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Abstract 

Although the genetic correlations between complex traits have been estimated for more than a century, only recently 
we have started to map and understand the precise localization of the genomic region(s) that underpin these correla‑
tions. Reproductive traits are often genetically correlated. Yet, we don’t fully understand the complexities, synergism, 
or trade-offs between male and female fertility. In this study, we used reproductive traits in two cattle populations 
(Brahman; BB, Tropical Composite; TC) to develop a novel framework termed correlation scan (CS). This framework 
was used to identify local regions associated with the genetic correlations between male and female fertility traits. 
Animals were genotyped with bovine high-density single nucleotide polymorphisms (SNPs) chip assay. The data 
used consisted of ~1000 individual records measured through frequent ovarian scanning for age at first corpus luteum 
(AGECL) and a laboratory assay for serum levels of insulin growth hormone (IGF1 measured in bulls, IGF1b, or cows, 
IGF1c). The methodology developed herein used correlations of 500-SNP effects in a 100-SNPs sliding window in each 
chromosome to identify local genomic regions that either drive or antagonize the genetic correlations between traits. 
We used Fisher’s Z-statistics through a permutation method to confirm which regions of the genome harboured 
significant correlations. About 30% of the total genomic regions were identified as driving and antagonizing genetic 
correlations between male and female fertility traits in the two populations. These regions confirmed the polygenic 
nature of the traits being studied and pointed to genes of interest. For BB, the most important chromosome in terms 
of local regions is often located on bovine chromosome (BTA) 14. However, the important regions are spread across 
few different BTA’s in TC. Quantitative trait loci (QTLs) and functional enrichment analysis revealed many significant 
windows co-localized with known QTLs related to milk production and fertility traits, especially puberty. In general, 
the enriched reproductive QTLs driving the genetic correlations between male and female fertility are the same for 
both cattle populations, while the antagonizing regions were population specific. Moreover, most of the antagoniz‑
ing regions were mapped to chromosome X. These results suggest regions of chromosome X for further investigation 
into the trade-offs between male and female fertility. We compared the CS with two other recently proposed meth‑
ods that map local genomic correlations. Some genomic regions were significant across methods. Yet, many signifi‑
cant regions identified with the CS were overlooked by other methods.
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Background
In animal genetics, insight into the nature of the genetic 
relationships between quantitative traits are important 
because they improve our understanding of complex 
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traits and diseases [1, 2]. These relationships termed 
genetic correlations manifest when there is shared 
genetic influence between traits (i.e., pleiotropy) [3, 4] or 
when there is non-random association between loci (i.e., 
linkage disequilibrium (LD)) [5, 6]. Estimated genetic 
correlations provide information on how genome-wide 
genetic effects align between two complex traits [7]. 
Understanding the interplay between genomic variants 
and their effects on quantitative traits can yield insights 
to improve the prediction of genetic merit and the under-
standing of complex traits’ biology [8–10]. Estimated 
genetic correlations have informed animal and crop 
breeding for many decades. For example, scrotal circum-
ference is used as an indicator trait in beef cattle breeding 
because it is genetically correlated with female fertility 
traits [11]. Nevertheless, we still have a limited informa-
tion of the genomic regions regulating the intersexual 
correlations between male and female fertility traits. 
Investigating these regions and leveraging on the result-
ing biological information could inspire new approaches 
in livestock breeding [12, 13].

Over the past 100 years, different methods have been 
employed to estimate the genetic correlation between 
traits [14–17]. Traditionally, these correlations are esti-
mated from pedigree data. However, genome-wide sin-
gle nucleotide polymorphisms (SNPs) are often used in 
recent times [18]. It is possible to estimate across-sex 
correlation between traits and this research niche con-
tinues to attract interest among quantitative geneticists 
[19–21]. The resulting estimates from both within and 
across-sex analyses range from − 1 to + 1, indicating the 
strength and magnitude of the correlation between traits 
[22]. Despite more than a century of research on estimat-
ing this parameter, it is only very recently that studies 
attempt to identify local regions that underpin genetic 
correlations between traits [23, 24, 25]. For instance, 
in human genetics, methods such as ρ-HESS [23], 
SUPERGNVOVA [25], and LAVA [24] have been devel-
oped for this purpose. However, in livestock genetics, 
there is currently no methodology aim to precisely esti-
mate and identify these local regions. For human genet-
ics, local correlations between traits are usually estimated 
using genome-wide association studies (GWAS) sum-
mary statistics with different model assumptions. To 
account for LD in local correlation estimates, these meth-
ods used external genotype data by assuming that the 
LD structures are identical to the GWAS summary data. 
Sawyer et al. [26] showed that the pattern of LD can vary 
substantially, even for population in the same geographic 
location. The imperfect LD structure between the exter-
nal genotype data and GWAS summary data can cre-
ate estimation uncertainty and leads to false positive or 
negative results in the local correlation estimates [27]. In 

