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ABSTRACT: Staphylococcus aureus is deemed to be one of the major causes of hospital and community-acquired infections,
especially in methicillin-resistant S. aureus (MRSA) strains. Because antimicrobial peptides have captured attention as novel drug
candidates due to their rapid and broad-spectrum antimicrobial activity, anti-MRSA peptides have emerged as potential therapeutics
for the treatment of bacterial infections. Although experimental approaches can precisely identify anti-MRSA peptides, they are
usually cost-ineffective and labor-intensive. Therefore, computational approaches that are able to identify and characterize anti-
MRSA peptides by using sequence information are highly desirable. In this study, we present the first computational approach
(termed SCMRSA) for identifying and characterizing anti-MRSA peptides by using sequence information without the use of 3D
structural information. In SCMRSA, we employed an interpretable scoring card method (SCM) coupled with the estimated
propensity scores of 400 dipeptides. Comparative experiments indicated that SCMRSA was more effective and could outperform
several machine learning-based classifiers with an accuracy of 0.960 and Matthews correlation coefficient of 0.848 on the
independent test data set. In addition, we employed the SCMRSA-derived propensity scores to provide a more in-depth explanation
regarding the functional mechanisms of anti-MRSA peptides. Finally, in order to serve community-wide use of the proposed
SCMRSA, we established a user-friendly webserver which can be accessed online at http://pmlabstack.pythonanywhere.com/
SCMRSA. SCMRSA is anticipated to be an open-source and useful tool for screening and identifying novel anti-MRSA peptides for
follow-up experimental studies.

■ INTRODUCTION
Staphylococcus aureus is a Gram-positive pathogen forming
grape-like clusters of cocci that can also be found on multiple
parts of healthy people, such as the skin and nose.1 It causes a
variety of infections, from skin infections, abscesses, impetigo,
cellulitis, and folliculitis to life-threatening diseases, such as
pneumonia, endocarditis, toxic shock syndrome, and sepsis.2

Moreover, S. aureus is considered to be one of the major causes
of hospital and community-acquired infections, especially
methicillin-resistant S. aureus (MRSA) strains.3 MRSA was
initially isolated from patients hospitalized in the 1960s and
rapidly became an important problem in the community and
healthcare system.4 The data from the National Antimicrobial
Resistance Surveillance center (NARST) of Thailand showed
that, MRSA had been found in around 50% of the total S.

aureus isolates from clinical specimens in some tertiary
hospitals of Thailand.5 In addition, MRSA accounted for
59.5% of nosocomial S. aureus infections in intensive care units
(ICUs) in the United States.6 Even with the current
development of new antimicrobial agents, MRSA remains a
difficult-to-treat superbug with persistently high mortality.
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Therefore, MRSA has emerged as one of the greatest
challenges for healthcare professionals globally.

Due to the ongoing resistance toward conventional anti-
biotics of various pathogens, antimicrobial peptides (AMPs)
have captured attention as novel drug candidates with rapidly
and broad-spectrum antimicrobial activity, including antibiotic-
resistant microorganisms, such as MRSA. In general, AMPs are
small cationic and amphipathic molecules7 ranging between 12
and 50 amino acids in length.8 Owing to their intrinsic
physicochemical properties, such as amino acid sequence,
charge, amphipathic property, and secondary structure, AMPs
adopts various mechanisms to kill bacteria.7 Disrupting the
integrity of the cell membrane has been reported to be the
main mechanism of action of AMPs. However, the broad-
spectrum activity of AMPs may result in the coincidental
selection and proliferation of resistant bacterial strains, creating
pathogens from previously harmless organisms and increasing
the possibility of an ecological imbalance in the microbiota.9

Therefore, species-specific peptides are of tremendous value.
Furthermore, peptides with potent activity against MRSA have
been discovered either naturally or designed synthetically.10

Nevertheless, the conventional methods for effectively screen-
ing and designing novel AMPs, such as antimicrobial
susceptibility testing (AST), are time-consuming and ex-
pensive. Therefore, sequence-based computational tools that
can rapidly and accurately identify potential anti-MRSA
peptides based on sequence information could serve a great
purpose in their large-scale identification.

Until now, there is no computational approach in existence
that has been proposed for identifying anti-MRSA peptides by
using sequence information without the use of 3D structural
information. With such potential of anti-MRSA peptides for
the treatment of bacterial infections, in this study, we develop
SCMRSA, a sequence-based computational approach for

identifying and analyzing anti-MRSA peptides. In brief, the
construction and development of SCMRSA involves the
following steps (as summarized in Figure 1): (i) we established
a benchmark data set by collecting positive samples from the
AMP database version 3 (ADP3)11 and negative samples from
the article of Pang et al.;12 (ii) we employed an interpretable
scoring card method (SCM) to develop the prediction model
(SCMRSA); and (iii) SCMRSA-derived propensities of 20
amino acids and 400 dipeptides were generated and optimized
using the genetic algorithm (GA) based on the 10-fold cross-
validation scheme. The predictive performance on the
independent test data set show that SCMRSA can outperform
several machine learning (ML)-based classifiers, including
decision tree (DT), k-nearest neighbor (KNN), logistic
regression (LR), naive Bayes (NB), and partial least squares
regression (PLS) classifiers, as judged by predictive ability,
cost-effectiveness, and interpretability. In addition, the
SCMRSA-derived propensity scores were employed to provide
insights into the functional mechanisms of anti-MRSA
peptides. Finally, in order to serve a community-wide use of
the proposed SCMRSA, we implemented an online webserver,
which is available at http://pmlabstack.pythonanywhere.com/
SCMRSA.

