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Abstract: To investigate whether artificial-intelligence-based, computer-aided diagnosis (AI-CAD)
could facilitate the detection of missed cancer on digital mammography, a total of 204 women
diagnosed with breast cancer with diagnostic (present) and prior mammograms between 2018 and
2020 were included in this study. Two breast radiologists reviewed the mammographic features and
classified them into true negative, minimal sign or missed cancer. They analyzed the AI-CAD results
with an abnormality score and assessed whether the AI-CAD correctly localized the known cancer
sites. Of the 204 cases, 137 were classified as true negative, 33 as minimal signs, and 34 as missed
cancer. The sensitivity, specificity and diagnostic accuracy of AI-CAD were 84.7%, 91.5% and 86.3%
on diagnostic mammogram and 67.2%, 91.2% and 83.38% on prior mammogram, respectively. The
AI-CAD correctly localized 27 cases from 34 missed cancers on prior mammograms. The findings
in the preceding mammography of AI-CAD-detected missed cancer were common in the order of
calcifications, focal asymmetry and asymmetry. Asymmetry was the most common finding among
the seven cases, which could not be detected by AI-CAD in the missed cases (5/7). The assistance of
AI-CAD can be helpful in the early detection of breast cancer in mammography screenings.

Keywords: breast cancer; computer-aided diagnosis; artificial intelligence; mammography

1. Introduction

Mammography is proven to be an effective method for reducing the mortality of
breast cancer [1]. However, mammography has inherent limitations. Factors that contribute
to lowering the sensitivity of mammography are dense breast parenchyma, rapid tumor
growth rate, and the finding and reading of subtle errors (perceptual or interpretive).
Studies have shown that approximately one-third of newly diagnosed breast cancers were
retrospectively visible in prior mammograms [2,3].

Missed cancer refers to cancer that can be retrospectively visualized in preceding
mammograms that were initially interpreted as negative. The use of the term “missed”
should not be construed as implying negligence in interpretation because the judgment
of lesion visibility is made only in retrospect [4]. Missed cancer can be classified as false-
interval cancer, subsequent screen-detected cancer and alternative-imaging-detected cancer.
Suggested methods to reduce the occurrence of missed cancer include additional supple-
mentary images, improved image quality and interpretation techniques, double reading,
and computer-aided detection (CAD) [5].

Recent studies showed that the performance of artificial intelligence-based computer-
aided detection (AI-CAD) for mammography was non-inferior, or even superior to that of
radiologists and could be a reliable decision support tool. This AI-based mammography
reading is thought to have the potential to improve missed cancer detection by particularly
reducing perceptual and interpretive errors [6–9]. Prior studies showed that AI-CAD
improved the detection of missed cancer in prior mammography [10,11].
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2. Materials and Methods
2.1. Study Population

This retrospective study was approved by the Institutional Review Board (IRB) and
informed consent was waived. Among the patients diagnosed with biopsy-proven ma-
lignancy in this hospital between 2018 and 2020, 263 patients with diagnostic and prior
mammograms within 36 months were enrolled. A total of 204 patients were included,
excluding prior breast cancer surgery on the ipsilateral breast (n = 47), recognition error by
AI-CAD (n = 7), and import failure (n = 5).

2.2. Imaging Analysis

The retrospective mammography review was performed in consensus by two breast
imaging specialists with 16 and 4 years of experience, respectively. The cancers were
classified as true negative, minimal signs, or missed cancer based on the findings from
prior and diagnostic (present) mammograms. True negative refers to no evidence of cancer
on prior mammograms in retrospective reviews. Minimal signs refer to subtle abnormality
which would not necessarily be regarded as warranting assessment on a prior mammo-
gram [12,13]. Mammographic findings were described as mass, mass with calcifications,
calcifications, asymmetry, focal asymmetry and architectural distortion. Breast density
was determined by consensus of two readers based on the Breast Imaging Reporting and
Data System (BI-RADS) 5th edition. In addition, clinical information of missed cancer such
as final pathology, IHC (immunohistochemistry) type, and TNM stage was collected via
medical records.

