
Zheng et al. Cell Commun Signal           (2021) 19:39  
https://doi.org/10.1186/s12964-021-00728-9

RESEARCH

Multi‑omics analysis of tumor angiogenesis 
characteristics and potential epigenetic 
regulation mechanisms in renal clear cell 
carcinoma
Wenzhong Zheng1†, Shiqiang Zhang2†  , Huan Guo3, Xiaobao Chen1, Zhangcheng Huang1, 
Shaoqin Jiang1 and Mengqiang Li1* 

Abstract 

Background:  Tumor angiogenesis, an essential process for cancer proliferation and metastasis, has a critical role in 
prognostic of kidney renal clear cell carcinoma (KIRC), as well as a target in guiding treatment with antiangiogenic 
agents. However, tumor angiogenesis subtypes and potential epigenetic regulation mechanisms in KIRC patient 
remains poorly characterized. System evaluation of angiogenesis subtypes in KIRC patient might help to reveal the 
mechanisms of KIRC and develop more target treatments for patients.

Method:  Ten independent tumor angiogenesis signatures were obtained from molecular signatures database 
(MSigDB) and gene set variation analysis was performed to calculate the angiogenesis score in silico using the Cancer 
Genome Atlas (TCGA) KIRC dataset. Tumor angiogenesis subtypes in 539 TCGA-KIRC patients were identified using 
consensus clustering analysis. The potential regulation mechanisms was studied using gene mutation, copy number 
variation, and differential methylation analysis (DMA). The master transcription factors (MTF) that cause the difference 
in tumor angiogenesis signals were completed by transcription factor enrichment analysis.

Results:  The angiogenesis score of a prognosis related angiogenesis signature including 189 genes was significantly 
correlated with immune score, stroma score, hypoxia score, and vascular endothelial growth factor (VEGF) signal score 
in 539 TCGA KIRC patients. MMRN2, CLEC14A, ACVRL1, EFNB2, and TEK in candidate gene set showed highest correla-
tion coefficient with angiogenesis score in TCGA-KIRC patients. In addition, all of them were associated with overall 
survival in both TCGA-KIRC and E-MTAB-1980 KIRC data. Clustering analysis based on 183 genes in angiogenesis signa-
ture identified two prognosis related angiogenesis subtypes in TCGA KIRC patients. Two clusters also showed differ-
ent angiogenesis score, immune score, stroma score, hypoxia score, VEGF signal score, and microenvironment score. 
DMA identified 59,654 differential methylation sites between two clusters and part of these sites were correlated with 
tumor angiogenesis genes including CDH13, COL4A3, and RHOB. In addition, RFX2, SOX13, and THRA were identified 
as top three MTF in regulating angiogenesis signature in KIRC patients.
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Background
Malignant renal cell carcinoma (RCC) account for 2% 
of the global cancer burden, and ~ 350,000 new cases 
will occur worldwide in 2018 [1]. There are several his-
topathological subtypes of RCC, each characterized by 
a specific molecular pattern. Kidney renal clear cell car-
cinoma (KIRC) is the most prevalent heterogeneous 
subtype, accounting for 75% of all renal cell carcinomas 
(RCC) and most of them arises from the proximal tubule 
cells of the renal nephron [2]. The prognosis of meta-
static KIRC patients remains poorly, and less than 10% 
of these cases were alive over 5 years after diagnosis [3, 
4]. The development and metastasis of malignant tumor 
cells depends on the establishment of a sufficient blood 
supply, that is, tumor angiogenesis. In most normal tis-
sues, factors that anti-angiogenic is predominate, how-
ever in frequency dividing organs and tissues, the balance 
of angiogenesis factor shift to pro-angiogenic growth 
effect [5]. During the process of angiogenesis, tumor cells 
express high level of pro-angiogenic growth factor and 
overwhelming the effects of anti-angiogenic factor to the 
development of new blood vessels [6].

The initial of tumor angiogenesis program involves a 
series of change in local equilibrium cells between anti-
angiogenic and pro-angiogenic regulators that are pro-
duced by surrounding cancer stem cell, stromal cells, 
infiltrating leukocytes, and cancer cells [5, 7]. Therefore, 
aberrant  angiogenesis in tumorigenesis and metastasis 
is closely related to abnormal tumor microenvironment. 
Hypoxia and the expression of the hypoxia inducible 
factor (HIF) proteins in cancer microenvironment were 
contributed to tumor angiogenesis and linked to poor 
prognosis in kidney cancer patients [8–10]. This is easy 
to state, as tumor cell grows require an adequate sup-
ply of oxygen and nutrients based on vascular supply 
and uncontrolled cancer cell exceed a size that outgrows 
their host vascular system supply and result in local 
hypoxia. Consequently, hypoxia and related HIF fam-
ily proteins such as HIF-α proteins (1α, 2α, and 3α) and 
HIF-β (1β, 2β, and 3β) proteins stimulate of neoangio-
genesis and/or vasculogenesis for cancer cells growth 
[11, 12]. On the other hand, hypoxia induced release 
of chemoattractants (such as HIF-1α and HIF-2α) and 
tumor derived cytokines (such as IL-10, IL-4, and TGF-
β) are able to hijack tumor-associated macrophages 
(TAMs) and tumor-associated dendritic cells (TADCs) 

functions, resulting in tumor metastasis [13, 14]. In addi-
tion, the TAMs in hypoxia microenvironment achieve 
a pro-angiogenic performance either by upregulating 
angiogenic molecules (such as VEGF, type I receptor for 
VEGF, angiopoietin, FGF2, CXCL8, and IL-8) or through 
upregulation of angiogenic modulators (such as COX2, 
MMP7, and iNOS) [15]. Therefore, hypoxia, abnormal 
immune status, and angiogenesis form a positive feed-
back regulation cycle to promote cancer cells metastasis. 
In this study, we systematically analyzed the relation-
ship between angiogenesis signals, immune signals, and 
hypoxia signals in TCGA KIRC patients.