2. MATERIALS AND METHODS
2.1. Data Collection and Curation. In this study, we

established a new data set, including 183 experimentally
validated anti-MRSA peptides (positive samples) from
ADP3.11 For the negative samples, we employed 4979 peptides
without anti-MRSA activity (called non-anti-MRSA peptides)
from an article of Pang et al.12 Next, a CD-HIT [40] threshold
of 0.8 was applied to remove sequence redundancy in both the
anti-MRSA and non-anti-MRSA samples and to avoid
overestimation of the predictive performance. As a result, we

Figure 1. Schematic framework of the development of SCMRSA. The schematic framework of the development of SCMRSA contains four main
steps: (i) training and independent data set preparation, (ii) SCMRSA-based propensity score generation and optimization, (iii) anti-MRSA
peptide identification and characterization, and (iv) SCMRSA webserver construction.
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obtained the final non-redundant data set containing 148
positive and 847 negative samples. After obtaining the non-
redundant data sets, we used 80% of the samples (118 positives
and 678 negatives) as the training data set. As a result, the
independent test data set contained 30 positives and 169
negatives.
2.2. Overview Framework of SCMRSA. Previously,

Huang et al.13 and Charoenkwan et al.14,15 introduced a
simple and interpretable SCM method. To date, this method
has successfully overcome the limitations of existing computa-
tional black-box approaches, such as SVM16−18 and deep
learning (DL)19 approaches, by generating the propensity
scores of amino acids and dipeptides in order to provide
information about the global property of general proteins and
peptides. Herein, we utilized the SCM method13 to build an
interpretable model for predicting and characterizing anti-
MRSA peptides. The design and development of SCMRSA
based on the SCM method are summarized in Figure 1,
including initial (initial-DPS) and optimal (DPS) propensity
score generation, a scoring function construction, prediction of
an uncharacterized peptide, and performance evaluation.

Phase 1: generating a matrix initial-DPS, as follows:
Step 1: calculating the numbers of 400 dipeptides (i = 1,2,3,

..., 20) in positive and negative classes to construct matrices (Pij
= (nij|C = 1)) and (Nij = (nij|C = 0)), respectively, where 1 and
0 denote positive and negative classes, respectively.

Step 2: computing compositions of nPi and nNi by dividing
them with the number of occurrences of dipeptides in each
class, as follows
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where Lp and Ln denote total numbers of dipeptides in positive
and negative classes, respectively.

Step 3: computing the score of the ith dipeptide by
subtracting nPi from nNi.

nP nNinit DPS ij ij ij= (3)

Step 4: the scores of init-DPSij are normalized into the range
of 0−1000 for the convenience of the prediction and
characterization of anti-MRSA peptides.

Phase 2: optimizing initial-DPS by using the GA algorithm
in order to enhance the discriminative ability and conserve the
information of anti-MRSA peptides. The fitness function used
in this study is represented by

0.9 RFF(DPS) AUC 0.1= × + × (4)

As can be seen, this fitness function includes AUC and R,
which represent area under the receiver operating character-
istics (ROC) curve (AUC) and Pearson’s correlation
coefficient (R value) between initial-DPS and DPS, respec-
tively. The 10-fold cross-validation scheme was performed to
control overfitting and biasness.

Phase 3: building a scoring-based predictor S(P). The S(P)
is defined as follows

S P S( ) DPS
i 1

400

i i=
= (5)

where Si and DPSi define the occurrence number and the ith
dipeptide propensity score.

Phase 4: discriminating uncharacterized peptide P. In the
meantime, the optimal threshold value was determined by
maximizing the performance in terms of accuracy (ACC)
based on the training data set. Particularly, P is predicted as the
positive class if the score from S(P) is > threshold value,
otherwise P is predicted as the negative class. The propensity
scores of the 20 amino acids can be generated in the same
procedure. Herein, the optimized propensity scores of amino
acids and dipeptides are denoted as APS and DPS, respectively,
for the convenience of discussion. More detailed information
for the SCM classifier construction is provided in our previous
studies.13−15,17,20

2.3. Identification of Informative Physicochemical
Properties. In this study, the SCM approach coupled with 20
amino acid propensities (or APS) were utilized for determining
informative physicochemical properties (PCPs) from the
amino acid index database (AAindex) so as to analyze and
characterize anti-MRSA peptides. The process of identifying
informative PCP approach contained multiple main steps, as
follows. First, we excluded all PCPs having not applicable
(NA) and then obtained 531 PCPs in this study. Each PCP is
defined by a set of 20 numerical values for 20 amino acids.
Second, we calculated the R value between each of the 531
PCPs and APS. Please note that PCPs affording the largest R
values are deemed to be the most important properties in anti-
MRSA peptides. Third, the 20 top-ranked PCPs with the
largest R values were reported and used for further analysis.
2.4. ML-Based and Blast-Based Classifiers. Here, we

