a higher incidence of adolescent onset 
schizophrenia.[36]

We have seen that experimental studies support the link 
between inflammation, elevated cytokines (especially IL-
6) and the development of schizophrenia, including the 
anatomical and pathological changes seen in the disorder. 
The source of the pro-inflammatory cytokines appears to 
be mainly from activated and or primed microglia and 
invading macrophages, which once in the brain take on the 
appearance and function of microglia.[14] The question that 
remains would be—what is the ability of proinflammatory 
cytokines alone to cause neurodegeneration? For example, 
it has been shown that TNF-alpha alone in the CNS cannot 
destroy neurons, despite the presence of very high levels in 
the extraneuronal space.[83]

THE GLUTAMATE HYPOTHESIS FOR 
SCHIZOPHRENIA

Stone et al. noted that the dopaminergic hypothesis did 
not adequately explain all the neuroanatomical and clinical 
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findings in schizophrenia patients.[104] The glutamate 
hypothesis of schizophrenia causation began with the 
observation that specific NMDA receptor blockers, such 
as PCP and ketamine could transiently induce symptoms 
very similar to schizophrenia.[30] Unlike the antipsychotic 
medication targeting only the dopamine receptors, which 
only reduced the positive symptoms, glutamate blockers 
also improved the negative symptoms of schizophrenia 
as well as the cogitative problems.[57] Further evidence 
came from the finding that glutamate antagonists (NMDA 
receptor blockers) worsened the symptoms in schizophrenic 
patients.[2,65]

Initially, it was assumed that schizophrenia was a disorder of 
deficient glutamate receptor function universally. Subsequent 
studies came to a different conclusion. Most important, it 
was observed that both phencyclidine and ketamine were 
selective NMDA receptor blockers. Further studies also 
demonstrated that rather than low levels of glutamate in the 
brain, one sees elevated levels, particularly in the striatum 
and prefrontal cortex (especially anterior cingulate) following 
NMDA receptor blockade.[23,55,72,75,93] Clearly defined 
evidence of the effects of ketamine increasing anterior 
cingulate glutamate levels in humans was demonstrated by 
Rowland et al. in a study using healthy subjects.[93] We see 
similar elevations in brain glutamate following other agents 
known to inhibit glutamate release from specific areas of 
the brain, if confined to the NMDA receptors.[3] 1H-MRS 
studies have demonstrated increased glutamate brain levels 
in antipsychotic free and naive subjects during their first 
episode of psychosis, including subjects with ultra-high risk 
for psychosis.[34]

Additional evidence comes from treatment studies which 
have shown that unmedicated schizophrenia patients have 
elevated brain glutamate levels and that once successfully 
treated the glutamate levels return to normal. Clinical 
improvement parallels the fall in striatal glutamate levels.[33] 
In essence, treatment response seems to follow lowering of the 
brain glutamate levels in specific brain areas. A recent study 
found higher glutamate levels in the anterior cingulate cortex 
in antipsychotic treated patients who were unresponsive to 
the treatment drugs.[35]

That is, higher glutamate levels were seen in treatment 
resistant patients than in those who responded well to 
treatment.

The activated microglia are the main source of elevated 
glutamate. Inflammatory activation of microglia is 
accompanied by the release of excitotoxic levels of glutamate 
and other excitotoxic molecules such as quinolinic acid and 
aspartate.[14,66,107] Howes and McCutcheon have proposed that 
microglial activation during neurodevelopment may cause 
dopamine excess by reducing cortical inhibitory inputs to 

subcortical dopamine neurons.[52] This would sensitize the 
dopaminergic neurons to various stresses throughout early 
life, leading to dopaminergic initiated positive schizophrenic 
symptoms.[78] It is also known that dopaminergic neurons 
are influenced by glutamatergic neurons.[43,44] Prenatal 
activation of microglia has been shown to result in a delayed 
impairment of glutamatergic synaptic function, which would 
explain the behavioral and cognitive dysfunction which 
arises during postnatal development.[92]

