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japonicum microsatellites with pedigree
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Abstract

Background: Schistosomiasis japonica remains a major public health problem in China. Integrating molecular
analyses, such as population genetic analyses, of the parasite into the on-going surveillance programs is helpful in
exploring the factors causing the persistence and/or spread of Schistosoma japonicum. However, genotyping errors
can seriously affect the results of such studies, unless accounted for in the analyses.

Methods: We assessed the genotyping errors (missing alleles or false alleles) of seven S. japonicum microsatellites,
using a pedigree data approach for schistosome miracidia, which were stored on Whatman FTA cards.

Results: Among 107 schistosome miracidia successfully genotyped, resulting in a total of 715 loci calls, a total of 31
genotyping errors were observed with 25.2 % of the miracidia having at least one error. The error rate per locus
differed among loci, which ranged from 0 to 9.8 %, with the mean error rate 4.3 % over loci. With the parentage
analysis software Cervus, the assignment power with these seven markers was estimated to be 89.5 % for one
parent and 99.9 % for a parent pair. One locus was inferred to have a high number of null alleles and a second
with a high mistyping rate.

Conclusion: To the authors’ knowledge, this is the first time that S. japonicum pedigrees have been used in an
assessment of genotyping errors of microsatellite markers. The observed locus-specific error rate will benefit
downstream epidemiological or ecological analyses of S. japonicum with the markers.

Keywords: Schistosoma japonicum, Microsatellite, Genotyping errors, Pedigree
Background
Whilst there have been great successes in the control of
schistosomiasis japonica in China over the last six de-
cades, the disease remains a major public health prob-
lem with an estimated 0.29 million people infected and
over 245 million people living in endemic areas [1].
Moreover, the disease has been resurging in areas where
it was previously well controlled or its transmission
interrupted [2, 3]. Therefore, it is of importance to ex-
plore the factors influencing the persistence and/or
spread of Schistosoma japonicum. Molecular approaches,
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for example population genetic analyses, can be applied
and integrated into the on-going parasitological or sero-
logical surveillance programs [4–6] to enhance our
knowledge of transmission of this disease, including ad-
dressing questions such as who is infecting whom?
Population genetic analyses of parasites can elucidate

parasite transmission patterns by understanding gene
flow and population structure between and among
spatial or temporal parasite populations [7–9]. However,
as adult worms reside in the blood veins of mammalian
hosts and sampling the worms directly from live hosts is
impossible, studying population structure of schisto-
somes in the field is logistically challenging. Therefore
the alternative practice is to collect and genotype schis-
tosome larvae: either miracidia hatched from eggs in
host faeces, or cercariae shed from an intermediate host
snail. This is facilitated by the development of the
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Whatman FTA card-based approach [10], which allows
field-collected larvae to be stored at room temperature for
up to 4 years and to be successfully reused for molecular
analyses up to 11 times [11]. This in turn facilitates
the growing research in the molecular epidemiology
of S. japonicum [12–14, 11].
Genotyping errors (i.e. the proportion of observed

alleles or genotypes which differ from the true alleles
or genotypes) can bias the frequencies reported for a
population. Even a small per-locus genotyping error
rate can result in relatively large probabilities of a
multilocus genotype containing at least one error [15,
16]. Hence, there is an increasing call for reporting
genotyping error rates and then integrating these er-
rors in the downstream population genetic analyses
[17, 18, 15]. Several approaches have been proposed
for the quantification of genotyping errors [19], among
which, detecting errors with pedigree data has been the
most robust assay [17]. Therefore, we assessed the geno-
typing errors on seven commonly used S. japonicum
microsatellites [20–22], as seen in Table 1, for schisto-
some miracidia stored on Whatman FTA cards. Our S.
japonicum pedigree was established from laboratory
crosses of parasites, with adult worm pairs, and their
offspring (miracidia) from each parasite family, col-
lected. Each parasite was genotyped in an individual
multiplex PCR reaction. Genotyping errors in offspring
with the seven microsatellite loci were detected based
on Mendelian inheritance of alleles, and further esti-
mated with the widely used program CERVUS V3.0.7
[23]. The results benefit future molecular analyses of
Table 1 Characteristics of seven microsatellite loci on S. japonicum