compared the performance of SCMRSA with several ML-based
and Blast-based classifiers. Specifically, we employed seven
popular ML algorithms [i.e., DT, KNN, LR, NB, PLS, and
SVM with linear kernel and radial basis function kernel
(referred herein as SVMLN and SVMRBF, respectively)] and
five conventional feature descriptors21 [i.e., AAC, AAI, DPC,
PCP, and composition−transition−distribution (CTD)] to
generate a total of 35 ML classifiers. All the ML classifiers were
created using Scikit-learn v0.22.0 package22 (Supporting
Information, Table S1). For the BLAST-based classifier, the
training data set was considered as the BLASTP database,
while the independent data set was employed as the BLASTP
query sequences. Detailed information for the construction of
ML-based23−26 and Blast-based20,27 classifiers are available in
our previous studies.
2.5. Performance Evaluation. We employed six common

performance measures to examine the predictive ability and
effectiveness of the proposed model, including ACC, AUC,
sensitivity (Sn), specificity (Sp), balanced accuracy (BACC),
and Matthew’s correlation coefficient (MCC).28,29 These
performance measures are described by the following
equations

ACC
TP TN

(TP TN FP FN)
= +

+ + + (6)

Sn
TP

(TP FN)
=

+ (7)

Sp
TN

(TN FP)
=

+ (8)

BACC (Sn Sp) 0.5= + × (9)
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MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
= × ×

+ + + +
(10)

where TP and TN indicate the number of true positives and
true negatives, respectively, while FP and FN represent the
number of false positives and false negatives, respec-
tively.14,20,30−32

3. RESULTS AND DISCUSSION
3.1. Performance Evaluation of Different Sets of

Propensity Scores. In this section, we evaluated the impact
of different sets of APS and DPS in anti-MRSA peptide
identification. As mentioned in the Overview Framework of
SCMRSA section, the GA algorithm was employed for
optimization of APS and DPS based on the training data set.
Because of the characteristics of the GA algorithm, we
generated 10 different sets for each type of propensity scores
(10 APS and 10 DPS). Each set of propensity scores was used
to individually build the SCM classifier and its performance
was evaluated using the 10-fold cross-validation tests.
Supporting Information, tables S2 and S3 show the 10-fold
cross-validation results of the different SCM classifiers trained
using different sets of APS and DPS.

Supporting Information, Table S2 shows that the APS from
the 4th experiment achieves the highest MCC of 0.797 with
BACC of 0.883 and AUC of 0.940. On the other hand, the
second best and third best sets of APS were obtained from the
first (MCC of 0.791) and ninth (MCC of 0.790) experiments.
In the case of DPS, the sixth experiment provided the highest
MCC of 0.880 with a BACC of 0.927 and AUC of 0.969, while
the DPS from the third and seventh experiments yielded the
second and third highest MCC of 0.871 and 0.865, respectively
(Supporting Information, Table S3). As a result, the APS from
the fourth experiment and the DPS from the sixth experiment
were regarded as the optimal sets of APS and DPS for
identifying anti-MRSA peptides, respectively (Table 1). From
Table 1, we notice that the optimal set of DPS exhibits the best
of all five performance metrics. Remarkably, BACC, Sn, and
MCC of the optimal set of DPS were 4.4, 7.7, and 8.3% higher
than the optimal set of APS, respectively. For the performance
on the independent test data set (Supporting Information,
Tables S4 and S5), the optimal set of DPS still performed
higher than the optimal set of APS in terms BACC, Sn, MCC,
and AUC. Thus, our comparative results confirmed that the
optimal set of DPS could effectively be used for identifying
anti-MRSA peptides. In addition, the propensities of 400
dipeptides are provided in Figure 2.

As mentioned in the Scoring card method section, the
improved performance of the SCM classifier is mainly due to

Table 1. Performance Comparison for the Optimal Sets of APS and DPS

cross-validation feature ACC BACC Sn Sp MCC AUC

10-fold CV APS 0.950 0.883 0.788 0.978 0.797 0.940
DPS 0.970 0.927 0.865 0.988 0.880 0.969

independent test APS 0.960 0.894 0.800 0.988 0.837 0.940
DPS 0.960 0.935 0.900 0.970 0.848 0.986

Figure 2. Propensity scores of 400 dipeptides to be anti-MRSA peptides obtained from the proposed SCMRSA.
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the optimal set of DPS (called DPS for short), derived from
the GA algorithm. Thus, to explain this evidence, the
performance of DPS was compared with initial-DPS. Table 2
lists the performance of the DPS and initial-DPS on the
training and independent test data set. The results indicated
that the DPS significantly outperformed initial-DPS on both
the training and independent data sets. To be specific, the
ACC, BACC, Sn, and MCC of the DPS were 2.51, 10.19, 4.56,
and 9.16% higher than the initial-DPS, respectively, on the
independent test data set. In addition, Figure 3 shows that the

initial-DPS (Figure 3A) has a large overlapped region between
the positives and negatives as compared to DPS (Figure 3B) as
analyzed on the training data set. Altogether, our analysis
results confirmed that the estimated propensities of 400
dipeptides (DPS) provide more discriminative power for
identifying anti-MRSA peptides than initial-DPS.

