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The RNA-binding protein Arrest (Bruno) regulates
alternative splicing to enable myofibril maturation
in Drosophila flight muscle
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Abstract

In Drosophila, fibrillar flight muscles (IFMs) enable flight, while
tubular muscles mediate other body movements. Here, we use
RNA-sequencing and isoform-specific reporters to show that spalt
major (salm) determines fibrillar muscle physiology by regulating
transcription and alternative splicing of a large set of sarcomeric
proteins. We identify the RNA-binding protein Arrest (Aret, Bruno)
as downstream of salm. Aret shuttles between the cytoplasm and
nuclei and is essential for myofibril maturation and sarcomere
growth of IFMs. Molecularly, Aret regulates IFM-specific splicing of
various salm-dependent sarcomeric targets, including Stretchin
and wupA (TnI), and thus maintains muscle fiber integrity. As Aret
and its sarcomeric targets are evolutionarily conserved, similar
principles may regulate mammalian muscle morphogenesis.
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Introduction

Mammals possess various muscle types that exhibit particular phys-

iological properties to fulfill their diverse functions. For example,

the heart muscle beats continuously throughout the life of the

animal, slow skeletal muscle fibers support endurance exercises,

and fast skeletal muscles empower peak forces but fatigue quickly.

The major physiological and biophysical differences between

muscle types are largely determined by differences in the expression

patterns of structural proteins that build the contractile structures—

the myofibrils and sarcomeres. One prominent example is the tran-

scriptional regulation of the various muscle myosin heavy chain

genes in mammals, often used as the basis for muscle fiber-type

classification [1]. In addition to differential transcription, alternative

splicing adds another level of regulation by creating a plethora of

additional protein isoforms. In particular, alternative splicing of the

large sarcomeric proteins, such as titin, contributes to physiological

diversity. Differential splicing between skeletal muscles and heart

results in a short and stiff, heart-specific titin isoform that is impli-

cated in the high passive stiffness of mammalian heart [2,3].

Drosophila is a valuable model to study the mechanisms that

instruct and execute muscle fiber-type diversity. The adult fly houses

two different types of body muscles: fibrillar indirect flight muscles

(IFMs) and tubular body muscles. Tubular muscles are similar to

mammalian body muscle; they contain laterally aligned sarcomeres

and contract synchronously in response to motor neuron stimulation,

which triggers calcium influx. By contrast, fibrillar IFMs contain indi-

vidual non-aligned myofibrils and use an asynchronous contraction

mechanism. In addition to calcium influx, this mechanism requires

physical stretch stimulation as a trigger. Thus, IFMs, similar to

mammalian heart, display a high passive stiffness likely caused by a

specific sarcomeric protein composition. Together, these biophysical

features of IFM myofibers achieve the very high contraction frequen-

cies and large power output of IFMs, enabling insect flight [4–6].

We have shown previously that the Zn-finger transcription factor

spalt major (salm) is required and sufficient for fibrillar IFM fate

choice during pupal development. Loss of salm from IFMs switches

these muscles to a tubular fate, whereas gain of salm in tubular

muscles converts them to the fibrillar fate [7]. Salm executes this

switch by the regulation of targets on both the transcriptional and

splicing level. However, as the initial study of the salm mutant IFMs

was performed by microarray analysis which provided limited

coverage of the various gene isoforms [7], it remained unclear to

what extent alternative splicing contributes to the muscle fiber-type

switch. Furthermore, it was unknown which RNA-binding protein

may instruct the IFM-specific splicing pattern.

Here, we provide a systematic analysis of the salm-regulated

genes and gene isoforms in IFMs by mRNA-Seq and identify a core
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set of more than 700 fibrillar-specific gene isoforms, many of which

code for sarcomeric components. We show that the RNA-binding

protein Arrest (Aret, Bruno) acts downstream of salm to regulate a

large number of these genes by instructing their alternative splicing.

These targets include Stretchin (Strn-Mlck), Sls/Kettin, and WupA,

which are incorporated into the growing sarcomeres during myofi-

ber maturation. Thus, Aret ensures the proper isoform composition

of the sarcomeric module during flight muscle development,

enabling the construction of muscles fast and powerful enough to

enable insect flight.

