organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[6-Thioxo-5-(2,4,6-trimethylphenyl)-1,3,5-thiadiazinan-3-yl]acetic acid

Mohammad Arfan,^a M. Nawaz Tahir,^b* Muhammad Ishaq Ali Shah,^a Rassol Khan^a and Mohammad S. Igbal^c

^aInstitute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^cDepartment of Chemistry, Government College University, Lahore, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 24 March 2009; accepted 25 March 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.132; data-to-parameter ratio = 21.3.

In the molecule of the title compound, $C_{14}H_{18}N_2O_2S_2$, the 1,3,5-thiadiazinane-2-thione ring adopts an envelope conformation with one of the N atoms at the flap position. The plane throught the five co-planar atoms of the heterocycle is oriented at a dihedral angle of 80.59 (8)° with respect to the aromatic ring. In the crystal structure, weak intermolecular $O-H\cdots$ S interactions link the molecules into chains along the *b* axis.

Related literature

For related structures, see: Arfan *et al.* (2009); Perez *et al.* (2001). For bond-length data, see: Allen *et al.* (1987).

a = 6.9134 (4) Å

b = 17.6934 (11) Å

c = 24.9073 (15) Å

Experimental

Crystal data $C_{14}H_{18}N_2O_2S_2$ $M_r = 310.42$ Orthorhombic, Pbca

V =	3046.7 (3) A ³
<i>Z</i> =	8
Mo	Ko radiation

Data collection

Bruker Kappa APEXII CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.922, T_{max} = 0.942$

. .

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 186 parameters $wR(F^2) = 0.132$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.32$ e Å⁻³3957 reflections $\Delta \rho_{min} = -0.27$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $O1-H1\cdots S2^i$ 0.822.373.187 (2)174

 $\mu = 0.35 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.053$

 $0.26 \times 0.18 \times 0.16 \text{ mm}$

18229 measured reflections

3957 independent reflections

2120 reflections with $I > 2\sigma(I)$

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2650).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Arfan, M., Tahir, M. N., Shah, M. I. A. & Iqbal, M. S. (2009). Acta Cryst. E65, 0468.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Perez, R., Suarez, M., Ochoa, E., Rodriguez, H., Martin, N., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & Ranter, C. De. (2001). *Tetrahedron*, **57**, 7361–7367.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, o902 [doi:10.1107/S1600536809011027]

2-[6-Thioxo-5-(2,4,6-trimethylphenyl)-1,3,5-thiadiazinan-3-yl]acetic acid

M. Arfan, M. N. Tahir, M. I. A. Shah, R. Khan and M. S. Iqbal

Comment

We have recently reported the crystal structure of 3-benzyl-5-butyl-1,3,5 -thiadiazinane-2-thione, (II) (Arfan *et al.*, 2009) and 5-carboxyethyl-3 -(2'-furfurylmethyl) tetrahydro-2*H*-1,3,5-thiadiazine-2-thione, (III) (Perez *et al.*, 2001) has also been published. As part of our ongoing studies, we report herein the crystal structure of the title compound, (I).

In the molecule of the title compound (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar, while ring B (S1/N1/N2/C10-C12) adopts an envelope conformation with atom N2 displaced by -0.647 (3) Å from the plane of the other ring atoms. The planar carboxylic acid moiety is oriented with respect to ring A at a dihedral angle of 34.26 (3)°.

In the crystal structure, weak intermolecular O-H···S interactions (Table 1) link the molecules into chains along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, carbon disulfide was slowly added into a mixture of 2,4,6-trimethylaniline (2.18 ml, 20 mmol) and potassium hydroxide (20%, 20 mmol) in water (30 ml) with stirring. Formaldehyde (37%) was added dropwise to the mixture after 4 h, and was stirred for a further 1 h. Then, the mixture was filtered and the filtrate was added in a suspension of glycine (1.5 ml, 20 mmol) prepared in phosphate buffer solution (20 ml, pH = 7.8), and stirred for a further 1 h. The reaction mixture was filtered and extracted with dichloromethane. The aqueous solution was acidified using HCl and the precipitates formed were filtered and washed with water. The residues were recrystallized in ethanol by slow evaporation (yield; 75%, m. p. 421-423 K).

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.