HOW NMDA RECEPTOR UNDERACTIVATION 
RESULTS IN IMMUNOEXCITOTOXICITY AND 
ELEVATED BRAIN GLUTAMATE LEVELS

Initially, when impaired NMDA receptor function was 
discovered in schizophrenia, it was assumed that reduced 
overall glutaminergic function was responsible for the 
negative symptoms. Recent studies have demonstrated 
another mechanism. Rather than a general reduction in 
NMDA receptor function, new studies suggest the thalamus 
is the main site of NMDA receptor hypofunction.[98] These 
special NMDA receptor neurons synapse with thalamic 
GABAergic inter-neurons. A  reduction in NMDA receptor 
function would reduce GABA production, leading to a 
disinhibition of excitatory downstream neurons. These 
excitatory neurons synapse with glutaminergic neurons 
across multiple brain areas known to be hyperactive in 
schizophrenia.[98,110] Injection of NMDA antagonist into 
the anterior nucleus of the thalamus results in cortical 
degeneration, but direct injections of these antagonists into 
the cortex has no degenerative effects.[98]

The extraneuronal surge of glutamate occurring with 
NMDA receptor antagonism causes neurodegeneration 
most likely by acting through AMPA/kainate receptors, 
in particular, the calcium sensitive GluR2-lacking AMPA 
receptors.[37,54] Additional evidence comes from the 
observation that minocycline, by suppressing microglial 
activation, has been effective in treating the negative symptoms 
of schizophrenia in antipsychotic refractory cases.[63]

IMMUNOEXCITOTOXIC 
NEURODEGENERATION IN SCHIZOPHRENIA

A combination of microglial activation and suppression 
of GABAnergic activity by NMDA receptor suppression, 
leads to a significant elevation in extraneuronal glutamate 
levels[34,60] [Figure  1]. Further, the evidence of the critical 
role being played by associated glutamate elevation was 
demonstrated in a study using healthy human volunteers 
in which agents that inhibited glutamate release reversed 
behavioral and cognitive changes induced by NMDA 
receptor antagonists.[3]
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It has been hypothesized that the excitotoxicity occurs 
through excessive activation of AMPA/kainate receptors 
by the elevated extraneuronal glutamate[1] [Figure  2]. 
Elevation of quinolinic acid (QUIN) occurs in the face of 
CNS inflammation as well by shifting the metabolism of 
tryptophan toward QUIN formation. Elevation of QUIN 
has been associated with major depression by immune 
modulation of glutamatergic neurotransmission.[101]

INTERACTION BETWEEN THE IMMUNE 
SYSTEM AND GLUTAMATE RECEPTORS: 
MECHANISM OF IMMUNOEXCITOTOXICITY

The earliest reports demonstrating an enhancement of 
excitotoxicity by TNF-alpha were by Gelbard et al. in which 
they used human neuronal cultures exposed to subtoxic dose 
of TNF-alpha and AMPA.[45] When exposed individually to 
these compounds no toxicity was seen but when combined, 
full excitotoxic neuronal injury was observed. Later this 
synergistic effect of combining TNF-alpha and an excitotoxic 
amino acid was shown in an in vivo model in which 
subtoxic doses of either substance alone had no significant 
toxic effect but when combined produced a large area of 
tissue necrosis.[49] It was further shown that TNF-alpha, 
by stimulating TNFR1 pathway, induced excitotoxicity by 
stimulating the release of high levels of glutamate from the 
microglia through hemichannels into the extraneuronal 
space[106] [Figure  3]. It was also shown that stimulation 
of group  2 metabotropic glutamate receptors (mGluRs) 
induces TNF-alpha release from microglia. Olmos and Llado 
proposed that excitotoxicity was enhanced by the ability of 

autocrine enhancement of TNF-alpha release from microglia 
which stimulated inflammatory pathways in the microglia, 
enhancing the release of glutamate into the extracellular 
space.[83]

