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Abstract: This work details the impact of atmospheric CO2 and temperature conditions on two
strains of Fusarium graminearum, their disease damage, pathogen growth, mycotoxin accumulation,
and production per unit fungal biomass in wheat and corn. An elevated atmospheric CO2 concentra-
tion, 1000 ppm CO2, significantly increased the accumulation of deoxynivalenol in infected plants.
Furthermore, growth in cool growing conditions, 20 ◦C/18 ◦C, day and night, respectively, resulted
in the highest amounts of pathogen biomass and toxin accumulation in both inoculated wheat and
corn. Warm temperatures, 25 ◦C/23 ◦C, day and night, respectively, suppressed pathogen growth
and toxin accumulation, with reductions as great as 99% in corn. In wheat, despite reduced pathogen
biomass and toxin accumulation at warm temperatures, the fungal pathogen was more aggressive
with greater disease damage and toxin production per unit biomass. Disease outcomes were also
pathogen strain specific, with complex interactions between host, strain, and growth conditions.
However, we found that atmospheric CO2 and temperature had essentially no significant interactions,
except for greatly increased deoxynivalenol accumulation in corn at cool temperatures and elevated
CO2. Plants were most susceptible to disease damage at warm and cold temperatures for wheat and
corn, respectively. This work helps elucidate the complex interaction between the abiotic stresses and
biotic susceptibility of wheat and corn to Fusarium graminearum infection to better understand the
potential impact global climate change poses to future food security.

Keywords: wheat; corn; Fusarium graminearum; climate change; elevated CO2; mycotoxins;
deoxynivalenol

1. Introduction

Fusarium graminearum (F. graminearum) is a devastating mycotoxigenic fungal pathogen
that can cause disease in cereal crops such as wheat and corn [1]. The pathogen is particu-
larly destructive due to its production of trichothecene mycotoxins [2]. The trichothecene
deoxynivalenol (DON) not only causes plant cell death but is also toxic to animals/humans
and can cause vomiting, feed refusal, immunosuppression, and organ damage [3]. DON
is a serious food safety concern because it remains stable in harvested grains, and is not
destroyed during typical food processing, including cooking, baking, or brewing [4,5].
Thus, heavily contaminated grain must be removed from the food chain resulting in
approximately 2 billion dollars in annual agroeconomic losses [6,7].

The severity of Fusarium epidemics and the accumulation of DON in cereal grains are
strongly associated with weather, and climate change is predicted to increase the risk of
disease in many grain growing regions of the world [8,9]. Infection typically occurs when
conditions are warm and wet during flowering and seed fill [10]. However, the impact of
weather conditions is also dependent on the F. graminearum isolate causing disease in the
crop host.
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The optimal temperature for DON production is on average approximately 25 ◦C, but
can vary among different DON producing Fusarium species or F. graminearum isolates which
are capable of producing DON at a wide range of temperatures from 15–30 ◦C [11,12]. In
North America there are distinct populations of F. graminearum [13,14]. North American 1
(NA1) represents an endemic genetically diverse population that predominantly produces
the trichothecene toxin analog 15-acetyldeoxynivalenol (15ADON). A more homogeneous
invasive population, referred to as the North American 2 (NA2) population that produces
3-acetyldeoxynivalenol (3ADON), is thought to be displacing NA1 in certain regions [15].
While relatively few studies have compared the effects of abiotic variables on the different
F. graminearum populations, in response to heat or cold treatments NA2 isolates exhibited
increased DON production in comparison to NA1 isolates [16]. Additionally, F. graminearum
isolates acclimated to elevated carbon dioxide (CO2) became more aggressive to wheat and
caused more severe Fusarium head blight (FHB) and DON contamination in comparison
to ambient CO2-acclimated isolates [16].