Results

Wild-type IFMs have a fibrillar morphology of their myofibrils,

and their nuclei are spaced regularly between the myofibril

bundles (Fig 1A). By contrast, leg or jump muscles display a

tubular fiber morphology with their nuclei located in the center of

the tube (Fig 1B, C). Muscle-specific RNAi-mediated knockdown

of salm (salm-IR) or conditional deletion of salm with Mef2-GAL4

using a novel conditional salm allele that is flanked by 2 FRT

insertions (salmFRT) results in a complete tubular conversion of

the salm mutant IFMs (Fig 1D and Supplementary Fig S1), which

has been observed previously [7]. To systematically identify the

salm targets underlying the morphological and physiological

differences between fibrillar IFMs and tubular muscles, we

dissected IFMs, leg muscle, and jump muscle from wild-type

adults, as well as salmFRT and salm-IR IFMs, and performed

mRNA-Seq on biological duplicates. Bioinformatic analysis using

DESeq2 to detect differential gene expression [8] identified 362

genes with a log2-fold change greater than 2 (log2FC > 2) whose

expression are significantly enriched in wild-type IFMs as

compared to salm-IR IFMs (Fig 2A). 133 of these genes are also

significantly enriched in wild-type IFMs as compared to leg and

jump muscles (Fig 2A and Supplementary Table S1). Thus, these

133 genes are fibrillar muscle specific, and their expression

depends on salm function.

Many muscle genes, in particular the complex sarcomeric genes,

are present in multiple isoforms and differentially expressed

between muscle types [9]. Our previous microarray data suggested

that the regulation of some IFM-specific isoforms could be salm

dependent [7]. To systematically identify all exons and their respec-

tive gene isoforms that are regulated by salm, we performed a

DEXSeq analysis of our mRNA-Seq data [10]. We identified 794

exons from 577 genes with a log2FC > 2 that are significantly

enriched in IFMs as compared to leg or jump muscles and are

dependent on salm (Fig 2B and Supplementary Table S1). Together

with the 133 genes regulated at the gene level, our analysis identi-

fied a total of 703 genes that are upregulated in a salm-dependent

fashion in fibrillar versus tubular muscle. We define these 703 genes

as core fibrillar muscle-specific genes or gene isoforms (Supplemen-

tary Table S1).

Interestingly, these 703 genes are highly enriched for cytoskeletal

or mitochondrial components (Fig 2C, D). To investigate fibrillar

versus tubular expression of the sarcomeric genes in more detail,

we clustered the log2FC values of all exons from sarcomeric genes

that are significantly differentially expressed (P-value < 0.05), in

total 319 exons from 53 sarcomeric genes (Fig 2E). Generally, we

see two major sub-clusters of sarcomeric exon expression: ‘Fibrillar

exons’ are upregulated in IFMs as compared to legs in a salm-

dependent manner, while ‘tubular exons’ are upregulated in legs or

salm-IR IFMs as compared to wild-type IFMs (Fig 2E). Often, the

same gene has both fibrillar and tubular exons, indicating muscle-

type-specific isoform expression (Fig 2E).

To support our RNA-Seq analysis data and to investigate the

expression and localization of fibrillar and tubular muscle-specific

genes or gene isoforms, we generated a number of genomic fosmid

reporter transgenes [11] in which we inserted a GFP tag into the

protein or protein isoform of interest by recombineering [12]. We

find very prominent IFM-specific expression of the titinlike gene

Stretchin (Strn-Mlck) isoform R. This fibrillar isoform is expressed

from its own promoter and has a unique splicing pattern resulting

in an early termination as compared to the tubular isoforms

(Fig 1G). The fosmid reporter shows that Strn-Mlck-IsoR protein is

indeed IFM specific and localizes to the myosin thick filament of the

sarcomeres (Fig 1H–J). Both Strn-Mlck-IsoR RNA and protein

expression are entirely dependent on salm (Fig 1G, K–M). Conver-

sely, alternative splicing of the other titin homolog sls/kettin results

in early termination of tubular muscle-specific short isoforms A/D

that localize to the Z-disks of tubular muscle (Fig 1N–Q). These

isoforms are gained in salm-IR IFMs (Fig 1R–T). Alternative splicing

of the LIM domain protein Limpet (Lmpt) results in the short IFM-

specific isoform K, which lacks LIM domains, and the long tubular

muscle-specific isoforms, including isoforms B/C/J with 5 LIM

domains, which localize to I-bands of tubular muscle. Again, the

muscle-specific splicing pattern depends on salm (Supplementary

Fig S2A–I). Additionally, we confirm that the previously character-

ized IFM-specific expression of Act88F [13] strongly depends on

salm (Supplementary Fig S2J–N), while expression of the normally

tubular muscle-specific Mlp84B [14] is gained in salm-IR IFMs

(Supplementary Fig S2O–S). Together, these systematic data suggest

that salm indeed determines fibrillar muscle morphology by control-

ling expression and alternative splicing of many differentially

expressed sarcomeric genes.