addition to this limitation, some estimates of local cor-
relations from these methodologies are often unstable 
due to noise in the local heritability estimates, resulting 
in local estimates that are often out of bound [24, 25]. As 
a result, these local estimates are either capped at +/− 1 
or excluded from the analyses. Therefore, there is need to 
develop a method that can estimate local genomic cor-
relation without relying on local heritabilities and can 
also account for the pattern of LD using the population 
under study. Here, we introduce correlation scan (CS), a 
simple, fast, and robust method that uses sliding window 
approach to identify local genomic regions affecting trait 
correlation using post-GBLUP (genomic best linear unbi-
ased prediction) SNP effects.

Furthermore, local genomic correlation can either 
drive a global correlation estimate or antagonize it. In 
theory, various genomic regions will contribute to the 
global correlation between complex traits. Further, some 
regions will be driving (i.e., driver regions) the global 
genetic correlation while others might antagonize it 
(antagonizing regions). For instance, if the global genetic 
correlation between two traits is 0.70, some local regions 
will yield a significant and positive correlation, say 0.90, 
while other regions may antagonize the overall estimate, 
and in that region the correlation could be − 0.50. Also, 
some local genomic regions may be neutral, say 0.02 and 
not significant for the correlation between the studied 
traits. Identifying driver and antagonizing regions are 
of particular interest if they are for two important traits 
which are unfavourably correlated, for example milk yield 
and fertility in dairy cattle. Identification of such regions 
could lead to more targeted genomic selection and rapid 
genetic gains for both traits. Current genomic tools have 
created a great opportunity to advance our knowledge of 
genetic correlations between complex traits, by investi-
gating the regions in the genome that drive or antagonize 
these correlations.

Here, we applied the CS method to real datasets, i.e., 
male and female fertility traits to identify drivers and 
antagonizing regions affecting these traits. These identi-
fied drivers and antagonizing regions were subjected to 
QTLs enrichment and functional analysis to gain insight 
about the biology of the traits under study. The traits 
used are age at first corpus luteum (AGECL, i.e., female 
puberty) and serum levels of insulin growth hormone 
(IGF1 measured in bulls, IGF1b, or cows, IGF1c). These 
phenotypes are from animals raised in a research station 
with precise measurement taken by regular ovarian scan 
(AGECL, [26]) and laboratory assay (IGF1c or IGF1b, [27, 
28]). These traits are highly heritable [28, 29] and  each 
pair serve as example of a positive and a negative cor-
relation between phenotypes measured in males and 
females, during pubertal development. The populations 
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used in the study are formed by either Brahman (BB) cat-
tle or Tropical Composite (TC) cattle, as described in our 
previous study [29]. For completeness, we compared the 
CS methodology with two other recently proposed meth-
ods (SUPERGNOVA and LAVA) that map local genomic 
correlations.

Results
The total number of windows generated
Using the framework developed in our study (see Mate-
rials and Methods), genomic windows with their cor-
responding local genetic correlation (r) estimates for 
each pairwise trait in two beef cattle populations were 
identified. The total number of windows generated for 
all trait  pairs in BB was 5413 and the number in TC 
was 6731. The r estimates for all windows were plotted 
against their genomic position (i.e., midpoint between 
the start and end position of each window) (Fig.  1). 
Results are presented separately per cattle population and 
for each pair of traits investigated. Additionally, the full 
details of these results are presented in Additional file 1 
(Table S1-S2).