The effects of abiotic variable treatments on disease and mycotoxin accumulation
are likely influenced by the medium/host. Changes in wheat nutritional content, due
to growth at elevated [CO2], reduced F. graminearum growth but caused strain specific
increases in mycotoxin production [17]. At elevated CO2, F. graminearum radial growth was
inhibited on artificial media [18], but conversely fungal biomass accumulation increased in
infected wheat heads [19]. Additionally, the influence of elevated CO2 on F. graminearum
aggressiveness, disease severity, and mycotoxin accumulation was shown to be dependent
on both the interacting F. graminearum strain and wheat host variety [16,19,20]. Furthermore,
it is well established that wheat and corn plants respond differently to temperature and
elevated atmospheric CO2 because they have different photosynthetic systems. Warmer
temperatures and elevated CO2 have a greater effect on C3 photosynthetic crops, such
as wheat, than C4 photosynthetic crops, such as corn [21]. Unlike C3 crops which have
lower photosynthetic efficiency at warmer temperatures or low intracellular concentrations
of CO2 due to photorespiration [22], C4 plants have a unique anatomy (Kranz anatomy)
which concentrates CO2 within the bundle sheath at the primary site of C4 photosynthesis,
effectively eliminating photorespiration regardless of atmospheric temperature and CO2
concentration [23,24]. Thus, due to changes in photosynthetic efficiency, wheat plants
typically experience changes in primary metabolism at warmer temperatures and elevated
CO2, while corn does not. Thus, altering the pathogen host/growth medium.

Therefore, we hypothesized that it would be essential to include diverse interacting
organisms and abiotic factors to fully understand the combined effects on the outcome of F.
graminearum disease and mycotoxin contamination potential. To test this hypothesis, we
compared disease development and DON contamination in a full-factorial experimental
design using two F. graminearum strains (13MN1-6, 12SD6-2 representing an NA1 and NA2
strain, respectively: Table 1), two CO2 concentrations (400 ppm (ambient) and 1000 ppm
(elevated)), and two temperature treatments (20 ◦C/18 ◦C (cool) and 25 ◦C/23 ◦C (warm))
temperature conditions.

Furthermore, we independently conducted these comparisons in two different hosts
(wheat and corn). To accommodate the size of the experiment and utilize the same temper-
ature treatments for both crops, we used two model varieties. Apogee is a full-dwarf hard
red spring wheat (Triticum aestivum) cultivar developed in collaboration with the National
Aeronautics and Space Administration (NASA) for growth in space, but has since also
been established as a model wheat cultivar for FHB studies [27,28]. Gaspe Flint is a short
season corn (Zea mays) variety originating from Canadian landrace which is adapted to
cooler temperatures and has been used experimentally to evaluated Fusarium ear rot [29].
Characterizing the complex interaction between abiotic stress and biotic susceptibility to F.
graminearum infection in wheat and corn will help elucidate the potential impact global
climate change poses to future food security.
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Table 1. Fusarium graminearum strains used for inoculations and disease assays. Strains are distinguished from one another
by North American population group [25] and mycotoxin chemotype [26].

F. graminearum Strains 13MN1-6 12SD6-2

North American F. graminearum
population [25] NA1 NA2

Mycotoxin Chemotype [26]
15-acetyl-deoxynivalenol

(15-ADON)
3-acetyl-deoxynivalenol

(3-ADON)
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2. Results

The impact of elevated CO2 and temperature on disease severity was found to be host
and pathogen dependent (Figure 1). Additionally, multiple factor interactions were found
to influence disease, fungal biomass, mycotoxin accumulation, and toxin production per
unit biomass.
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Figure 1. Representative Fusarium graminearum disease severity at elevated carbon dioxide and
temperature on Apogee wheat and Gaspe Flint corn 21 and 17 days after inoculation, respectively.
Wheat and corn inoculated with the NA1
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2.1. Effects of Elevated CO2 and Temperature on F. graminearum Disease Severity in Wheat