Figure 1. Expression of Muscle-type-specific RNA and protein isoform depends on salm.

A–F Wild-type fibrillar IFMs (A) and tubular leg (B) and jump muscles (TDT) (C). Knock down of salm leads to tubular conversion of the IFMs (D), leg and jump muscles
are unaffected (E, F).

G–T mRNA-Seq read counts showing expression of Strn-Mlck (G–M) and kettin isoforms (N–T) from wild-type IFMs, leg muscle and jump muscle as well as salm-IR or
salmFRT conditional mutant IFMs (G, N), and by genomic GFP-tagged isoform markers in Strn-Mlck (H–M) and kettin (O–T). Note that the IFM-specific expression of
Strn-Mlck-IsoR depends on salm (compare H and K), whereas the tubular muscle-specific Kettin-IsoA/D is gained in IFMs upon loss of salm (compare O and R).
Insertion of the GFP tag is indicated by green arrows in G and N. Hairpin sequence of Strn-Mlck-IR and the MiMIC insertion site are marked in G. Note the fibrillar-
specific exons marked with green boxes (G, N) and the tubular-specific exons in Strn-Mlck marked by a red box (G).

Data information: Black arrows indicate direction of transcription. Scale bars are 5 lm, and all images were cropped to the same size.
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To mechanistically investigate how salm instructs the IFM-

specific splicing pattern of these identified sarcomeric genes, we

looked for RNA-binding proteins that are regulated by salm. Our

earlier work had identified the RNA-binding protein Arrest (Aret,

Bruno), which contains 3 conserved RNA recognition motif (RRM)

domains [15], as salm dependent [7]. Interestingly, genomewide

muscle-specific RNAi data had shown that knockdown of aret using

Mef2-GAL4 can result in a flightless phenotype [16], making Aret a

prime candidate to mediate IFM-specific splicing downstream of

salm. Using developmental mRNA-Seq analysis of isolated IFMs, we

found that aret mRNA is expressed highly in developing IFMs at 30

and 72 h APF and maintained at lower levels in adult IFMs but not

in tubular leg or jump muscles (Fig 3A). Interestingly, Aret-specific

antibodies detect Aret protein in the nuclei of adult IFMs, but not

tubular muscles (Fig 3B–D). This IFM-specific expression pattern is

lost in salm-IR IFMs (Fig 3E), suggesting that Aret indeed acts down-

stream of salm in IFMs.

To functionally investigate the role of aret in IFMs, we knocked

down aret with Mef2-GAL4 and a number of available hairpins from

TRiP and VDRC. We found four partially non-overlapping hairpins,

GD41568, KK107459, TRiP38983, and TRiP44483 (Fig 3A) that lead

to viable adults flies that are entirely flightless (Fig 4A). Addition-

ally, we investigated trans-heterozygous combinations of aret loss

of function alleles aretPA/ aretPD, aretPA/ aretQB, and aretPD/ aretQB,

which were initially identified as female sterile due to developmen-

tal arrest of the germ line [17] and were later used to demonstrate

that Aret is important to prevent premature osk mRNA translation

during RNA transport [18]. All of these aret allelic combinations

were indeed viable, female-sterile and entirely flightless (Fig 4A),

demonstrating that aret is essential for IFM formation or function,

but does not have an essential role in tubular muscle, as this would

result in developmental lethality.

To investigate the IFM phenotype in detail, we stained young,

day 1 adult hemithoraces of wild-type, aret-IR, and aretPD/ aretQB

mutants with phalloidin and found that IFM fibers begin to thin and

rupture close to their thoracic attachment sites (Fig 4B–D). Addi-

tionally, the sarcomeres of the aret-IR or aret mutant myofibrils

appear too short and are sometimes entirely lost in day 1 adults

(Fig 4E–G). Cross sections reveal myofibrils that are variable in

diameter and often hollow after aret loss, in contrast to dense, regu-

lar myofibrils in wild-type (Supplementary Fig S3). Interestingly, a

few days after eclosion, generally all IFM fibers of aret-IR or mutants

are ruptured and the myofibrils entirely lose their sarcomeric organi-

zation (Fig 4H–M), suggesting a gradual IFM fiber degeneration

during the first few days of adult life. These aret-IR or aret mutant

flies remain viable and their tubular leg muscles do not display any

obvious phenotypes (Fig 4N–P), again suggesting that Aret is only

required in fibrillar IFMs.