3.2. Comparison of SCMRSA with BLAST-Based
Predictor and Conventional ML-Based Classifiers. To
the best of the authors’ knowledge, SCMRSA is the first
computational model for identifying peptides with or without
anti-MRSA activity. Thus, we evaluated and compared the
performance of SCMRSA against the BLAST-based predictors
and conventional ML-based classifiers trained with seven ML
algorithms and five sequence-based feature descriptors (as
described in the ML-Based and Blast-Based Classifiers
section). Supporting Information, Tables S6−S8 show the
performance of the BLAST-based predictor and 35 ML
classifiers. In addition, we compared the performance of the
proposed SCMRSA with five best-performing ML classifiers
having the highest cross-validation BACC for convenience of
discussion. Figures 4 and 5 and Supporting Information, Table
S9 present the performance comparison of SCMRSA with the
five best-performing ML classifiers, including SVMRBF-AAI,
SVMRBF-AAC, SVMRBF-CTD, SVMLN-AAI, and LR-CTD.

We first compared the performance of SCMRSA with the
BLAST-based predictor. Supporting Information, Table S8
shows that the BLAST-based predictor using an E-value cut off
of 0.1 provides the highest BACC of 0.869 with an ACC of
0.940 and MCC of 0.758. However, the MCC, BACC, and Sn
of SCMRSA were 8.93, 6.67, and 13.33%, respectively, higher
than the BLAST-based predictor. When compared with the
five best-performing ML classifiers on the training data set,
SCMRSA still attained the best overall performance in terms of
ACC, BACC, Sn, and MCC (Figures 4 and 5). In the
meantime, SVMRBF-AAI yielded the second highest BACC of
0.899. As can be seen, the BACC, Sn, and MCC of SCMRSA
were 2.76, 5.08, and 4.66%, respectively, higher than the
second-best method SVMRBF-AAI. From Figures 4 and 5, the
largest BACC of 0.947 is achieved by SVMRBF-AAC, while
SVMRBF-AAI and SCMRSA yield the second and third largest
BACC of 0.941 and 0.935, respectively.

It is well-known that SVMRBF-AAC and SVMRBF-AAI are
defined as computational black-box approaches because the
SVM algorithm cannot directly provide information of the
relationship between each feature and the model output. As
such, we were motivated to utilize SCM methods for
developing a simple and highly interpretable model SCMRSA.
The contribution of SCMRSA can be summarized in the
following three aspects: (i) SCMRSA is able to discriminate
between anti-MRSA and non-anti-MRSA using only the simple
weighted-sum function, highlighting that SCMRSA will be a
powerful tool for large-scale identification of anti-MRSA; (ii)
SCMRSA is able to create the propensities of amino acids and
dipeptides. These propensity scores could provide a good
understanding of functional mechanisms of anti-MRSA
peptides and (iii) SCMRSA attained a competitive perform-
ance as compared with SVM-based classifiers and also
outperformed several ML-based classifiers, including DT,
KNN, LR, NB, and PLS, in terms of cost-effectiveness and
interpretability.

Table 2. Performance Comparison of Initial-DPS and DPS

cross-validation feature ACC BACC Sn Sp MCC AUC

10-fold CV initial-DPS 0.925 0.720 0.829 0.960 0.697 0.957
DPS 0.970 0.927 0.865 0.988 0.880 0.969

independent test initial-DPS 0.935 0.833 0.854 0.953 0.756 0.976
DPS 0.960 0.935 0.900 0.970 0.848 0.986

Figure 3. Histogram plot represents the scores of positives (anti-
MRSA peptides) and negatives (non-anti-MRSA peptides) derived
from SCMRSA by using initial-DPS (A) and DPS (B) on the training
data set, where the mean and standard deviation are indicated by the
bars and closed circles.
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3.3. Analysis of Potential Anti-MRSA Peptides on the
Training Data Set. In this section, we utilized our proposed
approach SCMRSA to determine potential anti-MRSA
peptides on the training data set. Particularly, for a given
peptide sequence P, SCMRSA will provide us its anti-MRSA
score. Note that peptides with the largest anti-MRSA score

were assumed to be potential anti-MRSA peptides. Tables 3
and 4 list the top 20 potential anti-MRSA peptides having the
highest and lowest anti-MRSA scores, respectively, along with
their important PCPs, including hydrophobicity (PCP1),
hydropathicity (PCP2), charge (PCP3), and pI (PCP4).

Figure 4. Performance evaluations of SCMRSA and conventional ML-based classifiers based on 10-fold cross-validation test (A,B) and
independent test (C,D).

Figure 5. Performance evaluations of SCMRSA and five best-performing ML classifiers as indicated by the 10-fold cross-validation test. Prediction
results of SCMRSA and five best-performing ML classifiers in terms of ACC, BACC, Sn, Sp, and MCC (A). ROC curves and AUC values of
SCMRSA and five best-performing ML classifiers (B).
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From Tables 3 and 4, several observations can be made: (i)
the anti-MRSA scores of all top 20 high-potential anti-MRSA
peptides were greater than 495, while the anti-MRSA scores of
all top 20 non-anti-MRSA peptides were lower than 232, where
the threshold value was set to 399; (ii) the anti-MRSA scores
derived from our proposed approach SCMRSA, showed a high
correlation with the hydrophobicity and charge properties, and
(iii) 16 out of 20 potential anti-MRSA peptides having the
highest anti-MRSA score exhibited high hydrophobicity and
low positive charge (+1 to +5) (Table 3), while all the top 20
non-anti-MRSA peptides having lowest anti-MRSA scores
(lower than 233) prefer to exhibit negative charge and low

hydrophobicity (Table 4). Mishra and Wang.43 studied the
most critical parameters (e.g., composition, peptide hydro-
phobic content, and net charge) of potent anti-MRSA peptides
using a database filtering technology (DFT). The researchers
found that high hydrophobicity and low cationicity (a net
charge molecule of +1) were two critical parameters for
designing potential anti-MRSA peptides. Taken together, this
analysis revealed that high hydrophobicity and low cationicity
could be important properties in the design and development
of novel anti-MRSA peptides.