With the breakthrough of targeted therapy, anti-angi-
ogenic targeted therapy has attracted more and more 
attention in advanced or metastatic renal cell cancer 
research [8, 16]. Clearly, vascular endothelial growth 
factor (VEGF) which served as pro-angiogenic growth 
factor is an effective drug target in metastatic kidney 
cancer patients and many agents to inhibit this path-
way have shown clinical benefit [17, 18]. On the other 
hand, multi-targeted tyrosine kinase inhibitors (TKI) 
that inhibit vascular endothelial growth factor recep-
tors (VEGFRs) have been approved by the America food 
and drug administration (FDA) as standard treatment 
for advanced or metastatic KIRC patients [19]. Immune 
checkpoint blocker, such as anti-PD-1 antibody, heralded 
a new era in the therapy of metastatic renal cell carci-
noma (mRCC) [20]. Anti-angiogenic targeted therapy 
may also enhance the effect immune checkpoint blocker 
by up-regulating major histocompatibility complex class 
I (MHC-I) expression and promoting T cell infiltration 
[20]. Therefore, combining an anti-angiogenic targeted 
therapy with an immune checkpoint blocker is a closely 
tailored treatment to test in the clinic. In 2020 National 
Comprehensive Cancer Network (NCCN) clinical prac-
tice guidelines in renal cancer, anti-angiogenic targeted 
therapy and immunotherapy combination therapies have 
been added to first-line treatment options [21]. On the 
other hand, neoadjuvant targeted therapy in both local-
ized and locally advanced RCC has emerged as a strategy 
to render primary kidney cancer amenable to planned 
surgical resection in settings where radical nephrectomy 
(RN) or nephron-sparing surgery (NSS) was not thought 
to be feasible or safe [22]. Pre-surgical tumor reduc-
tion (TR) has been demonstrated in a number of rand-
omized double-blind placebo-controlled studies, and an 

Conclusion:  Our study indicate that evaluation the angiogenesis subtypes of KIRC based on angiogenesis signature 
with 183 genes and potential epigenetic mechanisms may help to develop more target treatments for KIRC patients.
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expanding body of literature suggests clinical benefit in 
select RCC patients [23, 24]. However, these studies also 
showed that RCC patients responsiveness to neoadjuvant 
anti-angiogenic targeted therapy vary from individual 
to individual [23]. Therefore, evaluation of angiogenesis 
subtypes in RCC patient might help to reveal the mecha-
nisms of cancer and develop more target treatments for 
RCC patients.

In this study, we systematically studied the tumor angi-
ogenesis subtypes and potential regulation mechanisms 
in TCGA-KIRC patients. Briefly, a reference gene set 
including 183 angiogenesis associated genes was used to 
generate the angiogenesis score and served as angiogen-
esis signal in KIRC patients. The angiogenesis score was 
significantly correlated with immune score, stroma score, 
hypoxia score, and vascular endothelial growth factor 
(VEGF) signal score in 530 KIRC patients. Clustering 
analysis based on 183 genes in reference gene set identi-
fied two prognosis related angiogenesis subtypes in KIRC 
patients. In addition, two clusters also showed different 
angiogenesis score, immune score, stroma score, hypoxia 
score, VEGF signal score, and microenvironment score. 
DMA identified 59,654 differential methylation sites 
between two clusters and part of these sites were corre-
lated with tumor angiogenesis genes including CDH13, 
COL4A3, and RHOB. In addition, RFX2, SOX13, and 
THRA were identified as top three master TFs in regulat-
ing angiogenesis signature in KIRC patients.

Materials and methods
Data acquisition from public online database
Molecular data of samples pathologic diagnosed with 
RCC were obtained from The Cancer Genome Atlas 
(TCGA) database. High-throughput sequencing (HTSeq) 
transcriptome data of KIRC cohort in TCGA database 
including 539 RCC samples and 72 tumor adjacent nor-
mal samples were directly downloaded from Genomic 
Data Commons using “TCGAbiolinks” package in R 
software. The HTSeq transcriptome data (RNA Sequenc-
ing) was primary quantified as raw read count expres-
sion matrix for differential expression gene analysis. In 
addition, RNA-seq transcriptome count matrix includ-
ing 539 RCC samples were further transferred into a 
transcripts per kilobase million (TPM) matrix, and was 
then used to calculate the angiogenesis score, micro-
environment score, and immune cell infiltration (ICI) 
profiles of TCGA RCC patients. Corresponding clinical 
information of TCGA RCC patients was obtained from 
cBio Cancer Genomics Portal online database (cBioPor-
tal: https://​www.​cbiop​ortal.​org/). An independent RCC 
data E-MTAB-1980 [25] based on A-MEXP-2183 Agilent 
Human Gene Expression 4 × 44 K v2 Microarray 026652 
G4845A with overall survival information was download 

from EMBL-EBI database (https://​www.​ebi.​ac.​uk/) and 
served as validation data. TCGA KIRC DNA methylation 
data which corresponded to the cases with RNA-seq data 
based on Illumina Infinium Human Methylation 450  K 
platform including 483 RCC samples were downloaded 
from California University Santa Cruz Xena Public Data 
Hubs (https://​xenab​rowser.​net/​datap​ages/). DNA meth-
ylation data including 483 RCC samples was presented 
as a β value matrix. The β value of each probes were cal-
culated by the following equation: β value = Mean_meth-
ylated/(Mean_methylated + Unmethylated). 332 RCC 
cases with somatic mutations (SMs) and 530 RCC cases 
with somatic copy number variations (CNVs), which cor-
responded to the RCC samples with RNA-seq data, were 
obtained from TCGA online database. To calculate the 
angiogenic score of RCC samples, 10 angiogenic related 
gene sets (Additional file  4: Table  S1) were down from 
Molecular Signatures Database (MSigDB) (https://​www.​
gsea-​msigdb.​org/​gsea/​msigdb).

Gene set variation analysis
As the strengths of gene set enrichment (GSE) analysis 
include dimension reduction, noise, and greater biologi-
cal interpretability. Gene set variation analysis (GSVA) 
method provides increased power to detect subtle path-
way activity changes (such as angiogenic signature) over 
a sample population in comparison to corresponding 
methods [26]. In this study, GSVA method was used to 
calculate the angiogenic value (angiogenic score) of each 
RCC sample based on the reference gene set obtained 
from MSigDB. In other words, angiogenic score repre-
sent the GSVA value of of each RCC sample. To calcu-
late the angiogenic score of RCC samples, 10 angiogenic 
related gene sets (Additional file 4: Table S1) were down 
from Molecular Signatures Database (MSigDB) (https://​
www.​gsea-​msigdb.​org/​gsea/​msigdb) [26]. GSVA is an 
unsupervised, non-parametric method for evaluating the 
variation of corresponding gene set enrichment through 
the independent samples of a gene expression matrix. In 
this study, gene set variation analysis (GSVA) method was 
used to calculate the angiogenic score each RCC sample 
based on the reference gene set obtained from MSigDB. 
GSVA is an unsupervised, non-parametric method 
for evaluating the variation of corresponding gene set 
enrichment through the independent samples of a gene 
expression matrix. The input materials for GSVA method 
are an expression matrix and a reference gene sets. Spe-
cifically, a transcripts per kilobase million (TPM) matrix 
obtained from TCGA database was served as expression 
matrix. On the other hand, 10 angiogenic related gene 
sets were used as reference gene set. In this study we per-
formed “gsva ()”function in gsva package, a bioconductor 
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R package, to calculate the angiogenic score, hypoxia 
score, and VEGF signal score of each RCC sample.