2.3. Imaging Analysis by AI-CAD

A commercial AI-CAD software (Lunit INSIGHT for Mammography, v1.1.4.3, Lu-
nit Inc., Seoul, Korea, available at https://insight.lunit.io, accessed on 7 December 2021)
dedicated to breast cancer detection and diagnosis on digital mammography was used.
This AI-CAD was developed with deep convolutional neural networks (CNNs), trained,
and validated through multi-national studies with over 170,000 mammography examina-
tions [8,14,15]. This AI-CAD software presented its results as separate gray-scale images
that contained an overall per-breast abnormality score for each CC (craniocaudal) and MLO
(mediolateral oblique) image, and a gray-scale heatmap that marked areas of abnormality
using a line of varying thickness to indicate the probability of malignancy (POM). The
abnormality score is provided in percentages of 0–100%; less than 10% is presented as “low”
and does not appear as a separate result. When more than one area is detected, the highest
abnormality score is provided at the bottom as a result.

Two radiologists determined whether the AI-CAD correctly localized the known
malignant lesion in diagnostic and prior mammograms. If matched, the higher score
from CC or MLO view was recorded. False positive was defined as follows: (a) When
AI-CAD evaluates a negative mammography by radiologists as abnormal and (b) when the
area marked by AI-CAD with the highest abnormality score does not match the known
malignant lesion.

2.4. Statistical Analysis

Diagnostic performance of AI-CAD was evaluated with sensitivity, specificity and
diagnostic accuracy. The correlation of classified groups in relation to abnormality score by
AI-CAD was analyzed with the Kruskal–Wallis test. The comparison of abnormality scores
among the different classification groups was performed with a post hoc Bonferroni correc-
tion for multiple comparisons. The significance threshold was set at 0.05. All calculations
were performed using SPSS software (version 21, SPSS Inc., Chicago, IL, USA). A p-value
of less than 0.05 was considered to indicate statistical significance.

https://insight.lunit.io
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3. Results
3.1. Patient Characteristics

The patient characteristics are summarized in Table 1. The mean age of the included
patients was 53.9 years (range 25–84). The mean interval duration between diagnostic and
prior mammograms was 23.8 months (range 6–36). Mammographic breast parenchymal
density was categorized as almost entirely fat in 3 cases (1.5%), scattered fibroglandular
tissue in 42 cases (19.6%), heterogeneously dense in 94 cases (47.1%), and extremely dense
in 65 cases (31.9%). The dense breast rate was 78.9%.

Table 1. Baseline patient characteristics.

Patient Number (%)

Age
50< 88 (43.14%)
50≥ 116 (56.86%)
Breast density
(a) almost fatty 3 (1.5%)
(b) scattered 40 (19.6%)
(c) heterogeneous 96 (47.1%)
(d) extreme dense 65 (31.9%)
Interval †

0–12 months 83 (40.7%)
13–36 months 121 (59.3%)

† Interval = months between diagnostic and prior mammograms.

3.2. Mammography Classification Results by Radiologists

Two radiologists classified the included 204 cases as true negative (n = 137), minimal
signs (n = 33) and missed cancer (n = 34) in consensus. Of the 137 true negative cases,
90 cases were visible and 47 cases were not visible (occult) on diagnostic mammograms.
Overall, 157 cases were mammography-visible on diagnostic mammograms, and 67 cases
were visible on prior mammograms. The dense breast rate was 83.2% (114/137) in the true
negative, 78.8% (26/33) in minimal signs and 61.8% (21/34) in missed cancer groups.

3.3. Mammography Findings

Figure 1 shows the distribution of mammographic findings on diagnostic and prior
mammograms. Calcifications, mass, asymmetry, focal asymmetry, mass with calcifi-
cations and architectural distortion were common in the order of diagnostic mammo-
grams. The proportion of calcification, asymmetry and focal asymmetry was high in prior
mammograms, while the proportion of mass and mass with calcifications increased in
diagnostic mammograms.

Figure 1. Mammographic features on diagnostic and prior mammograms.