Locus Primer sequence (5’-3’) Repeat Schistos

Sjp4 F: ACAAGCTCCAATCGTCTCTGA TAA Five pro

R: GAATACTGCCGCCCTTGTAA

Sjp18 F: TCCTTTATCTGGGCTGTGGA TGA Two pro

R: TTTCAGCAGGATAACATGACG

Sjp22 F: CAAAGCCTAAACGTCATAGACAG TTA Two pro

R: CAACCACCGATAAGTAGAGTGGA

Sjp42 F: GCTGCAGCTTCTGTGTAGTAA TAA Two pro

R: GTCTTGCTCAGATCAGTTCGT

Sjp58 F: TCCCAGTACCAATGTAGATGTG AAT Two pro

R: CTAATAAAGTCGTCAAGGAGCA

Sjp60 F: CGATTCATTCATAGCCTGACT TAT Two pro

R: GAATCCCATCACAGATTAACG

TS2 F: TTGTCAATAATTTCACTAGGTTCAC GT The Phi
two pro

R: AATTAATAATTCACAAGTAAAACATCTAAGT

He, unbiased expected heterozygosity. aFive provinces are Anhui, Jiangxi, Hunan, H
Anhui and Zhejiang
this organism, aiding accurate interpretation of results
from amplification using these common markers.

Methods
Parasite pedigrees
Schistosoma japonicum was originally obtained from in-
fected snails from the Shitai county of Anhui, China in
April 2013 and then maintained in mice in the labora-
tory. Miracidia were hatched from eggs collected from
the livers of mice. Individual snails, with no previous
schistosome infections, were individually exposed to a
single miracidium and later checked for infection of
schistosome with a shedding experiment. For the details
in procedure, see the work in [24, 25]. As the parasite
undergoes only asexual reproduction within snail hosts
these individually laboratory-infected snails therefore
each harbored only clonal cercariae of the same gender
and genotype. Twenty mice were individually exposed to
approximately 50 cercariae from only one snail each (i.e.
one mouse per snail) and the resultant adult worms
were morphologically sexed, to back inform on the sex
of the cercariae infection in each snail. The sex of cer-
cariae from 11 single miracidium-exposed snails were
successfully identified, with six snails harboring female
cercariae and five snails harboring male cercariae.
The cercariae from these 11 snails were used for para-

site cross experiments. Sixteen mice were each exposed
to two genotypes of five cercariae from two snails, i.e.
five male cercariae of the same genotype from one snail
and five female cercariae of the same genotype from an-
other snail (one mouse per unique genotype cross). Due
reported in the literature

ome isolates Number
of alleles

Size range
(bp)

He Reference

vincesa, China 20 190-247 0.62–1.00 Yin, et al. [22]

vincesb, China 7 261–298 0.68 Xiao, et al. [21]

vincesb, China 11 105–167 0.85 Xiao, et al. [21]

vincesb, China 9 199–234 0.95 Xiao, et al. [21]

vincesb, China 12 439–499 0.8 Xiao, et al. [21]

vincesb, China 10 134–165 0.9 Xiao, et al. [21]

lippines and
vincesc, China

5 360–385 0.68 Shrivastava,
et al. [20]

ubei and Sichuan. bTwo provinces are Anhui and Hubei.cTwo provinces are



Gao et al. Parasites & Vectors  (2015) 8:452 Page 3 of 7
to limited cercariae shed from the 11 infected snails and
to minimize animal usage, only a total of 16 genetically
unique worm pairs were established in 16 mice, rather
than the theoretically possible 30 unique worm pairs
from 5 male and 6 female parasite clones (Fig. 1). Adult
worm pairs were obtained six weeks post-exposure via
portal perfusion and liver examination of the mouse.
The adult worm pairs were stored in 99 % ethanol and
frozen for future analyses. The liver was minced and
eggs (i.e. the offspring of the genetically unique adult
worm pairs) were collected for hatching of miracidia.
The larvae, with the small size of 150 μm [26], were then
collected individually using a pipette in 3–5 μl water and
stored on a Whatman FTA Classic Card for subsequent
DNA analysis. A total of 16 different parasite families
with known adult worm pairs and their offspring were
obtained for molecular analyses. The experiments in-
cluding the following molecular analyses are shown in
Fig. 1. Ethical Approval: The research was approved by
Fig. 1 Diagrammatic representation of experimental steps and molecular a
the Soochow University Ethics Committee and the care
and use of experimental animals complied with institu-
tional standards.