Immune cell infiltration analysis
In this study we performed ssGSEA algorithm implanted 
in xCell R package to calculate the enrichment score 
(ES) of 64 stromal and immune cell types in RCC sam-
ples [28]. xCell is a method that integrates the advantages 
of gene set enrichment with deconvolution approaches, 
which present a compendium of newly generated gene 
signatures for 64 cell types, spanning multiple adaptive 
and innate immunity cells, hematopoietic progenitors, 
epithelial cells, and extracellular matrix cells derived 
from thousands of expression profiles [29–31]. Specifi-
cally, the ES of 64 candidate cell types were estimated 
by 489 gene set and the primary ES of all gene signa-
tures corresponding to target cell were further averaged. 
Through this procedure, a cell matrix including 64 cell 
types and corresponding RCC samples numbers was 
generated and used to correlation analysis. Immune 
cells can be further classified into 9 categories, including 
CD4 T-cell subpopulations, CD8 T-cell subpopulations, 
gamma delta T cells (Tgd cells), monocyte/macrophage 
subpopulations, B-cell subpopulations, granulocyte sub-
populations, nature killer (NK) cells, dendritic cell (DC) 
subpopulations, and NKT cells subpopulations. Finally, 
three summary score based on 64 immune and stromal 
cell types including microenvironment-score, immune-
score, and stroma-score were also evaluated for further 
analyses [29–31].

Identification of angiogenic subtypes using consensus 
clustering analysis
Consensus clustering analysis was performed for angio-
genic subtypes discovery based on 183 angiogenesis 
associated genes in reference gene set. The consensus 
clustering method began by subsampling a proportion 
of genes features from the TPM matrix where each RCC 
sample was partitioned into up to K angiogenic groups. 
In addition, this subsampling  process was repeated for 
1000 times; these multiple clustering runs (CRs) were 
used to calculate consensus values (CVs) and to assess 
the stability of the identified angiogenic subtypes. Pair-
wise CVs, identified as the proportion of CRs in which 
two features (or items) were grouped together and stored 
in a matrix for each K angiogenic groups. Then, for each 
K angiogenic groups, a final consensus based hierarchi-
cal clustering (1-consensus values) was completed and 
pruned to K angiogenic groups. In this study, “Consen-
susClusterPlus” package [32] in R software was used 
to identify TCGA KIRC angiogenic subtypes. After 
performing “ConsensusClusterPlus ()” function in R 

software, we obtained the cluster consensus (or item-
consensus) results and was used to downstream analysis.

Differential expression gene analysis and function 
annotation analysis
The RNA Sequencing data was primary quantified as raw 
read count expression matrix for differential expression 
gene (DEGs) analysis. In this study, the DEGs between 
two angiogenic groups (Cluster_1 versus cluster_2) were 
identified by edgeR packages in R software. A P value 
less than 0.05 and fold change value over 2.0 were con-
sidered as statistically significantly. To further investigate 
the potential mechanism of angiogenic pattern in TCGA 
KIRC patients, the DEGs between two angiogenic groups 
were used to enrichment function annotation analysis by 
using the ClusterProfiler and org.Hs.eg.db package in R 
software. In this section, an adjust P value < 0.05 was con-
sidered as statistically significantly.

Copy number variations analysis and mutation analysis
GISTIC (Version 2.0.1) (https://​gatkf​orums.​broad​insti​
tute.​org) software was adopted to determine the copy 
number variations (CNVs) event enrichment of genomic 
regions including significantly amplified and deleted [33]. 
GISTIC method identifies genomic mutated regions that 
are overrepresented across all cancer samples, based on 
the amplitude of the mutations and their frequency, and 
a G-score was used to quantify the degree of overrepre-
sentation. Then, a P value of each G-score was assigned, 
by comparing the G-score at each mutation region to a 
background G-score distribution, which was corrected 
using the false discovery rate (FDR) statistic, and result-
ing in multiple testing corrected q values. Finally, a cut-
off value (q value = 0.25) was used to select candidate 
regions containing significantly overrepresented CNVs 
regions. Mutation annotation format (MAF) of somatic 
mutation data based on TCGA KIRC cohort was pre-
pared for mutation analysis. The mutational loading 
between two angiogenic groups was compared by per-
forming “maftools” package in R software [34].

Differential methylation analysis and master regulator 
transcription factor analysis
By using the ChAMP package (Version 2.13.5) in R 
software, β value matrix was first filtered and nor-
malized through the embedded SWAN method. The 
differential methylated probes (DMPs) between two 
angiogenic groups were identified by the “champ.DMP 
()” function in ChAMP package with the parameters P 
value less than 0.05 and delta β value over 0.1 [35, 36]. 
To further study the relationship between methylation 
and tumor angiogenesis in RCC, we performed gene 
set enrichment analysis (GSEA) based on identified 
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DMPs by using “champ.GSEA ()” function in ChAMP 
package. To identify enriched motifs and potential 
upstream master transcription factors (TFs), Homo 
Sapiens Comprehensive Model Collection (HOCO-
MOCO Version 11) [36] TFs binding models were 
used as input for Hypergeometric Optimization of 
Motif EnRichment (HOMER Version 4.10) software to 
find motif occurrences in SEs region. Fisher’s exact test 
and Benjamini–Hochberg multiple hypothesis testing 
were used in motif enrichment analysis to correct the 
background of all DMPs regions. The motif occurred 
over 10 times and 95% confidence interval (CI) of the 
Odds Ratio (OR) value greater than 1.1 was considered 
as significantly enriched. Finally, the get.TFs () func-
tion embedded in Enhancer Linking by Methylation/
Expression Relationships (ELMER) package was used 
to identify the master regulator TFs. For each enriched 
motif, get.TFs () function takes the mean DNA meth-
ylation (MDM) of target sites that contain the motif 
occurrence and compares this MDM to the expression 
of human TF.