In addition, to demonstrate that the SNP effects from 
the back-solve approach using GBLUP are not biased by 
LD, we pruned the genotypes data of each breed based 
on pairwise LD estimates to obtain a pruned subset of 
SNPs that are in approximate linkage equilibrium (LE). 
Compared to the genotype data (~ 600 K SNPs for each 
breed), about 164 k and 194 K SNPs remained after LD 
pruning for BB and TC breed, respectively. In summary, 
we observed no substantial differences between the pat-
tern of the r estimates for the LD pruned SNP effects and 
those of the back-solve approach using GBLUP (Addi-
tional file 2; Fig. S1).

Identification of significant windows
To identify windows with significant r estimates, we 
applied Fisher’s Z-statistics following a permutation test 
of 10,000 iterations (see Methods). Significant level was 
set at Bonferroni-corrected P-value < 0.05. Windows with 
r estimates that passed this threshold were considered 
significant and those that failed were termed “neutral” 
windows. Table  1 shows the number of significant and 
neutral windows for each pair  of trait in each popula-
tion. About 30% of the total genomic regions were signifi-
cant for each trait pair. The higher the global correlation 
between trait pairs, the higher the number of significant 
windows and the lesser the neutral windows.

Comparison of CS with SUPERNOVA and LAVA
To demonstrate the performance of CS, we compared 
the results from CS with SUPERNOVA and LAVA 
across all the trait pairs investigated. Additional  file  3 

(Table  S3-S10) shows the r estimates for each local 
region (window) and their corresponding P-values for 
SUPERGNOVA and LAVA. Of note, the r estimated in 
SUPERGNOVA depends on local heritability estimates, 
and in many cases, these estimates are unstable and 
often negative. SUPERGNOVA ignores negative herit-
ability estimates, leaving the correlation estimates as 
‘NA’. Furthermore, some of the estimates are also out of 
bound, i.e., estimates with r > 1 or r < − 1. LAVA, on the 
other hand, tends to avoid unstable local correlation 
estimates by filtering out non-associated loci with low 
local heritability. Despite this, some estimates are often 
out of bounds and are either capped at +/− 1 (i.e., if r 
estimate is <+/− 1.25) or excluded from the analyses 
(i.e., if r estimate is >+/− 1.25). In addition, the r esti-
mate in LAVA depends on variance of the phenotypes. 
If the variance of local region is negative, the window 
will be excluded from the analysis.

For SUPERGNOVA, about 5%, on average, of the 
total number of windows analysed were within the r 
range (i.e., − 1 ≤ r ≤ 1) for all traits pairwise (Table  2). 
Approximately 85% of the total windows were NA due 
unstable local heritability estimate and about 10% were 
out of bound (r > 1).

For LAVA, out of the total number of windows (BB, 
5413; TC, 6731), about 30 and 60% of the total win-
dows were analysed for all trait pairs in BB and TC, 
respectively (Table  3). The rest were excluded from 
the analyses due to negative variance of either one or 
both phenotypes being investigated. Of those analysed, 
about 11-30% had their r estimate either capped at 
+/− 1 or out of bound.

We also investigated the number of significant win-
dows shared between CS with SUPERGNOVA and LAVA 
for all trait pairs in the BB and TC population at P-value 
< 0.05 (Fig. 2). For SUPERGNOVA, 4 windows were sig-
nificant for AGECL vs IGF1b and 2 windows were signifi-
cant for IGF1c vs IGF1b in BB population. No window 
was significant for any of the trait pairs in TC population. 
The significant windows for the two pairwise traits in BB 
overlapped with the significant windows detected using 
CS. These overlaps were on the bovine chromosome 
(BTA) 14: 22.68-25.29 Mb and corresponded with the 
regions with the largest and the most significant r esti-
mate with CS.