The aret phenotype in young adult flies prompted us to investi-

gate the developmental role of Aret in IFMs. We followed the

development of the dorsal–longitudinal IFMs, which form by fusion

of myoblasts to larval template muscles during early stages of pupal

development [19]. We find that Aret protein is localized to substruc-

tures of the large larval nuclei in the muscle templates, but not in

the nuclei of the fusing adult myoblasts at 14 h after puparium

formation (APF) (Fig 5A). Aret expression remains low in the form-

ing myotubes at 17 h APF, but becomes readily detectable from

24 h APF onwards. From 24 to 60 h APF, we find that Aret is often

tightly associated with the nuclei or nuclear membrane and some

Aret is present within the nuclei; however, the majority of Aret

appears dispersed throughout the IFM cytoplasm (Fig 5C–F, I).

Interestingly, this pattern drastically changes by 72 h APF when

most Aret is shuttled into the nuclei, where it remains until

adulthood (Fig 5G–H, J). Together, these localization patterns are

consistent with a role of Aret in the nucleus; however, before 72 h

APF, it may also have a function in the cytoplasm.

As adult myofibrils of aret mutant IFMs are too short, we investi-

gated when this phenotype arises during IFM development. Distinct

myofibrils are detectable from about 32 h APF onwards [20], with

readily scorable sarcomeres present at 48 h APF in wild-type IFMs

(Fig 6A, B). aret-IR myofibrils appear a bit more irregular at 32 h

APF but form properly by 48 h, housing sarcomeres of comparable

length to wild-type (48 h APF wild-type length: 1.92 lm,

SD = 0.23 lm; aret-IR: 2.04 lm, SD = 0.24 lm, Fig 6E, F, I). Wild-

type sarcomeres begin to grow, reaching 2.75 lm (SD = 0.10 lm) at

72 h APF and 3.30 lm (SD = 0.16 lm) at 90 h APF. Interestingly,

aret-IR sarcomeres fail to grow, instead even shorten, resulting in

1.87 lm (SD = 0.31 lm) long sarcomeres at 72 h APF and 1.76 lm
(SD = 0.17 lm) long ones at 90 h APF (Fig 6C, D, G–I). This

suggests that Aret is required for myofiber maturation and sarco-

mere growth happening after 48 h APF, potentially correlating with

its increased nuclear localization during later stages of IFM morpho-

genesis.

To mechanistically investigate the molecular cause of the myofi-

bril and sarcomere maturation defect, we aimed to identify targets of

Aret by performing developmental mRNA-Seq from isolated wild-

type and aret-IR IFMs. We first focused on the 362 genes that we had

shown above to be regulated by salm in IFMs. We find that IFM-

specific expression of only 51 (14%) of these also depends on aret

function, demonstrating that aret regulates a small subset of the salm

Figure 2. Systematic identification of salm-dependent fibrillar and tubular muscle-specific exons.

A Venn diagram comparing significantly differentially expressed (P-value < 0.05, DESeq2) genes whose log2-fold changes are greater than 2 (log2FC > 2). Note that
expression of 133 IFM-specific genes is salm dependent.

B Venn diagram comparing significantly differentially expressed (P-value < 0.05, DEXSeq) exons with log2FC > 2. Note that expression of most IFM-specific exons is
salm dependent (n = 794). These exons combined with the genes in (A) define the core group of fibrillar-specific genes.

C REVIGO treemap of GO component analysis of the 703 core fibrillar genes versus all expressed genes showing enrichment for muscle, mitochondrial, and cytoskeletal
terms.

D Tree of selected GOrilla GO component terms highlighting enrichment of muscle structural components.
E Hierarchical clustering of log2FC of all 319 exons from 53 sarcomeric genes that are significantly differentially expressed (P-value < 0.05, DEXSeq) comparing their

expression in IFMs to entire legs, jump muscles, salm-IR IFMs or aret-IR IFMs. Exons cluster into ‘fibrillar exons’ (shown in reds) which are IFM specific and mostly
salm dependent and ‘tubular exons’ (shown in blues). Black dots on right demark location of individual sarcomeric gene exons in the heatmap. Note that individual
sarcomeric genes have both tubular- and fibrillar-specific exon expression.
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targets at the transcriptional level of the entire gene unit (Fig 7A,

Supplementary Table S2). Strikingly, we find that expression of 1119

of the 1423 (79%) salm-dependent exons also requires aret function

in IFMs (Fig 7B). The log2FC values are also highly correlated (Pear-

son’s coefficient = 0.7669482, Spearman’s coefficient = 0.8383704)

when comparing all exons significantly differentially expressed (P-

value < 0.05) between aret-IR and salm-IR IFMs (Fig 7E, Supplemen-

tary Table S2). Overall, our analysis identifies only 24 genes, but 747

exons, which are upregulated in IFMs compared to leg and jump

muscles and co-dependent on salm and aret (Fig 7C, D). These data

strongly suggest that salm induces Aret expression, which then

instructs the IFM-specific splicing pattern.