Statistical analysis
Continuously variables presented as median and quar-
tiles, or mean and standard deviation (SD), depending 
on the distribution pattern (normal or non-normal) of 
each variable which was tested by performing Shapiro–
Wilk test in R software. On the other hand, categorical 
code variables were reported as factor frequencies and 
proportions. The statistical methods used to test the 
difference between two angiogenic groups included two 
independent samples t-test for mean values, Mann–
Whitney U-test for median values, and Fisher’s exact 
test or Chi-square test for frequencies and proportions 
variables. Kruskal–Wallis test was performed to com-
pare the difference between multiple groups. The corre-
lation between two variables (continuously) was studied 
and tested by Pearson or Spearman coefficients based 
on the distribution pattern of variables. The prognos-
tic value of ten independent angiogenic scores were 
evaluated by univariate Cox regression model (survival 
package), Kaplan–Meier curve (survival package), and 
time dependent receiver operating characteristic curve 
(ROC) (time ROC and timereg packages) in R software. 
On the other hand, the prognostic value of VEGF sig-
nal score, hypoxia score, ICI related score, angiogen-
esis-related genes, methylation site signal, and master 
transcription factors (TFs) were evaluated by Kaplan–
Meier curve based on survival package in R software. In 
this study, all statistical tests were performed in R soft-
ware (Version 3.5.1) and a two-tailed P value < 0.05 was 
considered as a statistically significant level.

Result
Prognosis‑related angiogenic signals in TCGA KIRC cohort
First, we numbered 10 independent angiogenesis refer-
ence gene sets for subsequent analysis (Additional file 4: 
Table  S1). Then, gene set variation analysis was per-
formed to calculate the angiogenic score each TCGA 
KIRC sample. Hierarchical clustering analysis based 
on 10 independent angiogenic score showed that 539 
TCGA KIRC samples were cluster into 2 angiogenesis 
subgroups (Fig. 1a). Because the distribution patterns of 
the angiogenesis score in RCC samples were not con-
sistent (Fig. 1a), we analyzed the prognosis effects of 10 
independent angiogenesis score in TCGA KIRC cohort 
respectively. Univariate Cox regression analysis showed 
that No. 2, No. 7, No. 9 angiogenesis score were associ-
ated with the prognosis of TCGA KIRC patients and 
No. 7 angiogenesis score showed highest hazard ratio 
(HR) (Fig.  1b). On the other hand, Kaplan–Meier sur-
vival curve analysis showed that No. 7, No. 9 angiogen-
esis score were positively correlated with the survival 
of TCGA KIRC patients (Fig.  1c–f) (P value = 0.0000 
and P value = 0.0037, respectively). In addition, dur-
ing the observation period of 2–5 years in TCGA KIRC 
cohort, the AUC value of No. 7 angiogenesis score was 
the highest (Fig. 1g). Taken together, No. 7 angiogenesis 
associated gene set was selected as reference gene set 
(and angiogenesis score) for subsequent analysis. Con-
sistent with TCGA results, the angiogenesis score in 
E-MTAB-1980 data were positively correlated with the 
survival of RCC patients (Fig.  1h) (P value = 0.0011). In 
TCGA-KIRC cohort, higher clinicopathological patients 
showed lower angiogenesis score (Additional file  2: Fig-
ure S1A-B). Next, correlation analysis was performed to 
identify the feature gene of angiogenesis score. MMRN2 
(multimerin-2), CLEC14A (C-type lectin 14A), ACVRL1 
(Activin A Receptor Like Type 1), EFNB2 (Ephrin B2) and 
TEK (TEK receptor tyrosine kinase) in No.7 candidate 
angiogenesis gene set showed highest correlation coef-
ficient with angiogenesis score in TCGA-KIRC patients 
(Additional file 5: Table S2). In addition, all of them were 
associated with overall survival in both TCGA-KIRC and 
E-MTAB-1980 KIRC data (Fig. 2a).

Relationship between angiogenesis signal and tumor 
microenvironment in TCGA KIRC cohort
Tumor microenvironment is closely related to the 
aberrant  angiogenesis and metastasis of cancer. In 
this section, we systematically analyzed the relation-
ship between tumor microenvironment associated sig-
nals and angiogenesis score in TCGA KIRC patients. 
First, we analyzed the prognosis effect of each immune 
cells in TCGA KIRC patients. Specifically, Univariate 
Cox analysis of immune cells was performed, we found 
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NKT, B cells, Th1 cells, Th2 cells, M1 macrophages, 
CD8 T cells, aDC, CD8 Tem, pDC, pro B cells, and 
summary immune score were unfavorable prognosis, 
cDC, eosinophils, eosinophils, and summary stroma 
score were favorable prognosis for TCGA KIRC 
patients (Fig.  2b). In addition, Kaplan–Meier analy-
sis of 64 cell types was also conducted, NKT, B cells, 
plasma.cells, Th1 cells, class switched memory B cells, 
cDC, and stroma score were prognostic (P value < 0.05) 

(Fig. 2b). We then performed correlation analysis and 
found that angiogenesis score in TCGA KIRC patients 
was significantly positively related to the infiltration 
intensity of iDC, stroma score, and microenvironment 
score (Fig.  2b). On the other hand, B cells, Th1 cells, 
class switched memory B cells, Th2 cells, CD8 naïve 
T cells, naïve B cells, CD8 T cells, CD8 Tcm, mac-
rophages, CD4 Tem, M2 macrophages and summary 
immune score were significantly negatively related 