3.4. AI-CAD Results

Table 2 represents the AI-CAD results for diagnostic and prior mammograms. The
AI-CAD correctly localized 27 of 34 missed cancer (Figure 2) and 18 of 33 minimal signs on
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prior mammogram. The false positive rate in prior mammograms was 5.8% (12/204). The
overall sensitivity, specificity and diagnostic accuracy of AI-CAD were 84.7%, 91.5% and
86.3% in diagnostic mammograms and 67.2%, 91.2%, 83.3% in prior mammogram (Table 3).

Table 2. AI-CAD results for diagnostic and prior mammograms.

AI-CAD Result Diagnostic
Mammogram

Prior Mammogram

True Negative Minimal Missed

True positive 133 0 18 27
True negative 43 125 0 0
False positive 4 12 0 0
False negative 24 0 15 7

Total 204 137 33 34

Figure 2. Representative case of missed cancer detected by AI-CAD. A 67-year-old woman had a
focal asymmetry with increased number of calcifications in diagnostic mammogram (a). After biopsy,
this lesion was confirmed as invasive carcinoma. When the two radiologists reviewed the prior
mammogram performed 12 months ago (b), asymmetry visible on CC view and several calcifications
were retrospectively detected at the same location. When the AI-CAD was retrospectively applied,
the AI-CAD identified the exact location of lesion in the diagnostic mammogram (c) and prior
mammogram (d).
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Table 3. Diagnostic performance of AI-CAD.

Diagnostic Mammogram Prior Mammogram

Sensitivity 84.7% (133/157) 67.2% (45/67)
Specificity 91.5% (43/47) 91.2% (125/137)
Accuracy 86.3% (176/204) 83.3% (170/204)

PPV 97.1% (133/137) 78.9% (45/57)
NPV 64.2% (43/67) 85.0% (125/147)

PPV (positive predictive value), NPV (negative predictive value).

3.5. Missed Cancer Detected by AI-CAD

The AI-CAD did not detect suspicious findings in 7 of the 34 missed cancer on prior
mammogram. Of the seven cases, the most common finding was asymmetry (n = 5)
(Figure 3), and the other was focal asymmetry (n = 2). All undetected lesions were isodense
in mammograms. These lesions were located in the parenchyma (n = 3), the retromammary
fat layer (n = 3), and the premammary fat layer (n = 1). All five asymmetries were only
visible on MLO view.

Figure 3. Representative dismissed case by AI-CAD. A 62-year-old woman classified as negative
in a mammography screening (a). When looking at the mammography in retrospect, asymmetry
only seen in MLO view was newly developed in the upper and posterior aspect of right breast. This
lesion was missed in the prior mammogram. When analyzed retrospectively, AI did not recognize
this lesion either. (b) After 18 months of diagnostic mammogram, the previous asymmetry became a
spiculated mass and a biopsy confirmed it as invasive cancer.

Figure 4 shows the comparison of abnormality scores between groups on prior mam-
mogram. The median value (interquartile range (IQR)) of the abnormality score was 26 (17,
45.8) for minimal signs, 58.5 (28, 91.3) for missed cancer, and 19 (15, 32) for false positive
cases. There was a significant difference in abnormality scores between missed cancer and
minimal signs (p = 0.042); and missed cancer and false positive cases (p = 0.027). However,
there was no significant difference between minimal signs and false positive cases (p > 0.05).

Figure 4. Comparison of abnormality scores in prior mammograms. Box and whiskers plot showing
the distribution of abnormality scores of minimal signs, missed cancer and false positive cases. All
box plots proved the median value (solid line), interquartile range (green box), 95% confidence
interval (black whiskers) and outliers beyond the 95% confidence interval (blank circles).
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3.6. Characteristics of Missed Cancers

Table 4 represents the characteristics of missed cancer that AI-CAD correctly localized
in prior mammograms. The frequent mammography findings were in the order of calcifica-
tions, focal asymmetry, asymmetry, architectural distortion, and mass with calcification.
Most of the cases were ER (estrogen receptor)-positive (23/27). The IHC types of 27 cases
were as follows: 16 luminal A cases, 7 luminal B cases, 2 HER2-enriched cases and 2 TNBC
cases. For the final pathology, seven cases were ductal carcinoma in situ (DCIS), 20 cases
were invasive cancer and five cases were lymph-node-positive. The distribution of the
stages was as follows: Stage 0 (7/27), stage I (11/27), stage II (8/27) and stage IV (1/27).
Stage IV patients were diagnosed with bone metastasis at the time of diagnosis.