Many of the salm and aret co-regulated exons belong to sarco-

meric genes, highlighting their key importance in building function-

ally different muscle types. Aret regulated exons cluster into

‘fibrillar’ and ‘tubular’ classes as observed for Salm-regulated exons,
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highlighting the disruption of the normal fibrillar splicing program

in aret-IR IFMs (Fig 2E). The log2FC values are even more tightly

correlated for sarcomeric protein exons (red dots in Fig 7E, Pear-

son’s coefficient = 0.8365097; Spearman’s coefficient = 0.8603421)

than when comparing all exons significantly differentially expressed

(P-value < 0.05) between aret-IR and salm-IR IFMs (Fig 7E). We

observe both loss and gain of exon expression in aret-IR IFMs,

although expression of more exons is lost, indicating that Aret can

both promote fibrillar exon inclusion and inhibit the use of tubular

exons (Fig 7E).

To support our bioinformatics data, we used our fosmid reporter

lines and find that neither IFM-specific expression of Act88F nor

IFM- or leg muscle-specific splicing of Lmpt depend on aret (Supple-

mentary Fig S4A–N). Interestingly, both genes are already expressed

at 30 h APF in IFMs and hence already present during early phases

of myofibril formation. By contrast, the IFM-specific Strn-Mlck-IsoR

is entirely lost in aret-IR IFMs (Supplementary Fig S5A–E). Strn-

Mlck-IsoR mRNA is only expressed from 72 h onwards, correlating

with myofibril maturation and the strong nuclear localization of

Aret protein (Supplementary Fig S5A and G). Similarly, the tubular

muscle-specific sls/kettin-IsoA/D, which is present at low levels at

30 h APF in IFMs but then entirely suppressed in IFMs from 72 h

APF onwards, is strongly gained in aret-IR IFMs (Supplementary

Fig S5F–J). This demonstrates that Aret is actively required to

suppress splicing into the terminal exons of the short sls/kettin

isoforms in developing IFMs. We also identified wupA (troponin I,

TnI) as an Aret target and generated a fosmid reporter line for the

tubular muscle-specific isoform (Supplementary Fig S5K–M). Inter-

estingly, Aret is required for both splice suppression of a tubular

muscle-specific exon and inclusion of a fibrillar muscle-specific exon

from 30 h APF onwards (Supplementary Fig S5K). The wupA

fosmid reporter confirms that the tubular wupA isoform is indeed

gained in aret-IR IFMs (Supplementary Fig S5N, O). In addition to

confirming these complex changes in alternative splicing, we could

also confirm an identified Salm-dependent transcriptional change in

aret-IR IFMs. Expression of the tubular muscle-specific Mlp84B is

strongly gained in aret-IR IFMs (Supplementary Fig S4O–S). Since

this gain only occurs after eclosion and not yet at 72 h APF, it is

possibly promoted by an unknown transcription factor whose activ-

ity is regulated by Aret, potentially via alternative splicing. Statisti-

cally, we find that Aret indeed regulates a large number of exons

specifically in adult IFMs (491), whereas only 129 exons are specifi-

cally regulated at 30 h APF during initiation of myofibrillogenesis

and a smaller set of 52 exons are regulated at all analyzed develop-

mental stages (Fig 7F). Together, these data demonstrate that a

large subset of the fibrillar muscle-specific salm targets are regulated

by Aret. This regulation happens mainly at the splicing level during

later stages of flight muscle morphogenesis.

Mis-splicing of wupA (TnI) is implicated in muscle fiber degen-

eration caused by muscle hyper-contraction [21,22]. Interestingly,

aret-IR IFMs also display splicing defects in Mhc and up (TnT),

which are also implicated in muscle hyper-contraction and as a

consequence can lead to muscle fiber loss [23] (Supplementary

Fig S6). To test whether the aret-IR fiber degeneration phenotype is

caused by uncontrolled myosin activity leading to muscle hyper-

contraction, we crossed the IFM-specific Mhc null allele, Mhc10,

into the aret-IR background. At 90 h APF, the aret-IR IFM fiber

morphology is comparable to wild-type; however, aret-IR fibers are

torn during the first days after eclosion (Fig 8A–F). This fiber

degeneration phenotype is entirely rescued by the additional

removal of Mhc from IFMs, demonstrating that loss of Aret causes

uncontrolled myosin activity and IFM fiber hyper-contraction in

adults (Fig 8G–L).