For LAVA, 68 windows were significant for AGECL 
vs IGF1b and 92 for IGF1c vs IGF1b at P-value < 0.05 
in BB. The number of overlaps with CS for these win-
dows were 56 and 92 for AGECL vs IGF1b and IGF1c 
vs IGF1b, respectively. In TC, 122 windows were signifi-
cant for AGECL vs IGF1b and 278 for IGF1c vs IGF1b 
at P-value < 0.05. The number of overlaps with CS for 
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Fig. 1  Genome-wide plot of the sliding window local correlation estimates for the trait pairs (BB-AGECL vs IGF1b; A, TC-AGECL vs IGF1b; B, BB-IGF1c 
vs IGF1b; C, and TC- IGF1c vs IGF1b; D) in Brahman (BB) and Tropical Composite (TC). AGECL, age at first corpus luteum; IGF1, serum levels of insulin 
growth hormone (measured in bulls, IGF1b, or cows, IGF1c). The correlation estimates were plotted on the y-axis and the genomic position (i.e., 
midpoint between the start and end position of each window) of each chromosome on the x-axis, according to the ARS_UCD1.2 bovine reference 
genome using SNP & Variation Suite v8.x Golden Helix [30]. Only r estimates with Bonferroni-corrected P-value < 0.05 were considered significant
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these windows were 55 and 155 for AGECL vs IGF1b and 
IGF1c vs IGF1b, respectively.

Furthermore, we investigated the relationship 
between the r estimates (i.e., within bound estimates 
only) from CS with SUPERGNOVA and LAVA in 
the two population for all trait pairs studied (Fig.  3). 
For SUPERGNOVA, we observed moderate correla-
tions with CS for AGECL vs IGF1b (0.49) and IGF1c 
vs IGF1b (0.46) in BB population. However, in TC, 
we observed high correlations with correlations scan 
(~ 0.76) for these two traits pair. For LAVA, the rela-
tionship of the r with CS for all trait pairs were low and 
the directions were negative except for IGF1c vs IGF1b 
in TC population.

Driver and antagonizing windows affecting genetic 
correlations between fertility traits
The significant r estimates facilitated the identification 
of driver and antagonizing windows. Depending on the 
global correlation between traits, driver and antagoniz-
ing windows can be deduced: in driver windows, the r 
estimate has the same direction, positive or negative, as 
the global genetic correlation; in antagonizing windows 
it is the opposite. Additional  file  4 (Table  S11) shows 
the number of significant drivers and antagonizing win-
dows for all trait pairs in BB and TC populations.

The number of significant driver windows for the cor-
relation between AGECL and IGF1b was 1022 in BB and 
1230 in TC cattle. The number of significant windows 
for the antagonizing windows was 283 in BB and 501 
in TC cattle, for AGECL vs IGF1b. For the correlation 
between IGF1c and IGF1b, the number of significant 
driver windows was 1293 in BB and 1765 in TC cat-
tle. The antagonizing windows was 225 in BB and 338 
in TC cattle (IGF1c vs IGF1b). In addition, the lists of 
windows with their chromosome position and genomic 
coordinates for all driver, and antagonizing regions are 
presented in Additional file 5 (Table S12-S19).

Table 1  The number of significant (P-value < 0.05) and neutral 
(P-value> 0.05) windows for each trait  pair in the Brahman and 
Tropical Composite population

AGECL age at first corpus, IGF1c serum levels of insulin growth hormone 
measured in cow, IGF1b serum levels of insulin growth hormone measured in 
bulls

 Trait pair Number of windows (percentage in 
parenthesis)

Total 
number of 
windows

Significant windows 
(%)

Neutral (%)

Brahman

  AGECL vs IGF1b 1305 (24.11%) 4108 (75.89%) 5413

  IGF1c vs IGF1b 1518 (28.04%) 3225 (71.96%) 5413

Tropical Composite

  AGECL vs IGF1b 1731 (25.72%) 5000 (74.28%) 6731

  IGF1c vs IGF1b 2103 (31.24%) 4628 (68.76%) 6731

Table 2  The proportion of unstable local estimates (NA’s), out 
of bound estimates (r > 1) and within bound estimates (i.e., 
− 1 ≤ r ≤ 1) to the number of windows analysed for all traits 
pairwise for SUPERGNOVA in Brahman and Tropical Composite 
population

Trait pairs No of 
windows 
analysed

NA’s Out of 
bound 
estimates

Within 
bound 
estimates

Brahman

  AGECL vs IGF1b 5413 87% 10% 3%

  IGF1c vs IGF1b 5413 85% 10% 5%

Tropical Composite

  AGECL vs IGF1b 6731 83% 11% 6%

  IGF1c vs IGF1b 6731 83% 12% 5%

Table 3  The number of windows analysed and excluded for all trait pairs for LAVA in Brahman and Tropical Composite population. 
Proportion of estimate capped at +/−1, out of bound estimate (NA’s) and within bound estimates (i.e., − 1 ≤ r ≤ 1) are relative to the 
number of windows analysed