According to the 2 (temperature: 20 ◦C/18 ◦C and 25 ◦C/23 ◦C) × 2 (CO2:400 ppm and
1000 ppm) × 2 (strain: 13MN1-6 and 12SD6-2) full-factorial analysis of variance (ANOVA),
significant contributing factors to differences in the area under the disease progression
curve (AUDPC) in wheat included strain, temperature, and the interaction between strain
and CO2. Visual disease progression was greater for the NA2 (12SD6-2) strain than the NA1
(13MN1-6) strain (p = 0.01; Figure 2a), and the warmer temperature treatment (25 ◦C/23 ◦C)
resulted in significantly more visual disease symptoms (p = 0.01). Additionally, elevated
CO2 significantly increased disease progression for the NA2 strain, but not the NA1 strain
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(p = 0.04). Interestingly, quantitative polymerase chain reaction (PCR) estimates of relative
F. graminearum DNA to wheat DNA (designated as Fg/Ta relative biomass or Fg biomass)
did not correspond with visual disease. Only temperature was a significant contributing
factor, and F. graminearum biomass was 2 to 3.5-fold higher at the cool temperature treatment
(20 ◦C/18 ◦C) in comparison to the warm treatment (p < 0.0001) (Figure 2b). Elevated CO2
did not affect F. graminearum biomass accumulation in wheat.
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Differences in wheat DON contamination levels were significantly affected by strain,
temperature, CO2, and the interaction between strain and temperature (Figure 2a). Overall,
NA2 inoculated wheat had more DON (p < 0.0001). However, this strain-specific difference
was temperature dependent and although on average the NA2 strain resulted in more
DON contamination, the difference was only significantly different at the cool temperature
treatment (p = 0.03). The warm temperature treatment resulted in significantly less DON
contamination (p < 0.0001), and elevated CO2 caused significantly greater DON contami-
nation in inoculated wheat (27%; p = 0.007). Consistent with DON contamination levels,
the amount of DON produced per unit fungal biomass for the NA2 strain was 40% more
than the NA1 strain (Figure 3b; p = 0.0092). However, both strains had greater DON per
unit biomass at the warm temperature treatment (p = 0.0002). There was no significant
impact of elevated CO2 on DON production per unit biomass for either of the strains in
infected wheat.
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2.2. Effects of Elevated CO2 and Temperature on F. graminearum Disease Severity in Corn

Strain and temperature significantly contributed to visual disease symptoms in corn
according to the full-factorial ANOVA (Figure 4a). Unlike in wheat, disease symptoms in
corn were 40% less at the warm temperature treatment in comparison to the cool treatment
(Figure 4a; p < 0.01). Furthermore, the NA1 strain caused 22% more disease compared to
the NA2 strain (p < 0.01), which was the inverse of observations in wheat.

Overall, the relative NA1 biomass was also significantly greater than the NA2 biomass
(Figure 4b, p = 0.0001). F. graminearum biomass was also greater at elevated CO2 (p = 0.036),
but the effect was dependent on the strain. While the biomass of the NA2 strain was
unaffected by elevated CO2, the NA1 fungal biomass nearly doubled at elevated CO2
(p = 0.0005), regardless of temperature treatment. As with disease symptoms, the amount
of F. graminearum biomass was 46% less in corn at the warm temperature treatment in
comparison to the cool temperature, and the effect of temperature was significantly more
severe for the NA1 strain (p = 0.0001).