It has also been shown that elevation of proinflammatory 
cytokines, especially TNF-alpha, inhibits the glutamate 
reuptake transporters GLAST and GLT-1, which raises 
extracellular glutamate levels to neurotoxic levels and 
prevents lowering of extracellular glutamate during activity 
of the cystine-glutamate antiporter.[19,61,69,108] TNF-alpha also 
stimulates the up-regulation of glutaminase, the enzyme 
that converts glutamine to glutamate within astrocytes and 
microglia.[13,14] Glutamine synthetase, the enzyme responsible 
for converting glutamate into glutamine, is also suppressed 
by elevated levels of TNF-alpha.[13,14] TNF-alpha acts through 
its receptor TNFR1 on microglia to stimulate trafficking of 
GluR2-lacking AMPA receptors to the neuronal synaptic 
membrane.[67] These special AMPA receptors, because they 
are calcium permeable and increaseintraneuronal calcium 
levels, are more prone to inducing excitotoxicity. In addition, 
TNF-alpha stimulates internal trafficking of GABA receptors.

Together, these TNF-alpha related effects on glutamate 
receptors, enzymes and trafficking enhance excitotoxicity 

Figure  2: Illustration of the mechanism of immunoexcitotoxicity 
focusing on a combination of immune activation and excitotoxicity 
originating from activated microglia. Once fully activated, the 
microglia releases a combination of immune mediators and 
excitotoxic compounds with subsequent generation of high levels 
of reactive oxygen and nitrogen species and lipid peroxidation 
products. This combination results in mitochondrial dysfunction, 
further energy deficits, and accelerated excitotoxicity with 
subsequent neurodegeneration of surrounding structures.

Figure  1: Illustration of pre-  and post-synaptic junction 
demonstrating the neurochemical activity of the three major types 
of ionotropic glutamate receptors, NMDA, AMPK and Kainate 
receptors.
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and intimately link inflammatory mediators to 
excitotoxicity. Because activated microglia are the principal 
source of both excitotoxins and inflammatory mediators, 
it becomes difficult to determine exactly how much each 
contributes to neurodegeneration. My impression is that 
excitotoxicity is the final common pathway responsible 
for most of the neurodestruction when microglial are 
activated.[13,14]

It appears that the neurological damage occurs first either 
during the third trimester of pregnancy or soon after 
birth and that until the symptoms of psychosis present 
themselves. There is a progressive interference with 
neurodevelopment as well as a process of progressive 
neurodegeneration of the most involved areas of the brain 
following birth.[10,12]

NEURODEGENERATION AND 
SCHIZOPHRENIA

Another important suggestion of excitotoxic 
neurodegeneration occurs with the widespread loss of 
neurons and connectivity as the disorder progresses. One sees 
progressive loss of grey matter volume beginning early in life 
which continues chronically.[4,53] The greatest grey matter loss 
occurs in the superior temporal, medial temporal, superior 
prefrontal, medial prefrontal, thalamus, basal ganglion, and 
insular regions.[17] Whole brain degeneration also occurs 
associated with ventricular enlargement and alterations in 

white matter.[28,29] NMDA antagonist demonstrate neurotoxic 
injury and neurodegeneration in specific cells in rats.[39] 
Yet, there is some evidence that excitotoxicity continues in 
some brain areas and that mGluR5 is overactive (which is 
excitotoxic). A more selective suppression of mGluR5 may be 
beneficial.[90]

Of interest, blocking agonist of metabolic glutamate receptor 
types 2 and 3 blocks the neurotoxic effects of NMDA 
antagonists in preclinical models of schizophrenia.[24] These 
mGluRs negatively modulate glutamate excitotoxicity. 
These experimental changes are age-dependent just as 
we see in clinical schizophrenia.[40] As with clinical cases 
of schizophrenia, experimental models show the greatest 
neurodegenerative changes beginning with adolescence.[7]

It has been suggested that schizophrenics are generally heavy 
smokers.[71] It is known that nicotine is a powerful stimulant 
of the alpha-7 nicotinic acetylcholine receptors, which are 
suppressors of inflammation and generally responsible 
for controlling inflammation within the brain—the so-
called cholinergic anti-inflammatory system.[86] A loss of 
nicotinic receptors, which occurs in schizophrenia and 
ASDs, is thought to enhance brain inflammation.[73] The 
anti-inflammatory cytokine, TGF-ß1 is also severely lowered 
in schizophrenia and ASD.[82] Hence, we see a serious 
imbalance between pro- and anti-inflammatory mechanisms 
within the schizophrenic brain, with pro-inflammatory 
predominance.[90]