Trait pairs No of windows No of windows 
excluded

No of window 
analysed

Estimate capped 
at +/−1

Out of bound 
estimates

Within 
bound 
estimates

Brahman

  AGECL vs IGF1b 5413 3733 (69%) 1680 (31%) 8% 25% 67%

  IGF1c vs IGF1b 5413 3640 (67%) 1773 (33%) 3% 8% 89%

Tropical Composite

  AGECL vs IGF1b 6731 2903 (43%) 3828 (57%) 6% 16% 78%

  IGF1c vs IGF1b 6731 2650 (39%) 4081 (61%) 8% 23% 69%
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For the correlation between AGECL and IGF1b 
(global genetic correlation of − 0.65 (BB) and − 0.55 
(TC), see Additional file 6; Table S20), the largest r esti-
mate for the driver windows was − 0.96 (bovine chro-
mosome (BTA)14: 23.04 - 25.29 Mb) in BB and − 0.91 
(BTAX: 39.76 - 42.86 Mb) in TC. For the antagonizing 
windows, the largest r estimate was 0.87 (BTAX: 40.87 
- 43.88 Mb) in BB and 0.62 (BTAX: 66.62 - 69.622 Mb) 
in TC.

For the correlation between IGF1c and IGF1b (global 
genetic correlation of 0.86 (BB) and 0.93 (TC), see 

Table 2), the largest r estimate for the driver windows 
was 0.97 (BTA14: 22.68 - 24.96 Mb) in BB and 0.87 
(BTA5: 46.13- 47.89 Mb) in TC, while the estimate for 
the antagonizing was − 0.62 (BTA1: 49.01 - 51.67 Mb) 
in BB and − 0.90 (BTAX: 65.64 - 68.39 Mb) in TC. All r 
estimates are plotted in Fig. 2.

Genes and quantitative trait loci (QTLs) within driver 
and antagonizing regions across the two populations
Defining driver and antagonizing regions separately 
for each pair of traits, allowed us to identify the genes 

Fig. 2  The Venn Diagram showing the number of significant local genetic correlations detected using correlation scan, SUPERGNOVA and LAVA at 
Bonferroni-corrected P-value < 0.05 for all trait pairs in the Brahman (top) and Tropical Composite (bottom) populations
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and QTLs within these regions for each of the two beef 
cattle populations. The percentage of the overlapping 
genes (Fig.  4) and QTLs (Fig.  5) across both popula-
tions was studied. The percentages of genes shared 
across the significant regions in BB and TC were calcu-
lated as a function of the total number of genes in BB or 
TC, respectively, and so they differ (Figs. 4 and 5).

The percentage of overlapping genes for each pair 
of traits in the two populations were as follows: for 
AGECL vs IGF1b driver regions, 32% of genes anno-
tated in BB were present in TC and 27% of genes 
annotated in TC were found in BB, whereas, for the 
antagonizing regions 18% of genes annotated in BB 
were present in TC and 13% of genes annotated in TC 
were found in BB. For IGF1c vs IGF1b, the two popu-
lations shared 48% of total number of genes annotated 
for the driver regions and about 10% were shared for 
the antagonizing regions.

The percentage of overlapping QTLs for each pair 
of traits in BB and TC population were as follows: for 
AGECL vs IGF1b driver regions, 38% of the QTLs anno-
tated in BB were present in TC and 20% of the QTLs 
annotated in TC were present in BB, whereas, for the 
antagonizing regions, 14% of the QTLs annotated in BB 
were present in TC and 18% of the QTLs annotated in 
TC were present in BB. For IGF1c vs IGF1b, 51% of the 

genes annotated in BB were present in TC, and 47% of 
the genes annotated in TC were present in BB, whereas, 
for the antagonizing regions, 14% of the genes annotated 
in BB were present in TC and 11% of the genes annotated 
in TC were present in BB population.