Factors contributing to a significant difference in corn DON contamination included
strain, temperature, CO2, and the interaction between strain and temperature and temperature
and CO2 (Figure 5a). DON contamination was significantly higher in corn inoculated with
NA1 (p < 0.0001), at the cooler temperature treatment (p < 0.0001), and at elevated CO2
(p = 0.02). The highest amount of DON was in corn at the cool temperature treatment,
particularly with the NA1 strain, which produced significantly more DON than the NA2
strain (p < 0.0001). The difference in DON contamination of corn between the temperature
treatments was the most dramatic, with DON content being 99% and 94% less at the warmer
treatment for the NA1 and NA2 strain, respectively. At elevated CO2, DON contamination
was not significantly impacted at the warm temperature treatment but was approximately
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1.4 and 23 times greater in cool temperature treated corn inoculated with the NA1 and NA2
strain, respectively (p = 0.03).
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Furthermore, DON production per unit F. graminearum biomass was significantly
less in corn at the warm temperature treatment (Figure 5b; p = 0.0019). However, neither
F. graminearum strain nor CO2 concentration affected DON production per unit biomass
in corn.

3. Discussion

Our findings, that elevated CO2 exacerbated Fusarium disease outcomes, are consistent
with previous reports. Elevated CO2 was shown to increase disease susceptibility in wheat,
resulting in increased disease damage and DON contamination in a host cultivar and
pathogen strain dependent manner [8,16,19,20]. Furthermore, elevated CO2 can also signif-
icantly alter plant nutritional content, particularly in C3 photosynthetic crops [21,30,31].
Changes in the host nutrient profile may have reduced F. graminearum growth but increased
DON per unit biomass, as previously observed in F. graminearum infected grain from
wheat grown at elevated CO2 [17]. Our current study found a significant increase of DON
contamination in infected wheat that was grown at elevated CO2 (Figure 3). Furthermore,
the NA2 strain caused more disease damage at elevated CO2 in wheat, compared with
the NA1 strain. The increased aggressiveness of the NA2 strain to elevated CO2 was only
observed in inoculated wheat, whereas in corn the NA1 strain had significantly greater fun-
gal biomass in response to elevated CO2 (Figure 4). Differences in corn and wheat disease
outcomes are not likely due to F. graminearum strain host origin, as previous studies have
shown that F. graminearum strains which were isolated from either wheat or corn had no
observable host preference in terms of disease aggressiveness and DON accumulation [13].

Though there was no change in observable disease damage in corn grown at elevated
CO2, the amount of DON was greater, particularly at the cool temperature with elevated
CO2. While C4 photosynthesis and plant growth benefit little from elevated atmospheric
CO2, higher CO2 concentrations have been observed to increase the disease severity of
Fusarium verticillioides in corn due to changes in secondary metabolite responses [32]. Inter-
estingly, F. verticillioides increased fungal biomass at elevated CO2 without a corresponding
increase in mycotoxin accumulation or production. Herein we show that F. graminearum
similarly accumulated greater amounts of fungal biomass in corn at elevated CO2, but this
was also accompanied by increased DON contamination (Figures 4 and 5). While elevated
CO2 altered DON contamination levels in both wheat and corn, the largest factor in disease
outcome and mycotoxin contamination was temperature.

Temperature and humidity are key factors in the likelihood, and severity, of FHB
outbreaks and mycotoxin contamination in cereal crops [10]. We consistently found that the
warmer temperature treatment suppressed F. graminearum biomass and DON contamina-
tion in both wheat and corn. However, at the warmer temperature there was greater visual
disease symptoms in wheat. Previous research has shown that visual disease is often poorly
correlated with fungal biomass and yield loss in wheat [33]. We further observed strain
specific differences in response to temperature, as the NA2 strain was more aggressive
and caused more disease symptoms compared to NA1 at warm temperatures (Figure 2a).
However, despite greater observable disease severity, the NA2 strain produced less toxins
at the warm temperature treatment than in the cool treatment (Figure 3a). In vitro, the
optimum temperature for F. graminearum growth has been reported to be 25 ◦C, with
optimal pathogenicity between 20–25 ◦C; though F. graminearum temperature response
was significantly impacted by the geographic origin of the isolate [34]. Interestingly, our
current results show that in planta the warmer temperature treatment of 25 ◦C/23 ◦C was
less optimal than the cool treatment 20 ◦C/18 ◦C with respect to F. graminearum biomass
accumulation and DON contamination (Figure 2b or Figure 3b). However, despite the
reduced pathogen biomass, the overall DON production per unit F. graminearum biomass
significantly increased at warmer temperatures in wheat (Figure 3b). This was not the
case in corn (Figure 5b), where DON production by F. graminearum was suppressed by
97% in warmer growing conditions, contrary to what was observed in vitro, where the
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optimal production of DON by F. graminearum on sterilized corn grain was found to be
approximately 25 ◦C [11].