Furthermore, Table 3 highlights that the top-five high-
potential anti-MRSA peptides contained FLKAIKKFGKEFK-

Table 3. Top 20 High-Potential Anti-MRSA Peptides Having the Highest S(P) along with Their Important Physicochemical
Propertiesa

# peptide sequence score PCP1 PCP2 PCP3 PCP4 references

1 FLKAIKKFGKEFKKIGAKLK 598.26 −0.2 −0.33 7 10.48 33
2 FLPAALAGIGGILGKLF 560.63 0.28 1.56 1 9.11 34
3 KRIGLIRLIGKILRGLRRLG 558.37 −0.23 0.24 7 12.61 35
4 FLPLIAGLFGKIF 529.92 0.31 1.74 1 9.11 36
5 FLSAITSILGKFF 528.92 0.21 1.44 1 9.11 37
6 FLSIIAKVLGSLF 523.00 0.26 1.86 1 9.11 38
7 KRFKKFFRKIKKGFRKIFKKTKIFIGGTIPI 520.07 −0.26 −0.4 13 12.34 39
8 GLSLLLSLGLKLL 519.42 0.21 1.72 1 9.11
9 GWKKWLRKGAKHLGQAAIKGLAS 514.27 −0.16 −0.49 6.5 11.39 40
10 GFLGSLLKTGLKVGSNLL 509.65 0.08 0.77 2 10.02 41
11 FLPLLAGLAANFLPKIFCKITRK 508.82 0.04 0.85 4 10.33 42
12 GLLSLLSLLGKLL 506.42 0.21 1.72 1 9.11 43
13 GFWGKLFKLGLHGIGLLHLHL 503.45 0.16 0.75 3.5 10.02 44
14 GRRKRKWLRRIGKGVKIIGGAALDHL 502.60 −0.31 −0.56 8.5 12.19 44
15 FLGGLIKIVPAMICAVTKKC 502.16 0.12 1.33 3 9.42 45
16 FLGAVLKVAGKLVPAAICKISKKC 501.22 0.03 1.01 5 9.91 46
17 FLQHIIGALGHLF 498.75 0.24 1.22 1 7.26 47
18 KWKSFIKKLTKKFLHSAKKF 496.84 −0.27 −0.73 8.5 10.85 48
19 GGGCGIGGGCGPIGDCGPIGGGCGPIGGGCGPVGGW 496.31 0.17 0.43 −1 3.8
20 FLPFIAGMAAKFLPKIFCAISKK 495.05 0.1 1.04 4 10.05 42

aPCP1 = hydrophobicity, PCP2 = hydropathicity, PCP3 = charge, PCP4 = pI.

Table 4. Top 20 Non-Anti-MRSA Peptides Having the Lowest S(P) along with Their Important Physicochemical Propertiesa

# peptide sequence score PCP1 PCP2 PCP3 PCP4

1 VNVEALQKVVDES 190.00 −0.12 0.01 −2 4.14
2 RAYREDELIQLL 198.55 −0.28 −0.51 −1 4.68
3 KPLDDTLILEMA 205.64 −0.04 0.22 −2 4.03
4 PHLVIPEIEAIATQTLVEMEAEGLN 207.29 0.03 0.3 −4.5 3.98
5 DADLYTPSIHLYFNDDLTEL 216.16 −0.07 −0.3 −4.5 3.71
6 ADDLLNERYEAVG 218.33 −0.2 −0.59 −3 3.92
7 LEMNVNQLSKETSELKALAVELVEENVALQ 219.10 −0.12 −0.05 −4 4.21
8 TRLQFQALDSTQFATAQGEVPELVLVNPPRR 220.07 −0.18 −0.34 0 6.53
9 FDTVVGRDTLIEPNVV 222.87 −0.04 0.35 −2 4.03
10 EDEDEEEILDHEMREIVHIQAGQCGN 223.40 −0.26 −1.09 −8 4
11 ELVRSKNPDMDE 223.91 −0.4 −1.42 −2 4.32
12 VPGAEGQYFAYIAYDLDLFEPGSI 225.09 0.07 0.21 −4 3.44
13 QDIELCPECFSAG 225.75 −0.04 0.08 −3 3.58
14 CGVIDLAELVRNAHP 229.43 −0.04 0.4 −0.5 5.33
15 DREGTLFIEESDNNNVWTTTA 229.55 −0.22 −0.92 −4 3.84
16 IAEQVASFQEEK 230.09 −0.17 −0.55 −2 4.26
17 SSDPASSEMLSPSTQLLFYETSASFSTEV 230.89 −0.07 −0.15 −4 3.51
18 LQYEPEDPMSSNGDKLLVRSKF 230.90 −0.25 −0.88 −1 4.79
19 NLTLTLDKGTLHQEVNLV 232.88 −0.08 0.02 −0.5 5.33
20 YRVDSDATHSPMFHQVEGL 233.11 −0.17 −0.62 −1 5.22