2-[6-Thioxo-5-(2,4,6-trimethylphenyl)-1,3,5-thiadiazinan-3-yl]acetic acid

Crystal	data
---------	------

$C_{14}H_{18}N_2O_2S_2$	$F_{000} = 1312$
$M_r = 310.42$	$D_{\rm x} = 1.354 {\rm ~Mg~m^{-3}}$
Orthorhombic, Pbca	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 3957 reflections
a = 6.9134 (4) Å	$\theta = 2.4 - 28.8^{\circ}$
<i>b</i> = 17.6934 (11) Å	$\mu = 0.35 \text{ mm}^{-1}$
<i>c</i> = 24.9073 (15) Å	T = 296 K
$V = 3046.7 (3) \text{ Å}^3$	Prism, colorless
Z = 8	$0.26\times0.18\times0.16\ mm$

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer	3957 independent reflections
Radiation source: fine-focus sealed tube	2120 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.053$
Detector resolution: 7.40 pixels mm ⁻¹	$\theta_{max} = 28.8^{\circ}$
T = 296 K	$\theta_{\min} = 2.4^{\circ}$
ω scans	$h = -9 \rightarrow 6$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -24 \rightarrow 21$
$T_{\min} = 0.922, \ T_{\max} = 0.942$	<i>l</i> = −32→33
18229 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.132$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_0^2) + (0.0418P)^2 + 2.0698P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} = 0.001$
3957 reflections	$\Delta \rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$
186 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.05204 (10)	0.04895 (4)	0.06455 (3)	0.0462 (3)
S2	-0.05342 (10)	0.17988 (4)	0.12532 (3)	0.0502 (3)
01	0.4812 (3)	-0.14565 (11)	0.15003 (8)	0.0521 (7)
O2	0.5343 (4)	-0.12709 (11)	0.06276 (9)	0.0639 (9)
N1	0.3157 (3)	0.14751 (11)	0.10199 (8)	0.0342 (7)
N2	0.4407 (3)	0.02387 (12)	0.07081 (9)	0.0409 (8)
C1	0.3789 (4)	0.21613 (14)	0.12872 (11)	0.0355 (8)
C2	0.4250 (4)	0.27902 (14)	0.09806 (11)	0.0382 (9)
C3	0.4943 (4)	0.34268 (15)	0.12500 (13)	0.0465 (10)
C4	0.5158 (4)	0.34412 (16)	0.18049 (13)	0.0494 (10)
C5	0.4705 (4)	0.27966 (16)	0.20908 (13)	0.0508 (11)
C6	0.4040 (4)	0.21442 (15)	0.18430 (12)	0.0423 (9)
C7	0.3984 (5)	0.28082 (17)	0.03821 (12)	0.0554 (11)
C8	0.5854 (5)	0.41477 (18)	0.20860 (15)	0.0693 (14)
C9	0.3599 (5)	0.14439 (18)	0.21674 (12)	0.0617 (11)
C10	0.1280 (4)	0.13078 (13)	0.09810 (10)	0.0356 (8)
C11	0.2787 (4)	0.01152 (15)	0.03629 (12)	0.0455 (10)
C12	0.4777 (4)	0.10269 (14)	0.07749 (13)	0.0451 (10)
C13	0.4446 (4)	-0.02219 (15)	0.11916 (11)	0.0465 (10)
C14	0.4921 (4)	-0.10347 (15)	0.10630 (13)	0.0444 (10)
H1	0.49414	-0.19027	0.14189	0.0625*
Н3	0.52712	0.38540	0.10524	0.0556*
H5	0.48496	0.27999	0.24620	0.0610*
H7A	0.43567	0.32952	0.02473	0.0833*
H7B	0.47751	0.24253	0.02198	0.0833*
H7C	0.26508	0.27157	0.02968	0.0833*
H8A	0.62761	0.45096	0.18238	0.1037*