Table 4. Mammography findings of missed cancer in prior mammograms.

Mammography Finding IHC Type T N Stage

1 Architectural distortion,
Calcifications TNBC 2 0 IIA

2 Calcifications Luminal B is 0 0
3 Architectural distortion Luminal A 1a 1 IIA
4 Calcifications Luminal A 1mic 0 IA
5 Focal asymmetry Luminal A 1c 0 IA
6 Architectural distortion Luminal A 1a 0 IA
7 Calcifications HER2-enriched is 0 0
8 Architectural distortion Luminal A 1a 0 IA
9 Asymmetry TNBC 2 0 IIA

10 Calcifications Luminal A is 0 0
11 Focal asymmetry Luminal A 1a 0 IA
12 Focal asymmetry Luminal A 1c 0 IA
13 Focal asymmetry Luminal A 1c 0 IA
14 Calcifications Luminal A is 0 0
15 Calcifications Luminal B 1c 0 IA
16 Calcifications Luminal A is 0 0
17 Asymmetry Luminal A 1c 0 IA
18 Focal asymmetry Luminal B 2 0 II
19 Calcifications HER2-enriched is 0 0
20 Calcifications Luminal A 1c 0 IA
21 Focal asymmetry, Calcifications Luminal A 2 0 IIA
22 Focal asymmetry, Calcifications Luminal A 2 1 IIB
23 Focal asymmetry Luminal B 2 1 IIB
24 Calcifications Luminal B is 0 0
25 Mass with calcifications Luminal B 2 1 IIB
26 Calcifications Luminal A 1a 0 IA
27 Architectural distortion Luminal B 2 0 IV

4. Discussion

The aim of this retrospective study was to assess the potential of using AI-CAD to
improve the detection of missed cancer in mammography screenings. We classified the
included cases via retrospective reviews of diagnostic and prior mammograms, and 32.8%
of these were false negative (minimal signs and missed cancer: 67/207). Our classification
results were similar to the results from previous studies. Depending on the review methods,
it is reported that 10 to 30% of all interval cancers and 25 to 40% of screen-detected cancers
are classified as false negative in retrospect [2,3]. False negative cases were subcategorized
into missed cancer and minimal signs in this study. This is because unnecessary recall
would be greatly increased, despite the fact that false negatives can be reduced if we include
all minimal signs by lowering the threshold in clinical practice. [16]. Even if a case with
minimal signs is recalled, it may not necessarily lead to the diagnosis of breast cancer [17].

AI-CAD correctly identified 27 of 34 missed cancer (79%) in prior mammogram. In
addition, AI-CAD showed a high accuracy (86.3%) in diagnostic mammograms and a high
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specificity (91.5%) in prior mammograms. The false positive rate was 5.8%. The abnormality
score of missed cancer was significantly higher than that of minimal signs and false positive
groups in prior mammograms (Figure 4). This result suggests that false negative cases
were appropriately classified into two groups: minimal signs and missed cancer. It also
suggests that false positive results would not interfere with the early detection of missed
cancer with AI-CAD. However, the clinical implication of the abnormality score provided
by the AI-CAD has not yet been fully elucidated.

The common mammography findings in missed cancer included calcification, asym-
metry, and focal asymmetry. However, mass was the most common finding in previous
studies [18,19]. Of the included patients, 83.2% of true negative, 78.8% of minimal signs
and 61.8% of missed cancer had dense breast. The missed cancer group had a relatively low
percentage of dense breast compared to the other groups. This implies that the perception
and interpretative errors that lead to missed cancer may not be deeply related to breast
density. A previous study also showed that an increase in breast density contributed to
lowering the sensitivity; however, there was no significant difference in specificity [20].