aPCP1 = hydrophobicity, PCP2 = hydropathicity, PCP3 = charge, PCP4 = pI.
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KIGAKLK (Omega 76 (Ω76)), FLPAALAGIGGILGKLF
(temporin-SHd), KRIGLIRLIGKILRGLRRLG (Saha-
CATH5), FLPLIAGLFGKIF (temporin-PF) and FLSAIT-
SILGKFF (temporin-1Spa) having anti-MRSA scores higher
than 528. To be specific, Ω76 was considered as the most
potential anti-MRSA peptide as indicated by the anti-MRSA
score. Previously, Ω76 is well recognized as a helical peptide
exhibiting a 50% minimal bactericidal concentration (MBC50)
of 16 mg/liter for MRSA without toxicity against HeLa cells,
even at the highest concentration tested (128 mg/liter). In
addition, Ω76, which was designed using the Heligrapher

software package, has reported antimicrobial activity against
multidrug-resistant ESKAPE pathogens, namely, Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acineto-
bacter baumannii, Enterobacter spp, and Pseudomonas aerugino-
sa.33 Interestingly, three out of the top-five high-potential anti-
MRSA peptides are temporins derived from a frog-derived
AMP family.49 Several studies mentioned that temporins were
able to exhibit greater potencies against Gram-positive bacteria,
such as S. aureus as compared to Gram-negative bacteria.35,36,50

Moreover, temporin-SHd and Tasmanian devil cathelicidin
Saha-CATH5 were ranked as the second and third potential

Table 5. Propensity Scores of 20 Amino Acids to be Anti-MRSA Peptides (PS) along with Amino Acid Compositions of Anti-
MRSA and Non-Anti-MRSA Peptides

amino acid PS (rank) anti-MRSA non-anti-MRSA difference (rank) p-value

K-Lys 448(1) 0.111 0.058 0.054(1) 0.000
G-Gly 427(2) 0.111 0.071 0.040(2) 0.000
C-Cys 410(3) 0.046 0.014 0.032(3) 0.000
W-Trp 376(4) 0.023 0.011 0.012(7) 0.007
I-Ile 374(5) 0.082 0.060 0.022(6) 0.001
R-Arg 367(6) 0.062 0.056 0.006(9) 0.440
F-Phe 366(7) 0.064 0.038 0.026(5) 0.000
L-Leu 336(8) 0.126 0.096 0.030(4) 0.005
H-His 330(9) 0.029 0.021 0.007(8) 0.168
A-Ala 315(10) 0.079 0.082 −0.003(10) 0.683
S-Ser 312(11) 0.055 0.069 −0.014(13) 0.013
Y-Tyr 299(12) 0.016 0.029 −0.014(12) 0.000
T-Thr 298(13) 0.039 0.051 −0.012(11) 0.025
N-Asn 297(14) 0.021 0.040 −0.020(17) 0.000
V-Val 288(15) 0.054 0.072 −0.018(15) 0.001
P-Pro 282(16) 0.029 0.046 −0.017(14) 0.000
Q-Gln 264(17) 0.016 0.039 −0.023(18) 0.000
M-Met 257(18) 0.008 0.026 −0.018(16) 0.000
D-Asp 200(19) 0.012 0.053 −0.040(19) 0.000
E-Glu 196(20) 0.017 0.068 −0.051(20) 0.000
R 1.000 0.683 −0.072 0.953

Figure 6. Boxplots of amino acid compositions of 20 amino acids for positives and negatives. X- and Y-axes represent 20 amino acids along with
their p-value.
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anti-MRSA peptides, respectively. Temporin-SHd in the frog
skin of Pelophylax saharicus was highly active against MRSA
(ATCC 43300 and ATCC BAA-44) with a minimal inhibitory
concentration (MIC) of 6.25 μM.34 Likewise, temporin-PF
identified from Pelophylax fukienensis displayed antimicrobial
activity against MRSA (NCTC 12493), while it was ineffective
against Gram-negative strains, such as Escherichia coli (NCTC
10418), P. aeruginosa (ATCC 27853), and K. pneumoniae
(ATCC 43816), at a concentration of up to 128 μM.36

However, Saha-CATH5 also exhibited a strong bactericidal
activity against MRSA with a MIC of 32 μg/mL, while a
concentration of 64 μg/mL had no effect against P. aeruginosa
(ATCC 27853).35

3.4. Characterization of Anti-MRSA Peptides Using
SCMRSA-Derived Propensity Scores. Here, the propen-
sities of amino acids and dipeptides to be anti-MRSA peptides
(PS) were utilized to characterize the biochemical and
biophysical properties of anti-MRSA peptides. Table 5 displays
the propensity scores of amino acids and the amino acid
compositions (%). Amino acids having the highest propensity
scores are deemed to be the most important in anti-MRSA
peptides. As can be seen from Table 5, Lys, Gly, Cys, Trp, and
Ile with the corresponding scores of 448, 427, 410, 376, and
374, respectively, are the top five amino acids exhibiting the
largest propensities, while Glu, Asp, Met, Gln, and Pro with the
corresponding scores of 196, 200, 257, 264, and 282,
respectively, are the top five amino acids exhibiting the lowest
propensities. The most preferred amino acid in natural AMPs
that have been reported in the AMP database (APD) are Gly,
Ser, and Lys.51 Although, Gly and Lys are also dominating
residues in both anti-MRSA peptides and natural AMPs.
Interestingly, Ser has been found at number 11 in rank of the
propensities in this study. Moreover, anti-MRSA peptides
displayed a significantly difference from non-anti-MRSA
peptides in terms of these 10 important amino acids at a
level of p < 0.01 (Figure 6).