DNA extraction and microsatellite amplification
Genomic DNA from adult worms was extracted using
an EZgene™ Mollusc gDNA Kit (Biomiga, Inc. San
Diego, USA) according to the manufacturer’s protocols.
DNA extraction from miracidia was performed as de-
scribed elsewhere [10]. A total of seven previously pub-
lished microsatellite loci were investigated, and the
forward primer for each pair was labeled with 6-FAM,
HEX, TAMRA or ROX (Table 2). PCR reactions were
carried out in 15 μl reaction volumes containing 1 μl of
adult worm DNA or from one FTA Whatman card disc
with a single miracidium, using the QIAGEN Multiplex
PCR Kit (cat. nos. 206152, Germany). Thermo cycling
was carried out in an Arktik thermocycler (Thermo Sci-
entific) with the following PCR profile: 95 °C for 5 min,
nalyses



Table 2 Characteristics of S. japonicum adult worms (five males
and six females) and offspring miracidia genotyped at seven
mircrosatellite loci in this study

Adult worms Offspring miracidia

Locus Dye No.
amplification

No.
alleles

Ho No.
amplification

No.
alleles

Ho

Sjp4 Hex 11 3 0.545 107 3 0.523

Sjp18 Tamra 11 7 0.727 107 7 0.841

Sjp22 Hex 11 4 0.273 102 5 0.402

Sjp42 Fam 9 6 0.667 103 6 0.515

Sjp58 Tamra 11 6 0.636 96 6 0.625

Sjp60 Tamra 11 8 0.727 105 8 0.867

TS2 Rox 11 4 0.455 95 5 0.474

Ho observed heterozygosity
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followed by 40 cycles of 30s at 95 °C, 90s at anneal-
ing temperature (five cycles at each temperature from
57 °C to 51 °C decreased by 2 °C, then 20 cycles at
50 °C), and 30s at 72 °C, with a final extension at
68 °C for 10 min. Multiplexed PCR products were ge-
notyped using an ABI 3100 automated sequencer (Applied
Biosystems) in Sangon Biotech (Shanghai, China). Each
adult worm was multiplexed twice to improve accuracy of
true genotype scoring.

Microsatellite scoring
We combined automated allele calling with visual in-
spection of each sample. GeneMarker HID Version
2.6.1 (SoftGenetics LLC) was used to automatically
score alleles. The parameters and the loci bin ranges
were set based on S. japonicum samples from several
geographical regions to maximize the match to the
characteristics of the loci used. Automated binning of
allele data (i.e. converting the raw decimal data into
integers) provided consistency across multiple plates
of PCR products, whereas visual inspection avoided
the errors due to uncorrected size measure with low
scores shown in the software. See Additional file 1
for an example.

Identification and quantification of genotyping errors
There are three common types of genotyping errors in-
cluding: 1) null allele, a non-amplifying allele due to a
mutation in the primer target sequence [27]; 2) allelic
dropout, the stochastic non-amplification of an allele at
a heterozygous locus [28]; 3) false allele, allele-like PCR-
generated artifact [29]. For practical handling and as in
the work [30], two types of errors, missing alleles (i.e.
generally caused by the existence of an allelic dropout or
a null allele) and false alleles, were classified here and
identified through Mendelian-inheritance checking. A
missing allele is an allele that is not observed in a mira-
cidium but is expected to be inherited from a parent
adult worm. A false allele is an allele that is called from
a miracidium, but does not exist in either parent worm.
This could result from a mutation between two genera-
tions or a false peak [31]. If there was no amplification
at all on a given loci, then we did not include this as a
‘non amplification’ event as in this situation, no allele
calls would be made at all, as the amplification has not
worked for that loci, and therefore this scenario would
not bias downstream molecular analyses. As recom-
mended in [32], we calculated two indexes, error rate
per locus and per multilocus genotype. Error rate per
locus is measured as the ratio between the number of
single-locus genotypes including at least one allelic mis-
match and the number of single-locus genotypes exam-
ined, calculated for each locus and over loci. Error rate
per multilocus genotype is the ratio between the number
of multilocus genotypes including at least one allelic
mismatch and the number of multilocus genotypes ex-
amined (i.e. the miracidia error rate).
Cervus V3.0.7 [23, 33], a program for parentage ana-

lysis, was used to calculate indexes including Number of
alleles, Observed heterozygosity (Ho), Expected hetero-
zygosity (He), Polymorphic information content (PIC),
Average non-exclusion probability of the first parent
(Excl1), Average non-exclusion probability of parent pair
(Excl2), and Null allele frequency, for each locus and over
all loci (if allowable). Numbers of mismatches were also
detected in known mother-offspring or known father-
offspring pairs for each locus. The mistyping rate was cal-
culated as the ratio of the number of mismatches to the
number of alleles compared, scaled by the average prob-
ability of detecting a mismatch [23].