A number of the ‘hyper-contraction genes’ regulate myosin activ-

ity. As the newly identified Strn-Mlck-IsoR protein is also strongly

localized to the myosin filament (Fig 1H), we investigated its role in

fiber contraction. We knocked down Strn-Mlck-IsoR by an isoform-

specific hairpin with Mef2-GAL4 (see Fig 1G) and found an IFM

fiber degeneration phenotype after eclosion, remarkably similar to

that of aret-IR (Fig 8M–O). This Strn-Mlck-IsoR RNAi phenotype was

confirmed by a MiMIC insertion disrupting the IFM-specific isoform

(Fig 8P–R and see Fig 1G). Together, this suggests that Strn-Mlck-

IsoR is a major Aret target that regulates myosin activity and

biophysical forces in adult IFMs.

Discussion

Functionally different muscle types are essential for normal life in

higher animals. Most insects require fast oscillating indirect flight

muscles to enable flight. In Drosophila and also in the beetle Tribolium,

salm or its Tribolium homolog determines the fibrillar morphology

of the IFMs [7]. Our systematic mRNA-Seq data revealed that in

order to achieve fibrillar muscle morphogenesis, salm controls the

expression of a large core set of fibrillar genes (more than 700).

Many of these genes are present in distinct isoforms in fibrillar

versus tubular muscles. These unique isoform combinations poten-

tially determine the specific physiological and biophysical features

of the different muscle types.

As many of the salm targets, in particular the complex sarco-

meric genes, are regulated at the level of alternative splicing, salm

needs to instruct a fibrillar muscle-specific splicing program. Our

data suggest that this is largely achieved by IFM-specific expres-

sion of Aret (Supplementary Fig S7). Aret controls IFM-specific

splicing of a very significant subset of sarcomeric genes, including

the titin homolog Strn-Mlck, as well as repressing tubular-specific

splicing in IFMs, such as tubular-specific events of the titin homo-

log sls/Kettin. Interestingly, a number of these splicing events

occur between 48 h and 90 h APF during which the myofibrils,

initially housing thin and short sarcomeres, mature to myofibrils

with long and thick sarcomeres, which can contract in a stretch-

sensitive manner. As Aret activity is essential for normal sarcomere

growth and myofiber maturation, it is likely that incorporation of

the Aret targets such as Strn-Mlck or IFM-specific WupA (TnI)

instructs normal myofibril maturation (Supplementary Fig S7).

Splicing as well as alternative splicing occurs in the nucleus.

Thus, a direct regulator of splicing should be located in the nucleus.

Aret lacks an obvious nuclear localization signal and until 60 h APF

is found largely in the cytoplasm of the developing IFMs. Neverthe-

less, some Aret is present within the nuclei, possibly in domains

close to the nuclear membrane, where Aret could regulate fibrillar-

type splicing of targets like wupA. Upon an unknown stimulus, most

of the Aret protein translocates to the nuclei by 72 h APF, and now

most of the Aret targets, including Strn-Mlck and sls/kettin, are

spliced in fibrillar mode. Together, this enables correct sarcomere

growth and myofibril maturation. In the mature IFMs, it prevents
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muscle hyper-contraction and thus is essential for normal muscle

fiber maintenance.

It is well established that Aret (Bruno) can regulate mRNA trans-

lation by binding to the 30UTR of osk mRNA to prevent its premature

translation during transport of the RNA from the nurse cells to the

posterior pole of the oocyte in Drosophila [24,25]. A similar function

for Aret in translational control of grk mRNA in the oocyte has also

been suggested [26]. In both cases, Aret-dependent translational

IFM, 17h APF IFM, 24h APF IFM, 32h APF

Aret, Actin, DAPI

IFM, 14h APF

Aret, Actin, DAPI
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Figure 5. Aret shuttles between the cytoplasm and nucleus during IFM development.

A–H Aret protein is concentrated in sub-nuclear locations of the larval IFM template muscles at 14 h APF (red arrow heads in A). Aret protein is barely detectable at
17 h APF and its levels increase until 60 h APF, during which time Aret is located in close proximity to the nuclei and throughout the IFM cytoplasm (B–F). Aret
protein is found in the nuclei at 72 h APF (G) and in adult IFMs (H). Scale bars are 5 lm.