The incongruity between the in vitro and in planta pathogen temperature response
suggests a complex host × pathogen interaction. Our results demonstrate that growing
temperature has a substantial impact on all aspects of F. graminearum infection in both
wheat and corn, as it was the only factor which was significant in every comparison.

The reduction of fungal biomass in corn at elevated temperatures may ultimately be
quite beneficial in reducing FHB incidence in wheat. Corn/wheat crop rotations typically
result in significant FHB disease incidence, as field corn residues greatly increase the fungal
inoculum present during the following wheat growing season [35,36]. Warm temperature
not only reduced F. graminearum biomass in corn (Figure 4a), but could further reduce
the rate of infection, as the optimal temperature for perithecia formation is 21.7 ◦C, and
formation decreases with increasing temperatures until complete failure above 30 ◦C [37].
However, changes in climate and temperature can rapidly shift pathogen populations, in
corn, F. verticillioides and Aspergillus flavus will outcompete F. graminearum under drier,
warmer, growing conditions [38,39]. Therefore, while the reduction in disease, fungal
biomass, and DON accumulation at elevated temperatures is promising news, increased
growing temperatures could also promote infection by far more dangerous mycotoxigenic
fungal pathogens like Aspergillus flavus, which produces carcinogenic aflatoxins [40,41].

4. Materials and Methods
4.1. Wheat and Corn Cultivars and Growth Conditions

Two short-stature, rapidly developing cultivars of wheat and corn were selected for
analysis. Apogee seed was kindly provided by Bruce Bugbee at Utah State University [28].
The Gaspe Flint seed [29] was provided by Mark Busman with the USDA ARS Mycotoxin
Prevention and Applied Microbiology Unit in Peoria IL. Both cultivars were propagated in
a temperature-controlled greenhouse prior to growth chamber experiments.

To evaluate the effects of elevated CO2 and temperature on F. graminearum infection
and mycotoxin contamination a 2 × 2 × 2 full factorial experiment was designed with
the factors of two temperature treatments (20 ◦C/18 ◦C and 25 ◦C/23 ◦C), two CO2
concentrations (400 ppm and 1000 ppm), and two F. graminearum strains (13MN1-6 and
12SD6-2). The wheat cultivar Apogee, and the corn cultivar Gaspe Flint, were grown in
Conviron PGR15 environmentally controlled growth chambers (Controlled Environments
Inc., Winnipeg, MB, Canada). Apogee and Gaspe Flint both grow well under similar
control conditions (between 18–25 ◦C) allowing for simultaneous growth, and the short
stature of the Gaspe Flint cultivar was ideal for the limited vertical space within the growth
chamber. Eight wheat seeds, or four corn seeds, were sown in a 20 × 15 cm plastic pot,
filled with approximately 4 L of SunGrow Horticulture potting mix (Agawam, MA, USA).
After one week the plants were culled to 5 plants per pot for wheat, and 2 plants per pot for
corn. Growth chamber conditions were set to either ambient CO2 (approximately 400 ppm,
a[CO2]) or elevated CO2 (1000 ± 10 ppm, e[CO2]), with 50 ± 10% relative humidity and
a 14 h photoperiod (550 µmol m−2 s−1 photosynthetic photon flux density). Chamber
temperatures were set to either 20 ◦C/18 ◦C, day and night, or 25 ◦C/23 ◦C, day and night,
respectively. Plants were watered daily, and pot positions were randomized weekly within
the growth chamber. Additionally, a biweekly fertilization supplement, using soluble
Peters 20-20-20 (The Scotts Company, Marysville, OH, USA) was applied until anthesis, or
pollination, for wheat and corn, respectively.