Figure 3: Illustration demonstrating the various ways TNF-alpha enhances excitotoxicity. Other pro-inflammatory cytokines also enhance 
excitotoxicity, such as IL-1, IL-6, and IL-17, but TNF-alpha is the most prominent player. Excitotoxicity appears to be the final and most 
destructive event triggered by inflammation and/or microglial priming/activation.
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SCHIZOPHRENIA AND GUT INFLAMMATION

The big question is: What is causing the chronic, low-level 
inflammation? It has been shown clearly that prenatal 
infections in the mother can cause postnatal schizophrenia 
and more recent studies using non-infectious Poly I: C have 
shown that the mechanism involves cytokine elevations, 
principally IL-6 and not actual infection.[5,6,76,99] In animal 
models, blocking IL-6 (IL-8 and IL-1ß) can prevent the 
schizophrenia/ASD onset postnatally.[21,32,84,90,99]

Another link that has a lot of validity, certainly in some cases 
of both ASD and schizophrenia, is gut inflammation. Gliadin 
and gluten have been shown to trigger chronic microglial 
activation and are linked clinically to a number of cases 
of schizophrenia.[38,96] Several reports describe significant 
improvement of cases on assuming a gluten-free diet, while 
others found little or no improvement.[38,68] There may be an 
explanation for the failure of improvement on a gluten free 
diet in these cases.[1] First, it should be appreciated that these 
gluten-linked cases are associated with a non-celiac gluten 
sensitivity, which does not show the usual antibody profile 
of typical celiac disease cases and there is no villus atrophy 
on duodenal biopsy. This has been called non-celiac gluten 
sensitivity.[97]

As for why some cases fail to improve, it has been shown 
that gluten can trigger increased gut permeability, which 
can persist in some cases after starting a gluten-free 
diet, as there are often other contributing factors also 
linked to gut permeability, such as use of nonsteroidal 
anti-inflammatory drugs. Translocation of other food 
proteins and colon/intestinal bacteria can trigger 
continued microglial activation with resulting persistent 
immunoexcitotoxicity. In addition, gut inflammation can 
send afferents through the vagus nerve that activate brain 
microglia.[97] In addition, once the microglia are primed, 
other environmental factors can precipitate continued 
microglial activation, such as heavy metals, aluminum, 
fluoroaluminum, microparticulate fuels, and certain 
pesticides/herbicides.[103]

CONCLUSION

It is of interest that many of the antipsychotic medications 
used to treat schizophrenia are known to suppress microglial 
activation and alter glutamate receptor function.[104] These 
include risperidone, clozapine, and olanzapine. Some also 
reduce ROS damage. The studies have shown that drug 
responses correlate with lowering of S100B levels, a marker 
for brain inflammation.[90]

As for the neurotransmitters, especially dopamine, it has 
been shown that treatment resistant forms of schizophrenia 
(type B patients) were associated with relatively normal levels 

of dopamine synthesis in the striatum and elevated glutamate 
levels in the anterior cingulate cortex.[51]

The disruption of several neurotransmitters in schizophrenia 
is consistent with immunoexcitotoxicity, as a number of 
neuron types, receptor types and subtypes are affected by high 
levels of inflammation and excitotoxicity, with associated 
elevations in reactive oxygen and nitrogen species and lipid 
peroxidation — that is, these changes are epiphenomenon.

In our opinion, we should be addressing the central 
mechanism of the problem (immunoexcitotoxicity and 
microglial activation) rather than attempting to fine tune 
neurotransmitter disruptions, which can appear in a 
complex, variable, and often confusing presentation. This also 
requires attention to gut inflammation and correction of the 
microbiome.[51] I would refer the reader to my paper in the 
journal Surgical Neurology International, in which i describe 
in detail how the mechanism of microglial/macrophage-
induced immunoexcitotoxicity plays a central mechanism of 
neurodegeneration in Parkinson’s disease.[15]

*An AMPA receptor is the α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor is an ionotropic 
transmembrane receptor for glutamate that mediates fast 
synaptic transmission in the central nervous system (CNS), 
and it is considered a non-NMDA receptor
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