H8B	0.48151	0.43591	0.22931	0.1037*
H8C	0.69113	0.40233	0.23195	0.1037*
H9A	0.35779	0.15697	0.25423	0.0926*
H9B	0.23599	0.12472	0.20634	0.0926*
Н9С	0.45771	0.10699	0.21028	0.0926*
H11A	0.30305	0.03556	0.00195	0.0545*
H11B	0.26428	-0.04230	0.03002	0.0545*
H12A	0.59162	0.10850	0.09985	0.0542*
H12B	0.50755	0.12413	0.04261	0.0542*
H13A	0.54067	-0.00223	0.14376	0.0558*
H13B	0.31956	-0.01976	0.13673	0.0558*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0368 (4)	0.0420 (4)	0.0599 (5)	-0.0050 (3)	-0.0129 (4)	-0.0075 (3)
S2	0.0299 (4)	0.0516 (4)	0.0691 (5)	-0.0026 (3)	0.0024 (4)	-0.0111 (4)
01	0.0600 (14)	0.0462 (11)	0.0501 (13)	0.0040 (10)	-0.0039 (10)	-0.0002 (10)
O2	0.0921 (18)	0.0482 (12)	0.0515 (14)	0.0146 (12)	0.0067 (12)	-0.0035 (10)
N1	0.0269 (12)	0.0358 (11)	0.0400 (12)	-0.0034 (9)	-0.0015 (10)	-0.0034 (10)
N2	0.0376 (13)	0.0370 (11)	0.0480 (15)	-0.0003 (10)	-0.0085 (11)	-0.0055 (10)
C1	0.0239 (13)	0.0399 (13)	0.0428 (16)	-0.0024 (11)	-0.0024 (12)	-0.0071 (12)
C2	0.0284 (14)	0.0413 (14)	0.0449 (17)	-0.0015 (11)	0.0032 (13)	-0.0034 (12)
C3	0.0335 (15)	0.0419 (15)	0.064 (2)	-0.0063 (12)	0.0084 (14)	-0.0060 (14)
C4	0.0315 (16)	0.0516 (17)	0.065 (2)	-0.0068 (13)	0.0022 (14)	-0.0210 (15)
C5	0.0442 (19)	0.0621 (19)	0.0462 (18)	-0.0059 (15)	-0.0053 (14)	-0.0130 (15)
C6	0.0360 (16)	0.0484 (15)	0.0424 (17)	-0.0044 (12)	-0.0028 (13)	-0.0027 (13)
C7	0.067 (2)	0.0509 (17)	0.0483 (19)	0.0009 (15)	0.0060 (16)	0.0016 (14)
C8	0.057 (2)	0.067 (2)	0.084 (3)	-0.0187 (17)	0.0041 (19)	-0.0321 (19)
C9	0.075 (2)	0.068 (2)	0.0420 (19)	-0.0127 (18)	-0.0066 (17)	0.0043 (16)
C10	0.0345 (15)	0.0360 (13)	0.0364 (15)	-0.0026 (11)	-0.0045 (12)	0.0027 (11)
C11	0.0473 (18)	0.0419 (15)	0.0472 (18)	0.0015 (13)	-0.0078 (14)	-0.0055 (13)
C12	0.0338 (16)	0.0385 (14)	0.063 (2)	0.0005 (12)	0.0006 (14)	-0.0089 (13)
C13	0.0435 (17)	0.0489 (15)	0.0472 (18)	0.0094 (14)	-0.0111 (14)	-0.0064 (13)
C14	0.0398 (17)	0.0446 (15)	0.0488 (19)	0.0032 (12)	-0.0093 (14)	-0.0020 (14)

Geometric parameters (Å, °)

S1—C10	1.752 (2)	C6—C9	1.510 (4)
S1-C11	1.841 (3)	C13—C14	1.510 (4)
S2-C10	1.670 (3)	С3—Н3	0.9300
O1-C14	1.323 (4)	С5—Н5	0.9300
O2—C14	1.198 (4)	С7—Н7А	0.9600
O1—H1	0.8200	С7—Н7В	0.9600
N1-C1	1.452 (3)	С7—Н7С	0.9600
N1-C12	1.502 (3)	C8—H8A	0.9600
N1-C10	1.335 (3)	C8—H8B	0.9600
N2—C12	1.428 (3)	C8—H8C	0.9600
N2—C13	1.454 (3)	С9—Н9А	0.9600