Results
Parasite profile
As seen in Table 2, an average of 6.7 miracidia from each
genetically unique adult worm pair (i.e. a total of 107
offspring miracidia from 16 mice) were successfully ge-
notyped. The number of alleles ranged from 3 to 8
among loci with an average of 5.43 per locus in the 11
parental schistosomes (five male and six female) and of
5.71 per locus in the 107 miracidia. The observed het-
erozygosity was between 0.273 and 0.727 in the parental
worms and between 0.402 and 0.867 in the miracidia.
The value of no amplification rate in miracidia varied
among loci, ranging from 0 for Sjp4 and Sjp18 to
11.2 % (12/107) for TS2. All genotype data were seen
in Additional file 2.

Genotyping errors
From Table 3, a total of 31 genotyping errors, with 29
missing alleles and two false alleles, were detected in 107
miracidia individuals through visual inspection of in-
compatibility between worm pairs and their offspring.



Table 3 Locus-specific genotyping error rates in 107 miracidia
individuals identified from incompatibility between parent pairs
and their offspring

Locus No. genotype
examined

No. missing
alleles

No. false
alleles

Total
errors

Error
rate

Sjp4 107 0 0 0 0

Sjp18 107 0 0 0 0

Sjp22 102 10 0 10 0.098

Sjp42 103 3 0 3 0.029

Sjp58 96 4 1 5 0.052

Sjp60 105 6 0 6 0.057

TS2 95 6 1 7 0.074

Overall 29 2 31 0.043

Gao et al. Parasites & Vectors  (2015) 8:452 Page 5 of 7
The error rate per locus differed among loci, with the
highest of 9.8 % for Sjp22. The mean error rate over loci
was 4.3 %. Among 107 miracidia multilocus genotypes
checked, 27 individuals had at least one genotyping
error, which gave an error rate of 25.2 % per multilocus
genotype.

Parentage analyses with the software Cervus
As required by Cervus, we combined both 11 worms
and 107 miracidia to estimate the genetic diversity and
probabilities of parent exclusion in parentage analyses.
As seen in Table 4, the unbiased expected heterozygosity
(He) ranged from 0.493 to 0.830 among loci, with the
mean 0.652 over loci. The mean PIC was up to 0.603
over loci. When the seven loci were combined, the aver-
age non-exclusion probability of the first parent (Excl1)
and the average non-exclusion probability of the parent
pair were 89.5 % and 99.9 %, respectively. Null allele fre-
quency was less than 0.05 for all loci with the exception
of TS2.
As seen in Table 5, a total of 16 mismatching calls

were detected in known mother-offspring pairs and 15
Table 4 Genetic diversity estimates, probabilities of parental
exclusion and frequency of null alleles for the seven loci on
adult worms and offspring analyzed with CERVUS3.07

Locus No. alleles Ho He PIC Excl1 Excl2 Null freq

sjp4 3 0.525 0.493 0.399 0.880 0.670 −0.037

sjp18 7 0.831 0.732 0.692 0.668 0.295 −0.069

sjp22 5 0.389 0.575 0.517 0.828 0.513 0.185

sjp42 6 0.527 0.702 0.664 0.700 0.320 0.135

sjp58 6 0.626 0.666 0.636 0.728 0.332 0.033

sjp60 8 0.853 0.830 0.807 0.508 0.157 −0.016

TS2 5 0.472 0.568 0.509 0.831 0.516 0.090

Mean/Total 0.652 0.603 0.895 0.999

Ho observed heterozygosity, He unbiased expected heterozygosity, PIC
polymorphic information content, Excl1 one parent exclusion, Excl2 two
parent exclusion
in known father-offspring pairs. No mistyping was iden-
tified for either Sjp4 and Sjp18. The highest mistyping
rate of up to 11.4 % in mother-offspring and 17.1 % in
father-offspring was estimated for the locus Sjp22. The
second highest was observed for the locus TS2.

Discussion
We evaluated the genotyping errors in individual multi-
locus reactions involving seven S. japonicum microsatel-
lite markers for miracidia samples stored on Whatman
FTA cards. Our results can inform future studies using
these microsatellites through a more thorough under-
standing of the potential error rates of multiplex amplifi-
cations, aiding accurate interpretation of their results.
Among the microsatellites used, two had 100 % success
rate in amplification and no errors recorded, indicating
these as highly reliable and reproducible markers and
therefore highly recommended for future use. Two loci,
one with the highest mistyping rate and one with pos-
sible null alleles were identified, and should be used with
caution under these PCR conditions in the future. To
the authors’ knowledge, this is the first time that S.
japonicum pedigrees have been used in an assessment
of genotyping errors with microsatellite markers.
The selected set of seven schistosome microsatellites