In this study, the AI-CAD found that all five cases of missed cancer showed an
architectural distortion in prior mammograms. In one case, architectural distortion was
missed and developed into stage IV breast cancer 10 months later. Architectural distortion
is known to be the most commonly missed abnormality in false negatives, and one study
showed that 45% (9/20) of missed findings were due to architectural distortion [21].

Most of the missed cancers detected by AI-CAD were early-stage (26/27) and ER-
positive (23/27). Among the IHC types, luminal A was the most common in 16 patients
(59.3%). Hovda et al. reported that the estrogen receptor positivity was 95% (215/234) in
missed cases [19]. Kim et al. reported that the most common presentation in both screening
and symptomatic groups was luminal A (63.6% and 54.3%, respectively) [22].

The AI-CAD proved an excellent detection rate, yet it was not able to detect all abnor-
malities. The most common finding that AI-CAD was not able to detect was asymmetry.
As shown in Figure 3, the asymmetry noted in prior mammograms was a newly devel-
oped lesion. Radiologists have the advantage of being able to compare current images
with previous images more freely and are able to make decisions through correlations
between CC and MLO views, and between mammograms and other imaging modalities.
Deep-learning-based AI was developed and received a lot of attention. However, studies
have shown that it is not enough to replace the role of radiologists. This is because the
reading process is not just a detection of abnormality, but a more comprehensive process
of judgement, consideration and communication [23,24]. Reading mammography is still
challenging. The role of radiologists is also important, and the aid of AI-CAD will help
reduce the burden of the reading process.

There are several limitations in this study. First, this retrospective study included
only a small number of patients with biopsy-proven malignancy. Thus, selection bias was
inevitable. Second, only a single AI-CAD software was used for analysis. Future updated
versions or other AI-CADs may show different results from this study. In addition, it is still
difficult to determine the extent to which the suspicious findings detected by the AI-CAD
in prior mammograms will lead to early cancer detection in actual practice. Additionally,
false positive findings can affect the radiologist’s judgment and lead to an increase in recall
rate. A further assessment in a prospective design with a larger number of patients will be
required for the implications of the AI-CAD in mammography screening.

In conclusion, this retrospective study showed that the assistance of AI-CAD has the
potential to facilitate early cancer diagnosis.
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Diagnostics 2022, 12, 387 8 of 9

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of
Seoul Saint Mary’s Hospital (protocol code KC16ECMI0552 and date of approval 1 March 2017).

Informed Consent Statement: Patient consent was waived due to the retrospective design of
this study.

Data Availability Statement: All data generated and analyzed during this study are included in this
published article. Raw data supporting the findings of this study are available from the corresponding
author on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kerlikowske, K.; Grady, D.; Rubin, S.M.; Sandrock, C.; Ernster, V.L. Efficacy of screening mammography. A meta-analysis. JAMA

1995, 273, 149–154. [CrossRef] [PubMed]
2. Klemi, P.J.; Toikkanen, S.; Räsänen, O.; Parvinen, I.; Joensuu, H. Mammography screening interval and the frequency of interval

cancers in a population-based screening. Br. J. Cancer 1997, 75, 762–766. [CrossRef] [PubMed]
3. Hoff, S.R.; Samset, J.H.; Abrahamsen, A.L.; Vigeland, E.; Klepp, O.; Hofvind, S. Missed and true interval and screen-detected

breast cancers in a population based screening program. Acad. Radiol. 2011, 18, 454–460. [CrossRef] [PubMed]
4. Wadhwa, A.; Sullivan, J.R.; Gonyo, M.B. Missed Breast Cancer: What Can We Learn? Curr. Probl. Diagn. Radiol. 2016, 45, 402–419.

[CrossRef] [PubMed]
5. Houssami, N.; Irwig, L.; Ciatto, S. Radiological surveillance of interval breast cancers in screening programmes. Lancet Oncol.