Fig. 1  Prognosis-related angiogenesis signals in TCGA KIRC cohort. a Heat-map analysis showed 10 angiogenesis signaling associated GSVA scores 
in TCGA KIRC Cohort. Hierarchical clustering analysis based on 10 independent angiogenesis score showed that 539 TCGA KIRC samples were 
cluster into 2 angiogenesis subgroups; b univariate Cox regression analysis showed that No. 2, No. 7, No. 9 angiogenesis score were associated 
with the prognosis of TCGA KIRC patients and No. 7 angiogenesis score showed highest HR. Kaplan–Meier survival curve analysis showed the 
prognosis effect of No. 7 (c), No. 9 (d), No. 2 (e), No. 10 (f) in TCGA KIRC patients; g time dependent AUC analysis showed that the AUC value of No. 7 
angiogenesis score was the highest during the observation period of 2–5 years in TCGA KIRC cohort. h Kaplan–Meier survival curve analysis showed 
the prognosis effect of No. 7 (c) in E-MTAB-1980 RCC patients
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to the angiogenesis score in TCGA KIRC patients 
(Fig.  2b). Next, we studied the hypoxia signal, VEGF 
signal, and glycolysis signal in TCGA KIRC sam-
ples. Overall survival (OS) analysis results showed 
that VEGF signal score was favorable prognosis (P 
value = 0.047) (Fig.  2c) and hypoxia signal score was 
unfavorable prognosis (P value = 0.018) (Fig.  2d) for 
TCGA KIRC patients. Interesting, both VEGF signal 
score and hypoxia signal score were significantly posi-
tively related to the angiogenesis score in TCGA KIRC 
patients (Fig. 2e, f ).

Angiogenesis subtypes of TCGA KIRC patients
Based on the 183 angiogenic related gene expression pro-
files in No. 7 gene set of 539 patients with RCC in the 
TCGA KIRC dataset, unsupervised consensus cluster-
ing analysis identified two angiogenesis subtypes, namely 
Cluster_1 and Cluster_2 (Fig. 3a). Clearly, K = 2 seemed 
to be a relatively stable distinction of the samples in the 
TCGA KIRC dataset with clustering stability increasing 
from K = 2 ~ 6 (Additional file  2: Supplementary Fig-
ure S1C-F). In addition, the survival of RCC patients in 
Cluster_2 subtype was obviously shorter than Cluster_1 

Fig. 2  The relationship between tumor microenvironment associated signals and angiogenesis score in TCGA KIRC patients. MMRN2, CLEC14A, 
ACVRL1, EFNB2, and TEK in No. 7 candidate angiogenesis gene set were associated with overall survival in both TCGA-KIRC and E-MTAB-1980 KIRC 
data a, b prognosis associated immune cells were showed on the left side of figure; correlation between angiogenesis and immune cells was 
showed on the right side of figure; Kaplan–Meier survival curve analysis showed the prognosis effect of VEGF signal (c) and hypoxia (d) signal in 
TCGA KIRC patients; e correlation between angiogenesis and VEGF signal in TCGA KIRC samples; f correlation between angiogenesis and hypoxia 
signal in TCGA KIRC samples
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subtype (P < 0.0000) (Fig.  3b). On the other hand, OS 
analysis based on 3 ~ 6 clusters (K = 3 ~ 6) of KIRC 
patients were also conducted, but these cluster are 
inseparable in prognosis (Fig.  3c–f), which was mean-
ingless in clinical, therefore we finally selected 2 classi-
fication (K = 2) for further study. Clinical and molecular 
characteristics including TP53 mutation, gender, tumor 
laterality, and race weren’t different between the two 
angiogenesis subgroups (Fig.  4a). Compared with Clus-
ter_2, RCC patients in Cluster_1 showed higher VEGF 
signal, stroma score, immune score, microenvironment 
score, and angiogenesis score (Fig.  4a, b). To obtain 
deeper insights into the function of angiogenesis signal in 
KIRC, we performed function annotation analysis based 
on DEGs between Cluster_1 and Cluster_2 (Additional 
file  6: Table  S3, Additional file  3: Supplementary Figure 
S2A), and found these genes were significantly enriched 
in metabolism-related pathways (Fig. 4c–f).

CNVs and somatic mutation events in two angiogenesis 
subgroups of TCGA KIRC patients
To explore the molecular mechanisms of angiogenesis 
variation in KIRC, CNVs and somatic mutations from 
TCGA database were analyzed. As shown in Fig.  5a, a 
deletion of Chr 3 accompanied with an amplification of 
Chr 5 was enriched in all TCGA KIRC cases (n = 530). 

However these peaks in Chr 3 and Chr 5 did not differ 
significantly between the Cluster_1 (n = 296) and Clus-
ter_2 (n = 234) angiogenesis subgroups. In addition, 
other chromosomal positions did not show obvious peak 
changes in Cluster_1 and Cluster_2 angiogenesis sub-
groups (Fig.  5a). These results indicated that large-scale 
chromosomal variation (CNV) may not be the main 
cause of the differences of angiogenesis in KIRC patients. 
Then somatic mutations were investigated between 
the cases in Cluster_1 and Cluster_2 angiogenesis sub-
groups. The frequency of somatic mutations between 
cases with high angiogenesis signal in Cluster_1 and low 
angiogenesis signal in Cluster_1 was no statistical sig-
nificance after correction (87.7% vs 87.59% mutations) 
(Additional file  3: Supplementary Figure S2B-C). High 
frequency genes including Von Hippel–Lindau Tumor 
Suppressor (VHL), Polybromo 1 (PBRM1), Mucin 16, 
Cell Surface Associated (MUC16), Mechanistic Target 
of Rapamycin Kinase (MTOR), and SET Domain Con-
taining 2, Histone Lysine Methyltransferase (SETD2) 
were detected in both KIRC cases in Cluster_1 and Clus-
ter_2 angiogenesis subgroups (Additional file 3: Supple-
mentary Figure S2B-C). Through statistical analysis, we 
found that only BAP1 showed significant mutation dif-
ferences between two angiogenesis subgroups of TCGA 
KIRC patients (Fig.  5b). Gene Set Enrichment Analysis 

Fig. 3  Angiogenesis subtypes of TCGA KIRC patients. a Unsupervised consensus clustering analysis identified two angiogenesis subtypes, namely 
Cluster_1 and Cluster_2. Clearly, K = 2 seemed to be a relatively stable distinction of the samples in the TCGA KIRC dataset; b patients belonging to 
Cluster_1 showed better prognosis in TCGA KIRC cohort. OS analysis based on 3–6 clusters (c, d, e, f) of KIRC patients were also conducted. These 
cluster are inseparable in prognosis
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Fig. 4  Clinical and molecular characteristics between two angiogenesis subgroups. a Heat-map analysis showed KIRC patients in Cluster_2 showed 
higher VEGF signal, hypoxia signal, and angiogenesis score; b Compared with Cluster_2, RCC patients in Cluster_1 showed higher VEGF signal, 
stroma score, immune score, microenvironment score, and angiogenesis score; c–d DEGs between Cluster_1 and Cluster_2, and found these genes 
were significantly enriched in metabolism-related pathways; * represent P value less than 0.05