revealed high genetic variation in the 11 parasites (five
male and six female) used and their offspring miracidia.
If there were no genotyping errors, their considerably
high polymorphism and combined assignment power
would be very useful in parentage analyses, and then can
be used to track transmission of the parasite [34] and
other population genetic analyses. In the current study,
for practical handling and due to the approach of sample
storage we classified the observed genotyping errors into
two types- missing and false alleles. Using pedigree ana-
lyses, we observed up to one-fourth of miracidia individ-
uals could have at least one error, which is much lower
than the proportion (44 %) reported for S. mansoni [35].
One possible reason would be associated with more loci
(i.e., nine) used in the S. mansoni study.
An error rate of 2 % in microsatellite studies is usual

and acceptable [36, 15]; however, in this study we ob-
served a considerably high mean error rate over loci
(4.3 %). The error rate varied with locus. No errors were
observed at the loci Sjp4 and Sjp18. Particularly for
Sjp18, a high polymorphism was also displayed in the
samples used, indicating that this microsatellite marker
is highly informative for this kind of analyses. However,
at the locus Sjp22, one-third of the total errors were de-
tected, plus one false allele observed, therefore, special
precautions should be taken in downstream analyses of
the molecular data created from this locus.
Cervus is a likelihood-based parentage-assignment pro-

gram [23, 33] and has been the most widely employed in



Table 5 Locus-specific genotyping error rates estimated from mismatches between adult females or males and offspring with the
program CERVUS3.07

Locus Detection
probability

Mother-offspring pairs Father-offspring pairs

No. genotypes
compared

No. alleles
mismatching

Estimated
error rate

No. genotypes
compared

No. alleles
mismatching

Estimated
error rate

sjp4 0.120 107 0 0 107 0 0

sjp18 0.332 107 0 0 107 0 0

sjp22 0.172 102 4 0.114 102 6 0.171

sjp42 0.300 103 3 0.049 76 0 0

sjp58 0.272 96 3 0.057 96 2 0.038

sjp60 0.492 105 3 0.029 105 3 0.029

TS2 0.169 95 3 0.093 95 4 0.124

Detection probability, the average probability of exclusion of a single randomly-chosen unrelated individual from parentage when no information is available from
the known parent. Estimated error rate, the ratio of the number of mismatches to the number compared scaled by the average probability of detecting a mismatch
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inferring parent–offspring relationships [37]. With known
pedigree data (for example, a known parent-offspring
pairing) the software can also be used to quantify mistyp-
ing errors and then estimate error rate. In this study with
Cervus, two loci (Sjp22 and TS2) were shown to contain
high errors and the locus TS2 was suggested with poten-
tial null alleles. To minimize genotyping errors, a protocol
implementing quality assurance procedures has been pro-
posed [17], but genotyping errors cannot be completely
eliminated. Therefore the knowledge of errors, particularly
the locus-specific error rate, can add power and ac-
curacy to downstream analyses, especially as a major-
ity of software packages, for example Colony2 [38]
and MasterBayes [39], have been developed to allow
the incorporation of errors into their algorithms. Our
data are also important for future optimization of im-
proved multiplex reactions, indicating certain loci which
are highly reliable (Sjp4 and Sjp18), and other microsatel-
lites which may be either improved or replaced (Sjp22
or TS2).
Overall false alleles were rare, indicating that if allele

calls are made for these loci, then they are likely to be
accurate. However some alleles may be lost. Overall this
means that any bias that genotyping error may impose
will be more likely to be associated with genetic diver-
sity, rather than population structure analyses. This may
increase the relative proportion of homozygous calls ver-
sus heterozygous calls, as well as reducing the number
of rare and private alleles. However, if the same multi-
plex reactions are used to compare populations, then a
similar loss of diversity would be expected across the
samples and should not affect the overall conclusions.
As this study was performed comparing miracidia dir-
ectly with each other and their parents, the chance of
these differences we observe and attribute to amplification
and genotyping errors, being due to mutations arising
from only one round of sexual reproduction, is minimal,
particularly given the relatively low mutation rate of
schistosomes [40]. We are therefore confident that our
results represent accurate measures of genotyping errors
for each loci.

Conclusion
The genotyping errors of S. japonicum at seven loci were
characterized with pedigree data. Two error-prone loci
were identified and should be paid more attention. Null
alleles at one locus were detected with the program
Cervus. The observed locus-specific error rate is useful
for any further epidemiological, ecological or evolution-
ary research on S. japonicum involving the above micro-
satellite markers.
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