Functional classification of QTLs within genomic regions 
that explain the genetic correlations between male 
and female fertility
To infer biological function and mine the existing lit-
erature, we examined the classes  of QTL (milk, repro-
duction, production, meat and carcass, health and 
exterior) present in the significant genomic regions iden-
tified above using GALLO [31]. The largest proportion of 
QTL classes across all pairwise traits in the two popula-
tions for the driver and antagonizing regions were QTLs 
related to milk production, accounting for about 27-50% 
in most cases. This was followed by reproductive QTLs 
accounting for about 13-52% and production QTLs com-
prising 4-28%. Other QTL types (Exterior, health and 
meat and carcass) accounted for a relatively small propor-
tion of QTLs in the significant regions (Additional file 7; 
Fig. S2-S3). In addition, we reported the top 10 results 
(bar plots) for trait-specific  QTLs related to reproduc-
tion as these are relevant to our studied traits (Additional 
file 7; Fig. S2-S3). Among these reproductive QTLs, traits 
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Fig. 3  Relationship between the estimated local genetic correlations obtained from SUPERGNOVA (top) and LAVA (bottom) with correlation scan 
in BB (left) and TC (right). These plots exclude NA’s and out of bounds values from SUPERGNOVA and LAVA. AGECL, age at first corpus; IGF1b, serum 
levels of insulin growth hormone measured in bulls
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related to puberty (i.e., age at puberty, scrotal circumfer-
ence) were prevalent in both populations.

QTL enrichment analysis
We performed a chromosome-wide QTL enrichment 
analysis to further test the significance of the QTLs iden-
tified for all the driver and antagonizing regions in each 
cattle population, for each trait pair using GALLO [31]. 
Enriched QTLs for the studied traits span across most 
QTL types, indicating the presence of complex genetic 
mechanisms. The results of the chromosome-wide 
QTLs enrichment (FDR-corrected P-value< 0.05) for the 

driver and antagonizing regions for all pairwise traits 
in each population are presented in Additional  file  8 
(Table S21-28).

For the driver regions, the number of QTLs enriched 
over a wide range of chromosomes for AGECL vs IGF1b 
were 254 and 157 in BB and TC beef cattle population, 
respectively. The number was 213 (BB) and 198 (TC) for 
IGF1c vs IGF1b. For AGECL vs IGF1b, the most enriched 
chromosome (no of enriched QTLs in parenthesis) was 
BTA14 (33) and BTA14 (19) in BB and TC, respectively. 
For IGF1c vs IGF1b, the most enriched chromosome was 
on BTA5 (43) in BB and BTA14 (46) in TC.

Fig. 4  Genes annotated in the significant (i.e., driver and antagonizing) genomic regions identified as explaining the genetic correlations between 
male and female fertility traits in Brahman (BB) and Tropical Composite (TC) population. The overlaps between the two studied populations 
are in the diagonal of each plot for each pair of traits within the driver (above) and antagonizing (below) regions. The parenthesis describes the 
percentages of genes shared across the significant regions in BB and TC calculated as a function of the total number of genes in BB or TC. The darker 
the colour within the squares, the higher the percentage of shared genes or QTLs. AGECL, age at first corpus; IGF1, serum levels of insulin growth 
hormone (measured in bulls, IGF1b, or cows, IGF1c)
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For the antagonizing regions, the number of QTLs 
enriched across the bovine chromosomes for AGECL 
vs IGF1b were 102 and 171 in BB and TC beef cat-
tle population, respectively. The number was 136 
(BB) and 154 (TC) for IGF1c vs IGF1b. For AGECL 
vs IGF1b, the most enriched chromosome in BB were 
both BTA2 (12) and BTA17 (12) in BB, whereas in TC, 
the most enriched chromosome was BTA26 (29). For 
IGF1c vs IGF1b, on the other hand, the most enriched 
chromosome was BTA6 (26) and BTA26 (29) in BB and 
TC, respectively.

To identify the common results and shared biology 
between the driver and the antagonizing regions, we also 
investigated the overlaps of the QTL types associated 
with the studied trait (i.e., reproduction) in the two pop-
ulations. The relationship between the top 10 enriched 
reproductive QTLs in BB and TC are presented in Addi-
tional  file  9 (Fig. S4). Irrespective of the trait pairs, for 
the driver regions, the reproductive QTLs in BB in most 
cases overlap with those identified in TC. However, for 
the antagonizing regions, not all reproductive QTLs in 
BB were found in TC beef cattle population.