N2—C11	1.429 (4)	С9—Н9В	0.9600
C1—C6	1.396 (4)	С9—Н9С	0.9600
C1—C2	1.387 (4)	C11—H11A	0.9700
С2—С3	1.396 (4)	C11—H11B	0.9700
С2—С7	1.502 (4)	C12—H12A	0.9700
C3—C4	1.390 (5)	C12—H12B	0.9700
C4—C5	1.381 (4)	C13—H13A	0.9700
C4—C8	1.511 (4)	C13—H13B	0.9700
C5—C6	1.387 (4)		
S1…C11 ⁱ	3.561 (3)	C14···C3 ^{iv}	3.526 (4)
S1…S1 ⁱ	3.7226 (11)	C14····C2 ^{iv}	3.561 (4)
S2…O1 ⁱⁱ	3.187 (2)	C1…H1 ⁱⁱ	3.0800
S2…C6	3.540 (3)	C7…H12B	2.8800
S1…H7A ⁱⁱⁱ	3.2000	С10…Н9В	2.8000
S1···H3 ^{iv}	3.1100	С12…Н7В	2.8300
S1…H13B	2.8500	C14…H11B	2.6900
S2…H12A ^v	2.8300	H1…S2 ^{iv}	2.3700
S2…H9A ^{vi}	3.0900	H1····C1 ^{iv}	3.0800
S2…H9B	3.0000	НЗ…Н7А	2.3200
S2…H1 ⁱⁱ	2.3700	H3…H8A	2.3500
O1···C3 ^{iv}	3.352 (3)	H3···S1 ⁱⁱ	3.1100
O1···S2 ^{iv}	3.187 (2)	Н5…Н9А	2.3600
O1····C2 ^{iv}	3.367 (3)	H5…O1 ^{ix}	2.9100
O2…N2	2.756 (3)	H7A…H3	2.3200
O2…C11	3.094 (4)	H7A…S1 ^x	3.2000
O1…H5 ^{vii}	2.9100	H7B…N1	2.8400
O2…H11B	2.5300	H7B…C12	2.8300
O2…H11A ^{viii}	2.5500	H7B…H12B	2.1700
O2…H12B ^{viii}	2.6400	H7B…H7C ^x	2.3800
O2···H7C ^{iv}	2.8600	H7C…N1	2.8600
N2…O2	2.756 (3)	H7C…H7B ⁱⁱⁱ	2.3800
N2…C11 ^{viii}	3.357 (4)	H7C···O2 ⁱⁱ	2.8600
N1···H9B	2.6900	Н8А…Н3	2.3500
N1…H7B	2.8400	H8B…H8C ^{vi}	2.3100
N1…H7C	2.8600	H8C…H8B ^{xi}	2.3100
N2…H11A ^{viii}	2.7400	H9A…H5	2.3600
C2…O1 ⁱⁱ	3.367 (3)	H9A…S2 ^{xi}	3.0900
C2…C14 ⁱⁱ	3.561 (4)	H9B…S2	3.0000
C3…O1 ⁱⁱ	3.352 (3)	H9B…N1	2.6900
C3···C14 ⁱⁱ	3.526 (4)	Н9В…С10	2.8000
C6…S2	3.540 (3)	H11A…H12B	2.3400
C7…C12	3.345 (4)	H11A…O2 ^{viii}	2.5500
C7…C10	3.573 (4)	H11A…N2 ^{viii}	2.7400