Fig. 5  Copy number variations and somatic mutations between two angiogenesis subgroups. a A deletion of Chr 3 accompanied with an 
amplification of Chr 5 was enriched in all TCGA KIRC cases (upper panel). However these peaks in Chr 3 and Chr 5 did not differ significantly 
between the Cluster_1 and Cluster_2 angiogenesis subgroups (middle and lower panel); b only BAP1 showed significant mutation differences 
between two angiogenesis subgroups of TCGA KIRC patients; c GSEA showed that BAP1 in TCGA KIRC samples did not directly enriched in 
angiogenesis pathway, but significantly enriched in TP53, MYC target, hypoxia, epithelial mesenchymal transition (EMT), glycolysis, TGF-β signal 
related pathways; * represent P value less than 0.05; $ represent adjust P value less than 0.05
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(GSEA) showed that BAP1 in TCGA KIRC samples did 
not directly enriched in angiogenesis pathway, but signif-
icantly enriched in TP53, MYC target, hypoxia, epithelial 
mesenchymal transition (EMT), glycolysis, TGF-β signal 
related pathways (Fig. 5c).

Differential methylation sites in two angiogenesis 
subgroups of TCGA KIRC patients
In this section, we identified 59,654 differential methyla-
tion sites (P value < 0.05 and |delta β|> 0.1) in the sam-
ples of 187 Cluster_1 and 145 Cluster_2 RCC samples 
(Fig.  6a). Most differential methylation sites (70.14%) 
between Cluster_1 and Cluster_2 angiogenesis subgroups 
were presented as hypermethylation sites (Fig. 6a). Gene 
body and intergenic region shared the highest propor-
tion of differential methylation sites, which accounting 
for 36.9% and 25.2%, respectively (Fig. 6a). Then we per-
formed GSEA analysis to study the biological functions of 

differential methylation sites in KIRC patients and found 
that those differential methylation sites were significantly 
enriched in tumor angiogenesis, vascular endothelial 
growth factor A (VEGFA), immune, TP53 targets, and 
hypoxia-associated pathways (Fig.  6b, c). By perform-
ing ELMER analysis, we found 9 angiogenesis related 
genes in No. 7 reference gene set were significantly 
correlated with the methylation level of correspond-
ing enhancer (Table  1). In addition, one angiogenesis 
related genes was regulated by the methylation of mul-
tiple enhancer sites in KIRC samples. For example, the 
expression of Cadherin 13 (CDH13) and Ras Homolog 
Family Member B (RHOB) in KIRC were regulated by 4 
independent enhancers respectively (Fig. 6f–h, Table 1). 
Higher CDH13 and RHOB expression in KIRC patients 
were associated with better OS (P value = 0.00067 and P 
value = 0.0000) (Fig.  6d, e) according to Kaplan–Meier 
survival log-rank test. In addition, lower methylation 

Fig. 6  Differential methylation sites in two angiogenesis subgroups of TCGA KIRC patients. a Most differential methylation sites (70.14%) between 
Cluster_1 and Cluster_2 angiogenesis subgroups were presented as hypermethylation sites. Gene body and intergenic region shared the highest 
proportion of differential methylation sites; b, c GSEA analysis showed that those differential methylation sites were significantly enriched in 
tumor angiogenesis, VEGFA, immune, TP53 targets, and hypoxia-associated pathways; d, e higher CDH13 and RHOB expression in KIRC patients 
were associated with better OS according to Kaplan–Meier survival log-rank test; f, g, h Methylation levels of CDH13 related enhancer including 
cg00864293, cg03031932, and cg08344351 were negatively correlated with the expression level of CDH13; i, j, k Lower methylation levels of CDH13 
related enhancer including cg00864293, cg03031932, and cg08344351 showed better OS
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levels of CDH13 related enhancer including cg00864293, 
cg03031932, and cg08344351 showed better OS (P 
value = 0.00025, P value = 0.0000, and P value = 0.01) 
(Fig. 6f–k).

Master transcription factors in regulating angiogenesis 
signal of TCGA KIRC patients
The small sequences within largely DNA elements 
which can be used to control the transcription of tar-
get genes in mammalian cells care called regulatory 
motif. In this section, we totally identified 191 signifi-
cantly enriched motif in the differential methylation 
sites between Cluster_1 and Cluster_2 angiogenesis 
subgroups base on motif enrichment analysis. Of these 
motif, Nuclear Factor I A (NFIA) and Nuclear Factor 
I C (NFIC) shared the highest odds ratio (OR) value 
and percentage (Fig.  7a, Additional file  7: Table  S4). 
By enriching the motif signatures of differential meth-
ylation sites, we can identify candidate master TFs that 
bind to methylation regions affected by the absence 
or accumulation of DNA methylation. TFs including 
Regulatory Factor X2 (RFX2), SRY-Box Transcription 
Factor 13 (SOX13), and Thyroid Hormone Receptor 
Alpha (THRA) were identified as TOP3 master TFs 
in both NFIA and NFIC motif (Fig.  7b, c, Additional 
file 8: Table S5). In addition, higher RFX2, SOX13, and 
THRA expression in KIRC patients were associated 
with better OS (P value = 0.035, P value = 0.00018, and 
P value = 0.00083) (Fig.  7d, f ) according to Kaplan–
Meier survival log-rank test. Finally, compared with 
Cluter_2, RCC patients in Cluster_1 showed higher 
RFX2, SOX13, and THRA expression (Fig. 7g).