4.2. Inoculations and Disease Evaluation

Two F. graminearum isolates, 13MN1-6 and 12SD6-2, representing an NA1 and NA2
strain [42], respectively, were used to inoculate wheat and corn (Table 1). NA1 iso-
lates produce 15-acetyl-deoxynivalenol (15-ADON) and NA2 isolates produce 3-acetyl-
deoxynivalenol (3-ADON) [43], but both of these metabolites are converted into DON
within the plant [13,14]. Media preparation and inoculations were performed according to
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previously reported methodology [19]. In brief, fungal isolates from glycerol stock were
grown on V8 agar plates for 7 d before an agar plug was transferred into 20 mL of mung
bean broth to promote conidia formation. Cultures were grown for 48 h, at 28 ◦C, under
dark conditions in a New Brunswick Innova 44 incubator shaker (Eppendorf, Hauppauge,
NY, USA). The cultures were briefly centrifuged, and the supernatant discarded. After-
wards, a 1 × 105 mL−1 microconidia suspension was produced by the addition of 0.04%
Tween 20 in sterile water (Thermo Fisher Scientific, Waltham, MA, USA), and subsequently
used for inoculations.

Apogee was inoculated at flowering, anthesis, with 10 µL of the conidial suspension
into single florets (biological replicates: n = 12) following previously reported method-
ology [44]. Immediately afterwards, a plastic bag was placed onto the inoculated wheat
heads to maintain a high humidity environment for 3 d. Disease progression and the
AUDPC in Apogee was determined by visually assessing the number of diseased florets,
bleached or necrotic plant tissue, 7, 10, 14, and 17 days after inoculation [45]. Disease
severity in wheat was determined by the ratio of diseased florets to the total florets on the
inoculated wheat head. At day 17, the infected wheat heads were collected and stored at
−80 ◦C for further analysis.

Gaspe Flint corn was inoculated 5 d after manual pollination with 1 mL of the conidial
suspension into each cob (biological replicates: n = 8) injecting the inoculum into the side of
the ear following previously reported methodology [29,32]. Disease severity was visually
scored in Gaspe Flint 17 days post inoculation following previously reported protocols [46].
Afterwards, cobs were collected and stored at −80 ◦C for further analysis. All inoculations
and disease evaluations were experimentally replicated.

4.3. Mycotoxin Analyses

Mycotoxins, were extracted from 1 g of ground infected plant tissues, derivatized,
and analyzed via GC-MS, on an Agilent 7890 gas chromatograph (Agilent Technologies,
Wilmington, DE) fitted with a HP-5MS column (30 m, 0.25 mm, 0.25 µm) and a 5977 mass
detector following previously reported methodology [47]. Though the two F. graminearum
strains produced two distinct acetylated forms of deoxynivalenol (3-ADON and 15-ADON)
in liquid media, in planta the mycotoxin deoxynivalenol (DON) was the overwhelmingly
predominant form [26]. Therefore, only the accumulation of the mycotoxin DON in infected
plant tissues was evaluated for this manuscript.

4.4. Estimation of Host and Pathogen Biomass

The relative amount of fungal biomass in the inoculated tissues was assessed using the
ratio of F. graminearum DNA to plant host DNA via a quantitative polymerase chain reaction
(qPCR), following the previously reported protocols [32,45]. Four technical replications
were performed per assay; primers and probes can be found in Table 2. The relative amount
of F. graminearum DNA to host DNA was determined by dividing the geometric mean of
initial DNA concentration (N0) from the Fusarium probes by the geometric mean of N0
from the host probes. The amount of DON relative to F. graminearum DNA was estimated
by dividing the µg g−1 DON by the relative pathogen biomass, as quantified by qPCR.
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Table 2. Primer and probe sequences used for qPCR amplification. Three sets of primers and corresponding probes were
used for quantification of relative F. graminearum to wheat, or corn, biomass. Asterisks (*) indicate primer sequences
specifically developed for this study.