I, J Co-stain of Aret and nuclear Lamin reveals some Aret in the nuclei at 48 h APF (I), whereas most of Aret is nuclear at 72 h APF (J). Scale bars are 5 lm.
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repression occurs in the cytoplasm. However, it has been shown that

upon a block of mRNA export during oogenesis or upon overexpres-

sion of Aret (Bruno) protein, Aret can be found in the nurse cell

nuclei. This nuclear localization is more pronounced when the RNA-

binding motifs were mutated [15]. This is consistent with our obser-

vations suggesting that Aret can shuttle between cytoplasm and

nucleus not only in oocytes, but also in flight muscles. The cytoplas-

mic function of Aret in IFMs, if any, remains to be determined.

Proteins containing RNA recognition motif (RRM) domains are

found frequently in the genome, with more than 250 examples in

Drosophila [15,27]. Aret contains 3 RRMs, 2 N-terminal and 1 more

C-terminal, an organization shared with the Elav family of proteins.

Drosophila Elav is a well-established splicing factor that uses its

RRMs to regulate mRNA splicing in neurons [28,29]. A role for Aret

in regulating splicing in Drosophila was not known prior to this

work. However, while this manuscript was in the final phase of
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Figure 6. aret is essential for myofibril maturation and sarcomere elongation.

A–H Developing myofibrils and sarcomeres in wild-type (A–D) and aret-IR pupae (E–H) stained with phalloidin. Intensity plots 10 lm in length within one
representative myofibril (A’–H’). Regular sarcomeres of about 2 lm at 48 h APF in wild-type (B) mature to about 3.3 lm at 90 h APF (D). aret-IR myofibrils and
sarcomeres are present at approximately the normal length at 48 h APF (F) but fail to elongate until 90 h APF (G, H). Scale bars are 5 lm.

I Quantification of sarcomere length in wild-type (blue) and aret-IR (red), ***P < 0.001, unpaired Student’s t-test. Standard deviation is shown.
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Figure 7. aret regulates fibrillar muscle-specific alternative splicing.

A Venn diagram comparing significantly differentially expressed (P-value < 0.05, DESeq2) genes with a log2FC > 2 between aret-IR and salm-IR. 51 genes are
co-regulated by Salm and Aret.

B Venn diagram comparing significantly differentially expressed (P-value < 0.05, DEXSeq) exons with log2FC > 2 between aret-IR and salm-IR. Note that expression of
78.6% (1119/1423) of Salm-dependent exons is also Aret dependent.

C Venn diagram comparing significantly differentially expressed (P-value < 0.05, DESeq2) genes with a log2FC > 2 between IFM:aret-IR, IFM:salm-IR, IFM:leg, and IFM:
jump muscle. Only 24 fibrillar-specific genes are co-regulated by Salm and Aret.

D Venn diagram comparing significantly differentially expressed (P-value < 0.05, DEXSeq) exons with log2FC > 2 between IFM:aret-IR, IFM:salm-IR, IFM:leg, and IFM:
jump muscle. 747 fibrillar-specific exons co-depend on Aret and Salm.

E Correlation plot of the log2FC IFM:salm-IR versus IFM:aret-IR. All significantly differentially expressed exons (n = 5939, P-value < 0.05, DEXSeq) are plotted in black,
while sarcomeric protein exons are plotted in red. Pearson’s correlation coefficients for all exons (black) and the sarcomeric exons subset (red) are indicated. Note
that many exons are co-regulated by both Salm and Aret and that Aret promotes both inclusion and exclusion of exons.

F Venn diagram comparing significantly differentially expressed (P-value < 0.05, DEXSeq) exons with log2FC > 2 between WT IFM:aret-IR IFM at 30 h APF, 72 h APF and
in 1-d adults. Notably, 781 exons (491 uniquely) are regulated at the adult time point, while only ~300 exons are regulated at each developmental time point.
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preparation, a parallel study showed that Aret regulates splicing of

sls, wupA, and ZASP52 in IFMs. Additionally, it can instruct the

fibrillar splicing mode if expressed ectopically in tubular muscle or

in S2 cells, suggesting that it regulates the splicing machinery

directly [30].