Table 1  Angiogenesis related genes in No. 7 reference gene 
set were significantly correlated with the methylation level of 
corresponding enhancer

Symbol Probe Distance Raw.p Pe

ANG cg24162781 63,309 4.1017E-19 0.000999001

CDH13 cg08344351 1,153,078 7.57956E-13 0.000999001

CDH13 cg00864293 1,073,606 8.19426E-14 0.000999001

CDH13 cg03031932 1,113,268 5.77968E-09 0.000999001

CDH13 cg16583186 1,134,045 4.70367E-10 0.000999001

COL4A3 cg18018313 372,087 1.44211E-16 0.000999001

COL4A3 cg12302987 2,752,319 1.52068E-16 0.000999001

HTATIP2 cg09118558 252,588 1.75087E-11 0.000999001

PLG cg22008851 22,694 1.39688E-09 0.000999001

RHOB cg11426800  − 3,060,799 1.49831E-09 0.000999001

RHOB cg01227744 2462 1.11331E-10 0.000999001

RHOB cg02153681  − 65,617 7.00899E-10 0.000999001

RHOB cg07493834  − 1,465,071 7.00899E-10 0.000999001

SPHK1 cg10616974  − 127,777 2.17239E-11 0.000999001

SPINK5 cg02154084 1,220,880 1.65585E-08 0.000999001

VEGFA cg23906612  − 204,454 3.21951E-14 0.000999001

VEGFA cg26464586  − 167,487 6.50071E-13 0.000999001

Fig. 7  Master transcription factors in regulating angiogenesis signal of TCGA KIRC patients. a Motif enrichment analysis showed that NFIA and NFIC 
shared the highest odds ratio value and percentage; b, c transcription factors including RFX2, SOX13, and THRA were identified as TOP3 master 
TFs in both NFIA and NFIC motif; Higher RFX2 (d), SOX13 (e), and THRA (f) expression in KIRC patients were associated with better OS according 
to Kaplan–Meier survival log-rank test; g compared with Cluter_2, RCC patients in Cluster_1 showed higher RFX2, SOX13, and THRA expression. * 
represent P value less than 0.05
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Discussion
Angiogenesis is a hallmark event in cancer patients [37]. 
In normal tissues, angiogenesis is a complex multi-step 
process associated with changes in cellular adhesive 
interactions between adjacent pericytes, equilibrium 
cells, soluble factors, and surrounding extracellular 
matrix components [38]. During the process of format-
ting capillary buds, activated equilibrium cells reorganize 
their cytoskeleton and express cell adhesion molecules 
including proteolytic enzymes, integrins family proteins, 
selectins family proteins, and remodel their adjacent 
extracellular matrix components [38]. Pro-angiogenic 
factors including autocrine and paracrine must be pre-
sent to induce equilibrium cell proliferation, elongation, 
orientation, migration, and differentiation leading to the 
re-establishment and formation of intact micro-vessels. 
During the process of tumorigenesis, malignant cells 
express high level of pro-angiogenic growth factor to pro-
mote the formation of new blood vessels [6]. Specifically, 
aberrant angiogenesis in tumorigenesis and metastasis is 
closely related to tumor microenvironment [39, 40].

In this study, we first systematically analyzed the rela-
tionship between the tumor immune microenvironment 
and angiogenesis signal in TCGA KIRC samples. The 
stroma and microenvironment scores in TCGA KIRC 
patients was positively related to angiogenesis score. It 
is relevant to know that blood vessel is the basic com-
partment of tissue stroma. Besides, we found the infil-
tration intensity of iDC was positively related to the 
angiogenesis score of TCGA KIRC patients. Previous 
study showed that DC can inhibit or stimulate angio-
genesis mainly depending on their status and subset 
specificity. Specifically, DC stimulate angiogenesis by 
secreting cytokines, promoting the proangiogenic activ-
ity of T cells, and trans-differentiating into the endothe-
lial cells of new micro-vessels [41]. In an in  vitro study, 
Suen et  al. reported that iDC promotes angiogenesis in 
the early stage of endometriosis by secreting anti-inflam-
matory cytokine IL-10 [42]. In addition, in an in  vivo 
study, Fainaru et  al. found depletion of DCs in a trans-
genic animal model that allows for their conditional 
ablation completely abrogated basic fibroblast growth 
factor-induced angiogenesis, and significantly inhibited 
tumor growth in these mice [43]. Therefore, we specu-
late that promote DC maturation may act by not only 
augmenting the host immune response to the cancer but 
also by suppressing cancer angiogenesis. Tumor associ-
ated macrophage, an important compartment of tumor 
stroma, was showed to promote cancer cell proliferation 
and stimulate angiogenesis [37]. Similarly, our analysis 
results showed that M2 macrophages were related to the 
angiogenesis score of TCGA KIRC patients. In this study, 
both VEGF signal score and hypoxia signal score were 

significantly positively related to the angiogenesis score 
in TCGA KIRC patients. Previous studied have showed 
that hypoxia and related HIF family proteins such as 
HIF-α proteins and HIF-β proteins can promote angio-
genesis process in cancer patients [11, 12]. These results 
were further confirmation that angiogenesis score can 
effectively represent the angiogenesis and tumor micro-
environment in TCGA KIRC cohort.

In our present study, correlation analysis found that 
MRN2, CLEC14A, ACVRL1, EFNB2, and TEK in No.7 
candidate angiogenesis gene set showed highest correla-
tion coefficient with angiogenesis score in TCGA-KIRC 
patients, and all of them were associated with overall 
survival in both TCGA-KIRC and E-MTAB-1980 KIRC 
data. MMRN2 is an extracellular matrix glycoprotein, it 
interfered with VEGF-VEGFR binding and led to anti-
angiogenic effects [45–47]. CLEC14A is expressed on the 
vasculature of tumours, more than half of renal cell carci-
nomas were high expression [48]. CLEC14A is a tumour 
endothelial marker, it induces sprouting angiogenesis by 
directly binds to with MMRN2 [49].

To further explore the molecular mechanisms of 
angiogenesis variation in KIRC patients, we performed 
somatic CNV analysis and found chromosomal posi-
tions did not show obvious peak changes in Cluster_1 
and Cluster_2 angiogenesis subgroups. Similarly, the 
frequency of somatic mutations between cases with 
high angiogenesis signal in Cluster_1 and low angiogen-
esis signal in Cluster_1 did not showed obvious changes. 
These result indicated that somatic CNV and mutations 
may not be the main cause of the differences of angio-
genesis in KIRC patients. Through statistical analysis, we 
found that only BAP1 showed significant mutation dif-
ferences between two angiogenesis subgroups of TCGA 
KIRC patients and GSEA results did not showed BAP1 
gene directly enriched in angiogenesis pathway. BAP1 
protein belongs to the ubiquitin C-terminal hydrolase 
subfamily of deubiquitinating enzymes and considered 
as a key regulator of many cancer-related pathways [50]. 
Germline alterations in BAP1 have been characterized as 
predisposing variants to familial melanocytic skin tumors 
[50]. In kidney cancer, BAP1 is an oncogene, provide an 
update on the function of the gene products, and may be 
exploited therapeutically [51]. Other studies have found 
that BAP1 protein is essential for kidney function and 
cooperates with VHL in KIRC [52, 53]. However, the reg-
ulatory mechanism of BAP1 on renal cancer angiogenesis 
remains to be further studied.