Xie et al.50 analyzed the temporin-GHa (GHa) peptide using
a combination between the template-based design coupled
with the database-assisted design. Their analysis demonstrated
that the GHa peptide exhibited stronger antimicrobial activity
against Gram-positive bacteria, such as MRSA, as compared to
Gram-negative bacteria. In addition, the results showed that
Lys, Gly, Arg, and Leu were found to be abundant in AMPs,
while Asp and Glu were relatively less abundant in temporins.
These results are quite consistent with the SCMRSA-derived
propensities of amino acids, as recorded in Table 5. As can be
seen from further in Table 5, the ranks of the propensities for
Lys, Gly, Arg, and Leu were 1, 2, 6, and 8, respectively, while
the rank of the propensities for Asp and Glu was 19 and 20.
Moreover, substitution of His with Lys at both ends of the
GHa peptide to design the single-point or multi-point
mutation peptides as GHaK, GHa4K, and GHa11K could
enhance its antibacterial activity against MRSA (ATCC
43300) and MRSA-2 (isolate).

The same results were also found in the study of Zouhir et
al.,52 where they showed that 118 peptides with high activity
against MRSA at low MIC were determined using their
physicochemical data. For >80% of all anti-MRSA peptides,
they consisted of Lys, Gly, Ile, and Leu, whereas Met and Asp
were rarely found in Zouhir et al.’s study. Moreover, newly
designed peptide S2, constructed by modifying the auto-
inducing peptide of S. aureus and adding a disulfide bond
(Cys1−Cys6), was able to improve the antimicrobial

selectivity against S. aureus, both in vitro and in vivo.53 This
study mentioned that the disulfide bonds from Cys played an
important role in the targeting activity against S. aureus.
Although Trp is found to be less frequently deployed on
average in natural AMPs, a triple Trp (WWW) motif has been
reported as a critical determinant in the Trp-rich peptide,
TetraF2W-RK (WWWLRKIW-amide) for their bactericidal
activity against MRSA (USA300) and their disruption of
bacterial biofilms.54

3.5. Characterization of Anti-MRSA Peptides Using
Informative PCPs. Impressively, SCMRSA was able to
identify informative PCPs in order to provide insights into
the functional mechanisms of anti-MRSA peptides.55−58 The
20 top-ranked informative PCPs are listed in Supporting
Information, Table S10. KLEP840101, FINA910104,
ZASB820101, ZIMJ680104, and ROBB760111 with the
corresponding R values of 0.709, 0.644, 0.617, 0.610, and
0.557, respectively, were considered as the five top-ranked
PCPs herein. Table 6 lists the selected three PCPs for
analyzing anti-MRSA peptides, including KLEP840101 (R =
0.709), ZIMJ680104 (R = 0.610), and WIMW960101 (R =
0.523).

KLEP840101, which is denoted as the “Net charge”,59

exhibited the highest positive correlation of 0.709. From Table
6, we notice that Lys and Arg are both positively charged
residues, while Asp and Glu are both negatively charged
residues. In addition, Lys, Arg, Asp, and Glu were ranked the
1st, 6th, 19th and 20th, respectively, important amino acids
based on the propensities. The high positive R value of
KLEP840101 suggested that anti-MRSA peptides favored
positively charged amino acids. As previously mentioned,
Zouhir et al.52 analyzed the physicochemical data of 118
peptides derived from the APD60 database with low MIC
values against MRSA. Their results showed that the majority of
anti-MRSA peptides were cationic amphipathic proteins

Table 6. Two Important Physicochemical Property (PCP)-
Derived from SCMRSA

amino
acid PS (rank) KLEP840101

ZIMJ680104
(rank)

WIMW960101\
(rank)