In vertebrates, alternative splicing is also a prominent feature of

different muscle types [31]. In particular in the heart, which shares

some similarities with insect flight muscle, alternative splicing is

very distinct to skeletal muscle and is one important mechanism to

control the different physiological properties of both tissues. RBM20

regulates heart-specific splicing of titin by promoting exon skipping

of the flexible PEVK exons in titin [32]. This is functionally

important as human patients with a mutation in RBM20 suffer from

hereditary cardiomyopathies [33]. A similar role for muscle-type

splicing in heart and skeletal muscle was recently identified for

RBM24 [34], highlighting the importance of muscle-type-specific

splice regulation. While both RBM20 and RBM24 contain only a

single RRM domain, the mammalian homologs of Aret called CELF

1–6 (CUGBP, Elav-like family) contain 3 RRMs with a similar

spacing as in Aret. Interestingly, they have been implicated in

regulating alternative splicing in various tissues including splicing of

troponin T in the heart [35]. However, the presence of multiple genes

makes genetic analysis difficult. This indicates that the mechanism of

Aret-mediated alternative splicing is conserved to mammals,

suggesting that insights gained in Drosophila will also be applicable

to vertebrate muscle biology.
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Figure 8. Age-dependent aret-IR fiber degeneration is caused by hyper-contraction.

A–L Hemithoraces of 90 h APF pupae (A, D, G, J), 1-day adults (B, E, H, K) and 5–7 days aged adults (C, F, I, L). Wild-type IFM fibers remain intact in aged adults (A–C),
whereas aret-IR fibers are successively ruptured and lost (D–F, red arrow heads). This fiber loss is entirely suppressed upon removal of Mhc function from aret-IR
IFMs using the Mhc [10] allele (G–L). Scale bars are 100 lm.

M–R Hemithoraces of IFM-specific Strn-Mlck knock down 90 h APF pupae (M), 1 day (N) and 5–7 days adults (O) and Strn-Mlck MiMIC [MI02893] 90 h APF (P), 1 day (Q)
and 5–7 days adults (R). Note the progressive fiber degeneration upon aging (M–R, red arrow heads). Scale bars are 100 lm.
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Materials and Methods

All fly work was performed at 27°C to enhance GAL4 activity.

Immunostainings were performed using standard protocols [36]. All

antibodies and fly stocks are listed in figure legends and in the

Supplementary Information. Fosmids tagged with GFP were gener-

ated similarly as in previous studies [11,12] and will be published in

detail elsewhere. All fosmids used in this study are listed in the

Supplementary Information. Sarcomere length was quantified based

on phalloidin staining in Fiji (Image J) and significance evaluated

with unpaired Student’s t-tests.

For the mRNA-Seq analysis, IFMs, jump muscles and entire legs

marked with Mef2-GAL4, UAS-GFP-Gma were dissected at the indi-

cated time points. RNA samples were prepared and processed

based on a published protocol [37]. Briefly, total RNA was isolated

with Tri-Pure reagent (Roche), mRNA selected over oligo-dT beads

(Invitrogen), fragmented with peak length ~300 bp, reverse-

transcribed with the Invitrogen SuperScript-III kit and dUTP labeled

during second-strand synthesis. Libraries were prepared and

sequenced according to standard Illumina protocols. RNA sequen-

cing (RNA-seq) was performed at the CSF Next-Generation Sequen-

cing Unit (http://csf.ac.at). Reads were filtered and trimmed using

the FASTX Toolkit and cutadapt and mapped to the Ensembl

BDGP5.25 genome assembly using Tophat v2.0. Reads were visual-

ized on the UCSC server by normalizing to the largest library size

(Supplementary Table S3). Libraries were evaluated with feature-

Counts v1.4.2, and differential expression analysis was performed

on the gene level with DESeq2 and on the exon/isoform level with

DEXSeq. Additional data processing was handled in R. GO analysis

was performed with GOrilla [38] and REVIGO [39]. Additional

details can be found in the Supplementary Information.

Data availability

Three supplementary datasets are provided listing: (1) all genes that

are significantly differentially expressed in the DESeq2 comparison

of IFM, leg muscle, jump muscle, salm-IR IFM, and aret-IR IFM

(Supplementary Raw Data S1); (2) all exons that are significantly

differentially expressed in the DEXSeq comparison of IFM, leg

muscle, jump muscle, salm-IR IFM, and aret-IR IFM (Supplementary

Raw Data S2); (3) all exons that are significantly differentially

expressed in the DEXSeq comparison of IFM to aret-IR IFM at 30 h

APF, 72 h APF and 1-d adults (Supplementary Raw Data S3).

mRNA-Seq data are publicly available from NCBI’s Gene Expression

Omnibus (GEO) under accession number GSE63707. Individual

libraries are available from the Sequence Read Archive (SRA) under

accession numbers GSM1555978–GSM1555995.

Supplementary information for this article is available online:

http://embor.embopress.org
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