In this study, we found 9 angiogenesis related genes 
in No. 7 reference gene set were significantly correlated 
with the methylation level of corresponding enhancer 
regions. In addition, one angiogenesis related genes was 
regulated by the methylation of multiple enhancer sites 
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in KIRC samples. For example, the expression of CDH13 
and RHOB in KIRC were regulated by the methylation 
level of 4 independent enhancers regions respectively. 
CDH13, also known as T cadherin, is frequently silenced 
in many different cancers and considered as a tumor 
suppressor genes [54, 55]. In an in  vitro study, Wang 
et al. reported that the methylation of CDH13 promoter 
region restores the angiogenesis, invasive capabilities, 
and migratory of cancer [56]. In addition, treatment of 
cancer cell lines with a histone deacetylase inhibitor or 
a de-methylating agent reactivated CDH13 expression 
resulted in angiogenesis and tumor metastasis. Overex-
pression of CDH13 in endothelial cells stimulates their 
migration and stimulates angiogenesis under pathologi-
cal conditions, apparently by potentiating factors such 
as VEGF [57]. On the other hand, in an in  vivo study, 
Hebbard et al. found CDH13 supports tumor angiogen-
esis and adiponectin association with the vasculature 
in a mice cancer model [58]. However, the regulatory 
mechanism of CDH13 on renal cancer angiogenesis 
remains to be further studied. RhoB protein, a member 
of Ras Homolog family (or Rho GTPase family) respon-
sible for cell-cycle progression, adhesion, protein traf-
ficking, and actin cytoskeleton-mediated motion, serves 
an important role in the intracellular signaling pathways, 
including the epidermal growth factor receptor (EGFR), 
PI3K/Akt/mTOR, and MYC pathways [59]. For example, 
RHOB protein can then inhibit or (in angiogenic states) 
enhance AKT Serine/Threonine Kinase activity, inhibit 
the EGFR receptor, facilitating MYC turnover, antagonize 
Ras/PI3K/mTOR signaling, and inhibit tumorigenesis 
[60]. In breast cancer, loss of RhoB had negatively (no) 
effect on cancer metastasis, RhoB overexpression result 
in decreased cancer metastasis to the liver, lungs, and 
lymph nodes of mouse. In kidney cancer, overexpression 
of RhoB significantly inhibits KIRC cell malignant pheno-
type, which indicated that RhoB play a cancer suppres-
sive role in KIRC cells, raising its potential value in future 
therapeutic target for the patients of KIRC [61].

The distribution of differential methylation sites in the 
non-coding region of the genome including intergenic 
region and transcription start sites (TSS) indicated that 
the methylation of DNA regulatory elements could act as 
underlying mechanisms for oncogenic transcription in 
the cancer cell of KIRC patients. In this study, we iden-
tified 3 master TFs including SOX13, RFX2, and THRA 
play a potential role in regulating the angiogenesis in 
KIRC patients. In glioma cancer, SOX13 protein played 
an important role in the regulation of angiogenesis by the 
feedback loop of FUS/circ_002136/miR-138-5p/SOX13 
axis [62].

Hypoxia-inducible factors (HIFs) are master regulators 
of angiogenesis in tumor microenvironments. HIF-1a 

promoter is normally repressed by methylation, but 
abnormal demethylation was reported in colon cancer 
[62]. HIF-1a expression was suppressed observed in a 
hematopoietic cell line, which is suppressed by a process 
dependent on HIF-1a promoter DNA methylation [63, 
64]. Other genes’ DNA methylation can affect HIF-1a 
stability. VHL hypermethylation leads to HIF-1a activa-
tion and upregulation of HIF-1a target genes [65]. Twist 
plays an important role in tumor angiogenesis involved in 
metastasis, its promoter methylation is a common phe-
nomenon in metastatic carcinomas [66]. HIC1 encodes 
a  transcriptional  repressor, and its targets genes are 
involved in angiogenesis. HIC1 promoter hypermethyla-
tion was found in many solid cancers [67]. In this study, 
we identified 5 genes including CLEC14A, which showed 
high correlation coefficient with the angiogenesis score 
of KIRC patients. Interestingly, CLEC14A promoter was 
highly methylated in LUAD, leading to downregulation 
of CLEC14A. CLEC14A acts as an antitumor role in 
LUAD. These evidences confirmed the association angio-
genesis related genes expression profiles and epigenetic 
methylation.

However, there is still no literature report on the effects 
of RFX2 and THRA on tumor angiogenesis. Our study 
provides a potential target for future tumor angiogenesis 
and an alternative strategy for combined anti-angiogenic 
or target therapy. We would like to acknowledge that this 
study is not devoid of limitations. First, our present study 
has a drawback of retrospective design with selection 
bias, and it is also limited to a single center (TCGA) that 
provided all of the KIRC patient samples. Second, angio-
genesis score will need further confirmation from other 
centers and larger prospective studies for their generaliz-
ability. Finally, all of the work in this study is purely cor-
relative and does not get at any mechanistic explanation. 
The regulatory mechanism of mutated gene, epigenetic 
methylation, and master TFs on KIRC remains to be fur-
ther studied.

Conclusion
In this study, we developed a novel angiogenesis score 
and feature genes (MMRN2, CLEC14A, ACVRL1, 
EFNB2, and TEK) which was associated with tumor 
angiogenesis microenvironment and prognosis in 
KIRC patients. In addition, we identified two progno-
sis associated angiogenesis subtypes in TCGA KIRC 
cohort. Two angiogenesis subtypes in KIRC samples 
showed different angiogenesis score, immune score, 
stroma score, hypoxia score, VEGF signal score, and 
microenvironment score. DMA identified 59,654 dif-
ferential methylation sites between two clusters and 
part of these sites were correlated with tumor angio-
genesis genes including CDH13, COL4A3, and RHOB. 
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In addition, RFX2, SOX13, and THRA were identified 
as top three master TFs in regulating angiogenesis sig-
nature in KIRC patients. In summary, our study indi-
cate that evaluation the angiogenesis subtypes of KIRC 
based on angiogenesis signature with 183 genes and 
potential epigenetic mechanisms may help to develop 
more target treatments for KIRC patients.
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