Primer Name Organism Gene Product Primer Sequence Reference

Zm.GAPDH
Forward Z. mays Glyceraldehyde-3-phosphate dehydrogenase CGAGAATAAATGTGGATGGCG *

Zm.GAPDH
Reverse Z. mays Glyceraldehyde-3-phosphate dehydrogenase GCAGGAAGGGAAACAAAAGTG *

Zm.TUB Forward Z. mays Tubulin TCCACATTCATCGGCAACTC *
Zm.TUB Reverse Z. mays Tubulin AACTCCATCTCATCCATGCC *
Zm.CYP Forward Z. mays Peptidyl-prolyl cis-trans isomerase CGTCCGTTCCTTTGGATCTG *
Zm.CYP Reverse Z. mays Peptidyl-prolyl cis-trans isomerase GAAACACGAATCAAGCAGAGG *

Fg.Tri101 Forward F. graminearum Trichothecene 3-O-acetyltransferase GGACTCTGGGATTACGACTTTG [17]
Fg.Tri101 Reverse F. graminearum Trichothecene 3-O-acetyltransferase ATCAGGCTTCTTGGGCATAAA [17]
Fg.TEF Forward F. graminearum Translation elongation factor CAGTCACTAACCACCTGTCAAT [17]
Fg.TEF Reverse F. graminearum Translation elongation factor AATGGTGATACCACGCTCAC [17]

Fg.RED Forward F. graminearum Reductase TGACAGCTTTGGTTGTGTTTG [17]
Fg.RED Reverse F. graminearum Reductase CTTGGCTGGAATGAGTCTGT [17]
Ta.Ef1 Forward T. aestivum Elongation factor GATTGACAGGCGATCTGGTAAG [17]
Ta.Ef1 Reverse T. aestivum Elongation factor GGCTTGGTGGGAATCATCTT [17]

Ta.Actin Forward T. aestivum Actin CCAAGGCCAACAGAGAGAAA [17]
Ta.Actin Reverse T. aestivum Actin GCTGGCATACAAGGACAGAA [17]
Ta.PAL Forward T. aestivum Phenylalanine ammonia-lyase GTGTTCTGCGAGGTGATGAA [17]
Ta.PAL Reverse T. aestivum Phenylalanine ammonia-lyase GTATGAGCTTCCCTCCAAGATG [17]

4.5. Statistical Analyses

Results were evaluated by a 2 × 2 × 2 full factorial analysis of variance (α = 0.05; JMP
V15.0), to determine the significant differences in the disease and mycotoxin contamination
of hosts due to the effects of temperature and elevated CO2. Data from the wheat and corn
hosts were analyzed separately. Details of factor combinations and significant interactions
can be found within the figures.

5. Conclusions

Elevated CO2 was determined to significantly increase the accumulation of the my-
cotoxin deoxynivalenol in infected plants. Furthermore, infected plants in cool growing
conditions had the highest amounts of pathogen biomass and toxin accumulation in both
wheat and corn. Warm temperatures suppressed pathogen growth and toxin accumulation,
with reductions as great as 99% in corn. In wheat, despite reduced pathogen biomass
and toxin accumulation at warm temperatures, F. graminearum was more aggressive with
greater disease damage and toxin production per unit biomass. However, we found that
atmospheric CO2 and temperature had essentially no significant interactions, except for
greatly increased deoxynivalenol accumulation in corn at cool temperatures and elevated
CO2. This work helps elucidate the complex interaction between abiotic stresses and biotic
susceptibility to Fusarium graminearum infection in wheat and corn to better understand
the potential impact global climate change poses to future food security.
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