K-Lys 448(1) 1 9.74(2) 4.08(12)
G-Gly 427(2) 0 5.97(8) 4.49(6)
C-Cys 410(3) 0 5.05(18) 3.02(19)
W-Trp 376(4) 0 5.89(10) 2.23(20)
I-Ile 374(5) 0 6.02(5) 5.38(2)
R-Arg 367(6) 1 10.76(1) 4.24(8)
F-Phe 366(7) 0 5.48(16) 4.08(13)
L-Leu 336(8) 0 5.98(7) 4.52(5)
H-His 330(9) 0 7.59(3) 3.77(17)
A-Ala 315(10) 0 6(6) 4.81(4)
S-Ser 312(11) 0 5.68(12) 4.48(7)
Y-Tyr 299(12) 0 5.66(14) 3.83(15)
T-Thr 298(13) 0 5.66(13) 3.8(16)
N-Asn 297(14) 0 5.41(17) 3.67(18)
V-Val 288(15) 0 5.96(9) 3.91(14)
P-Pro 282(16) 0 6.3(4) 4.12(10)
Q-Gln 264(17) 0 5.65(15) 4.11(11)
M-Met 257(18) 0 5.74(11) 4.18(9)
D-Asp 200(19) −1 2.77(20) 6.1(1)
E-Glu 196(20) −1 3.22(19) 5.19(3)
R 1.000 0.709 0.610 0.523
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containing a high number of cationic Arg and Lys residues.
Moreover, 268 AMPs with anti-G+ (Gram positive bacteria)
activity in APD were analyzed using DFT. This study found
that the most frequently occurring amino acids of anti-G+
peptides were Leu, Gly, and Lys, which also displayed a net
charge molecule of +1 based on the positively charged amino
acid, such as Lys.43

ZIMJ680104, which is denoted as the “Isoelectric point”,61

had a high positive correlation of 0.610. Zimmerman et al.61

studied the side chain physical properties, such as an isoelectric
point (pI) of 20 amino acids. An isoelectric point is the pH of a
solution at which the net charge of a protein becomes zero. If
the side chain of an amino acid is basic, the pI shows a higher
pH. However, if the side chain is acidic, the pI shows a lower
pH. The high positive R value between pI and the propensity
scores of amino acids suggested that anti-MRSA peptides
favored basic amino acid side chains (high pH value). There
are three amino acids containing basic side chains, including
Lys, Arg, and His. As could be seen in Table 6, the ranks of
propensity scores (PS, pI) for Lys, Arg, and His are (1, 2), (6,
1), and (9, 3) respectively. Moreover, the pI of 19 out of the 20
high-potential anti-MRSA peptides were higher than 9. On the
other hand, the pI of all 20 non-anti-MRSA peptides were
lower than 6. In a previous study, an average pI derived from
118 peptides with high activity against MRSA also showed a
higher pH preference (an average mean of 11.07).52

WIMW960101, which is described as the “interfacial
values”,62 had a positive correlation of 0.523. Wimley and
White.62 determined the hydrophobicity scale for the
partitioning of amino acid residues of AcWl-X-LL peptides
into electrically neutral (zwitterionic) membrane interfaces
from palmitoyloleoylphosphatidylcholine (POPC). The result
displayed the whole-residue interfacial values (side chain plus
peptide backbone) fall into three distinct classes and the
aromatic amino acids (i.e., Phe, Trp, and Tyr) are highly
favorable in membrane interfaces. From Table 6, it can be
observed that two aromatic amino acids (Trp and Phe) are
found in the 10 top-ranked amino acids with the highest
propensities. To be specific, the ranks of propensities (PS and
interfacial values) for Trp and Phe were (4, 1) and (7, 2),
respectively. It is well recognized that all aromatic amino acids
are generally hydrophobic. This result suggested that the anti-
MRSA peptides favor aromatic and hydrophobic amino acids.
As described earlier, Zarena et al.54 analyzed the composition
of Trp-rich peptide and TetraF2W-RK peptide with high
antimicrobial activity against MRSA (USA300) and found that
a Trp triplet (WWW) motif played a critical role in killing and
disrupting the performance of bacterial biofilms. Furthermore,
118 peptides with low MIC values against MRSA were
analyzed for their amino acid composition. It was discovered
that at least 65% of all peptides contained Phe, which is an
aromatic amino acid.52

3.6. Implementation and Utility of SCMRSA. SCMRSA
is the first open-source computational tool developed for
identifying and characterizing anti-MRSA peptides by employ-
ing sequence information without the use of 3D structural
information. Therefore, in order to serve the scientific
community, we have employed our best SCM model as an
easy-to-use web server (named SCMRSA). The SCMRSA web
server could be beneficial for the large-scale identification of
peptides having anti-MRSA activity. It could be stated that
peptides with the highest anti-MRSA score were deemed to be
potential anti-MRSA peptides and could then be prioritized for

experimental testing. An easy-to-use webserver of SCMRSA is
freely accessible at http://pmlabstack.pythonanywhere.com/
SCMRSA.

4. CONCLUSIONS
This study presents SCMRSA, an interpretable ML-based
approach, which makes use of the SCM algorithm in
conjunction with the propensities of amino acids and
dipeptides. To the best of our knowledge, SCMRSA is the
first computational tool for the identification and character-
ization of anti-MRSA peptides using only sequence informa-
tion without the use of 3D structural information. When
comparing SCMRSA with other conventional ML-based
classifiers (i.e., DT, KNN, LR, NB, and PLS) on the
independent test data set, SCMRSA was more effective and
outperformed the compared ML-based classifiers, with an
ACC of 0.960, MCC of 0.848, and AUC of 0.986. In addition,
the SCMRSA-derived propensity scores were employed to
provide insights into the biophysical and biochemical proper-
ties of anti-MRSA. Finally, in order to serve the community-
wide use of the proposed SCMRSA, we established a user-
friendly web server online at http://pmlabstack.
pythonanywhere.com/SCMRSA. SCMRSA is anticipated to
be an open-sourced and useful tool for facilitating the user
convenience to determine potential anti-MRSA peptides for
follow-up experimental validation.
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