69 619	2,271(4)	U11D 02	2 5200
C9C10	3.3/1 (4)		2.5300
	3.373 (4)		2.0900
0.009	3.3/1 (4)	H12A\$2***	2.8300
C10···C13	3.520 (4)	H12A…H13A	2.2700
$C11 \cdots S1^{1}$	3.561 (3)	H12B…C7	2.8800
C11…O2	3.094 (4)	H12B…H7B	2.1700
C11···N2 ^{viii}	3.357 (4)	H12B…H11A	2.3400
C11···C11 ^{viii}	3.577 (4)	H12B…O2 ^{viii}	2.6400
C12…C7	3.345 (4)	H13A…H12A	2.2700
C13…C10	3.520 (4)	H13B…S1	2.8500
C10—S1—C11	102.97 (13)	С6—С5—Н5	119.00
C14—O1—H1	109.00	С2—С7—Н7А	109.00
C1—N1—C12	113.8 (2)	С2—С7—Н7В	109.00
C10—N1—C12	125.4 (2)	С2—С7—Н7С	109.00
C1—N1—C10	120.8 (2)	H7A—C7—H7B	109.00
C11—N2—C12	111.1 (2)	H7A—C7—H7C	109.00
C12—N2—C13	116.6 (2)	H7B—C7—H7C	109.00
C11—N2—C13	115.3 (2)	С4—С8—Н8А	109.00
N1—C1—C2	119.2 (2)	С4—С8—Н8В	109.00
C2—C1—C6	122.4 (2)	C4—C8—H8C	109.00
N1—C1—C6	118.3 (2)	H8A—C8—H8B	109.00
C1—C2—C3	117.5 (3)	H8A—C8—H8C	109.00
C1—C2—C7	122.4 (2)	H8B—C8—H8C	109.00
C3—C2—C7	120.1 (2)	С6—С9—Н9А	109.00
C2—C3—C4	122.0 (3)	С6—С9—Н9В	109.00
C3—C4—C5	118.3 (3)	С6—С9—Н9С	109.00
C5—C4—C8	121.1 (3)	Н9А—С9—Н9В	109.00
C3—C4—C8	120.6 (3)	Н9А—С9—Н9С	109.00
C4—C5—C6	122.2 (3)	Н9В—С9—Н9С	109.00
C1—C6—C5	117.7 (3)	S1—C11—H11A	109.00
C1—C6—C9	121.6 (2)	S1—C11—H11B	109.00
C5—C6—C9	120.8 (3)	N2—C11—H11A	109.00
S1—C10—S2	113.48 (16)	N2—C11—H11B	109.00
S1-C10-N1	120.62 (19)	H11A—C11—H11B	108.00
S2	125.84 (19)	N1—C12—H12A	108.00
S1—C11—N2	112.5 (2)	N1—C12—H12B	108.00
N1—C12—N2	115.4 (2)	N2—C12—H12A	108.00
N2—C13—C14	111.2 (2)	N2—C12—H12B	108.00
O1—C14—C13	110.5 (2)	H12A—C12—H12B	107.00
O2—C14—C13	125.3 (3)	N2—C13—H13A	109.00
O1—C14—O2	124.2 (2)	N2—C13—H13B	109.00
С2—С3—Н3	119.00	C14—C13—H13A	109.00
С4—С3—Н3	119.00	C14—C13—H13B	109.00
C4—C5—H5	119.00	H13A—C13—H13B	108.00
C11—S1—C10—S2	176.80 (15)	N1—C1—C2—C3	-176.9 (2)
C11—S1—C10—N1	-5.7 (2)	N1—C1—C2—C7	4.5 (4)
C10—S1—C11—N2	35.4 (2)	C6—C1—C2—C3	-1.6 (4)
C10—N1—C1—C2	-98.6 (3)	C6—C1—C2—C7	179.9 (3)

C10—N1—C1—C6	85.9 (3)	N1—C1—C6—C5	177.9 (2)
C12—N1—C1—C2	77.9 (3)	N1-C1-C6-C9	-2.3 (4)
C12—N1—C1—C6	-97.7 (3)	C2—C1—C6—C5	2.6 (4)
C1-N1-C10-S1	178.62 (18)	C2—C1—C6—C9	-177.7 (3)
C1-N1-C10-S2	-4.3 (3)	C1—C2—C3—C4	-0.5 (4)
C12—N1—C10—S1	2.6 (3)	C7—C2—C3—C4	178.1 (3)
C12—N1—C10—S2	179.7 (2)	C2—C3—C4—C5	1.4 (4)
C1-N1-C12-N2	155.3 (2)	C2—C3—C4—C8	-178.1 (3)
C10-N1-C12-N2	-28.4 (4)	C3—C4—C5—C6	-0.3 (4)
C12—N2—C11—S1	-63.8 (3)	C8—C4—C5—C6	179.2 (3)
C13—N2—C11—S1	71.7 (2)	C4—C5—C6—C1	-1.6 (4)
C11—N2—C12—N1	60.6 (3)	C4—C5—C6—C9	178.7 (3)
C13—N2—C12—N1	-74.3 (3)	N2-C13-C14-O1	-175.4 (2)
C11—N2—C13—C14	72.2 (3)	N2-C13-C14-O2	4.7 (4)
C12—N2—C13—C14	-154.8 (2)		

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) -*x*+1/2, *y*+1/2, *z*; (iii) *x*-1/2, -*y*+1/2, -*z*; (iv) -*x*+1/2, *y*-1/2, *z*; (v) *x*-1, *y*, *z*; (vi) *x*-1/2, *y*, -*z*+1/2; (vii) -*x*+1, *y*-1/2, -*z*; (iv) -*x*+1/2; (viii) -*x*+1, -*y*, -*z*; (ix) -*x*+1, *y*+1/2, -*z*+1/2; (x) *x*+1/2, -*z*; (x) *x*+1/2, *y*, -*z*+1/2; (xii) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1···S2 ^{iv}	0.82	2.37	3.187 (2)	174
Symmetry codes: (iv) $-x+1/2$, $y-1/2$, z.				

sup-7

Fig. 1