2006, 7, 259–265. [CrossRef]
6. Rodriguez-Ruiz, A.; Lång, K.; Gubern-Merida, A.; Broeders, M.; Gennaro, G.; Clauser, P.; Helbich, T.H.; Chevalier, M.; Tan, T.;

Mertelmeier, T.; et al. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101
Radiologists. J. Natl. Cancer Inst. 2019, 111, 916–922. [CrossRef] [PubMed]

7. Dembrower, K.; Wåhlin, E.; Liu, Y.; Salim, M.; Smith, K.; Lindholm, P.; Eklund, M.; Strand, F. Effect of artificial intelligence-based
triaging of breast cancer screening mammograms on cancer detection and radiologist workload: A retrospective simulation study.
Lancet Digit. Health 2020, 2, e468–e474. [CrossRef]

8. Kim, H.E.; Kim, H.H.; Han, B.K.; Kim, K.H.; Han, K.; Nam, H.; Lee, E.H.; Kim, E.K. Changes in cancer detection and false-positive
recall in mammography using artificial intelligence: A retrospective, multireader study. Lancet Digit. Health 2020, 2, e138–e148.
[CrossRef]

9. McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.;
et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [CrossRef]

10. Watanabe, A.T.; Lim, V.; Vu, H.X.; Chim, R.; Weise, E.; Liu, J.; Bradley, W.G.; Comstock, C.E. Improved Cancer Detection Using
Artificial Intelligence: A Retrospective Evaluation of Missed Cancers on Mammography. J. Digit. Imaging 2019, 32, 625–637.
[CrossRef]

11. Lång, K.; Hofvind, S.; Rodríguez-Ruiz, A.; Andersson, I. Can artificial intelligence reduce the interval cancer rate in mammography
screening? Eur. Radiol. 2021, 31, 5940–5947. [CrossRef] [PubMed]

12. Perry, N.; Broeders, M.; de Wolf, C.; Törnberg, S.; Holland, R.; von Karsa, L. European guidelines for quality assurance in breast
cancer screening and diagnosis. Fourth edition-summary document. Ann. Oncol. 2008, 19, 614–622. [CrossRef] [PubMed]

13. Hoff, S.R.; Abrahamsen, A.L.; Samset, J.H.; Vigeland, E.; Klepp, O.; Hofvind, S. Breast cancer: Missed interval and screening-
detected cancer at full-field digital mammography and screen-film mammography—Results from a retrospective review. Radiology
2012, 264, 378–386. [CrossRef]

14. Yoon, J.H.; Kim, E.-K. Deep Learning-Based Artificial Intelligence for Mammography. Korean J. Radiol. 2021, 22, 1225–1239.
[CrossRef] [PubMed]

15. Lee, S.E.; Han, K.; Kim, E.-K. Application of artificial intelligence–based computer-assisted diagnosis on synthetic mammograms
from breast tomosynthesis: Comparison with digital mammograms. Eur. Radiol. 2021, 31, 6929–6937. [CrossRef]

16. Ciatto, S.; del Turco, M.R.; Zappa, M. The detectability of breast cancer by screening mammography. Br. J. Cancer 1995, 71,
337–339. [CrossRef]

17. Lameijer, J.R.C.; Voogd, A.C.; Pijnappel, R.M.; Setz-Pels, W.; Broeders, M.J.; Tjan-Heijnen, V.C.G.; Duijm, L.E.M. Delayed
breast cancer diagnosis after repeated recall at biennial screening mammography: An observational follow-up study from The
Netherlands. Br. J. Cancer 2020, 123, 325–332. [CrossRef]

18. Birdwell, R.L.; Ikeda, D.M.; O’Shaughnessy, K.F.; Sickles, E.A. Mammographic characteristics of 115 missed cancers later detected
with screening mammography and the potential utility of computer-aided detection. Radiology 2001, 219, 192–202. [CrossRef]

19. Hovda, T.; Tsuruda, K.; Hoff, S.R.; Sahlberg, K.K.; Hofvind, S. Radiological review of prior screening mammograms of screen-
detected breast cancer. Eur. Radiol. 2021, 31, 2568–2579. [CrossRef]

http://doi.org/10.1001/jama.1995.03520260071035
http://www.ncbi.nlm.nih.gov/pubmed/7799496
http://doi.org/10.1038/bjc.1997.135
http://www.ncbi.nlm.nih.gov/pubmed/9043038
http://doi.org/10.1016/j.acra.2010.11.014
http://www.ncbi.nlm.nih.gov/pubmed/21216632
http://doi.org/10.1067/j.cpradiol.2016.03.001
http://www.ncbi.nlm.nih.gov/pubmed/27079634
http://doi.org/10.1016/S1470-2045(06)70617-9
http://doi.org/10.1093/jnci/djy222
http://www.ncbi.nlm.nih.gov/pubmed/30834436
http://doi.org/10.1016/S2589-7500(20)30185-0
http://doi.org/10.1016/S2589-7500(20)30003-0
http://doi.org/10.1038/s41586-019-1799-6
http://doi.org/10.1007/s10278-019-00192-5
http://doi.org/10.1007/s00330-021-07686-3
http://www.ncbi.nlm.nih.gov/pubmed/33486604
http://doi.org/10.1093/annonc/mdm481
http://www.ncbi.nlm.nih.gov/pubmed/18024988
http://doi.org/10.1148/radiol.12112074
http://doi.org/10.3348/kjr.2020.1210
http://www.ncbi.nlm.nih.gov/pubmed/33987993
http://doi.org/10.1007/s00330-021-07796-y
http://doi.org/10.1038/bjc.1995.67
http://doi.org/10.1038/s41416-020-0870-2
http://doi.org/10.1148/radiology.219.1.r01ap16192
http://doi.org/10.1007/s00330-020-07130-y


Diagnostics 2022, 12, 387 9 of 9

20. Von Euler-Chelpin, M.; Lillholm, M.; Vejborg, I.; Nielsen, M.; Lynge, E. Sensitivity of screening mammography by density and
texture: A cohort study from a population-based screening program in Denmark. Breast Cancer Res. 2019, 21, 111. [CrossRef]

21. Burrell, H.C.; Sibbering, D.M.; Wilson, A.R.; Pinder, S.E.; Evans, A.J.; Yeoman, L.J.; Elston, C.W.; Ellis, I.O.; Blamey, R.W.;
Robertson, J.F. Screening interval breast cancers: Mammographic features and prognosis factors. Radiology 1996, 199, 811–817.
[CrossRef] [PubMed]

22. Kim, J.; Lee, S.; Bae, S.; Choi, M.Y.; Lee, J.; Jung, S.P.; Kim, S.; Choe, J.H.; Kim, J.H.; Kim, J.S.; et al. Comparison between
screen-detected and symptomatic breast cancers according to molecular subtypes. Breast Cancer Res. Treat. 2012, 131, 527–540.
[CrossRef] [PubMed]

23. Lehman, C.D.; Topol, E.J. Readiness for mammography and artificial intelligence. Lancet 2021, 398, 1867. [CrossRef]
24. Pesapane, F.; Codari, M.; Sardanelli, F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the

forefront of innovation in medicine. Eur. Radiol. Exp. 2018, 2, 35. [CrossRef] [PubMed]

http://doi.org/10.1186/s13058-019-1203-3
http://doi.org/10.1148/radiology.199.3.8638010
http://www.ncbi.nlm.nih.gov/pubmed/8638010
http://doi.org/10.1007/s10549-011-1836-0
http://www.ncbi.nlm.nih.gov/pubmed/22042364
http://doi.org/10.1016/S0140-6736(21)02484-3
http://doi.org/10.1186/s41747-018-0061-6
http://www.ncbi.nlm.nih.gov/pubmed/30353365

	Introduction 
	Materials and Methods 
	Study Population 
	Imaging Analysis 
	Imaging Analysis by AI-CAD 
	Statistical Analysis 

	Results 
	Patient Characteristics 
	Mammography Classification Results by Radiologists 
	Mammography Findings 
	AI-CAD Results 
	Missed Cancer Detected by AI-CAD 
	Characteristics of Missed Cancers 

	Discussion 
	References