Fig. 5  QTLs annotated in the significant (i.e., driver and antagonizing) genomic regions identified as explaining the genetic correlations between 
male and female fertility traits in Brahman (BB) and Tropical Composite (TC) population. The overlaps between the two studied populations 
are in the diagonal of each plot for each pair of trait within the driver (above) and antagonizing (below) regions. The parenthesis describes the 
percentages of genes shared across the significant regions in BB and TC calculated as a function of the total number of genes in BB or TC. The darker 
the colour within the squares, the higher the percentage of shared genes or QTLs. AGECL, age at first corpus luteum; IGF1, serum levels of insulin 
growth hormone (measured in bulls, IGF1b, or cows, IGF1c)



Page 10 of 20Olasege et al. BMC Genomics          (2022) 23:684 

Functional enrichment analysis
Leveraging our methodology’s directionality of gene 
effects with Ingenuity Pathway Analysis (IPA; http://​
www.​ingen​uity.​com), we identified the canonical meta-
bolic pathways enriched at Benjamini–Hochberg cor-
rected P-values (BH-P-value) of p < 0.01. The graphical 
presentation of the canonical metabolic pathways pre-
dicted by IPA to be enriched and the proportion of driver 
and antagonizing genes in each pathway for all pairwise 
traits investigated in each population are illustrated in 
Additional  file  10 (Fig. S5-S12). Although IPA provided 
information about whether the predicted pathways 
were being activated or inhibited based on our data, we 
remain cautious when interpreting our results since the 
r estimates are not the same as gene expression values, 
and IPA was originally designed to mine gene expression 
data. In summary, several biological pathways known to 
be involved in reproduction (i.e., studied trait) were sig-
nificantly enriched for all pairwise traits investigated 
across the two breeds. Rho GDP Dissociation Inhibitor 
(RHOGDI) pathway was the only significant signaling 
pathway found to be inhibited across breeds in all pair-
wise traits investigated using IPA comparison analysis.

Discussion
Complex phenotypes, like fertility, consist of multi-
ple genetically correlated traits rather than independ-
ent traits [6]. The correlations between complex traits 
involve many genomic regions, with genes that could be 
part of a large and polygenic regulatory network [32–35]. 
Genomic signals that regulate (i.e., drive or antagonize) 
the correlations between complex traits are widely spread 
across the genome. Genomic regions underpinning trait 
correlation include genes with and without a significant 
effect on each specific phenotype or disease [33]. In 
the present post-genomic era, discovering the genomic 
regions that regulate correlations between complex traits 
has become an important aspect of genetic studies in 
humans and animals [36]. In this study, we developed 
a novel framework termed CS to reveal the significant 
regions that either drive or antagonize the genetic corre-
lations between traits across the genome. In addition, this 
method can also reveal genomic regions with no effect on 
the studied traits (neutral windows). The CS uses SNP 
effects, from best linear unbiased predictions (BLUP), 
to estimate the local correlations between studied traits. 
Local correlations are based on sliding windows of 500-
SNPs. We applied this sliding windows approach to 
reproductive traits measured in two populations of cattle. 
We subjected the significant windows to further analy-
ses using GALLO [31] and IPA (http://​www.​ingen​uity.​
com) to gain further insight into the biology of studied 
traits and their relationships. Although the methodology 

was applied to beef cattle traits, using high-density SNP 
chip genotypes, the general framework can be applied 
to any species, any trait, and it can easily accommodate 
sequence-level data.

Significant regions emerging from CS were compared 
with those identified by SUPERGNOVA and LAVA. The 
CS identified more significant regions affecting the cor-
relations between traits than existing methods, such 
as SUPERGNOVA and LAVA. This is because the CS 
does not use local heritability estimates, as found in 
SUPERGNOVA, or estimate negative local variance, 
as found in LAVA. The absence of these limitations 
resulted in more significant regions emerging from the 
CS approach for the same dataset. Despite differences 
between our method and SUPERGNOVA or LAVA, six 
significant local genetic correlations were shared between 
the three methods, all in the BB population. These regions 
were all located on chromosome 14. Chromosome 14 
regions have been extensively documented as affect-
ing many economically important traits cattle, including 
fertility traits [37–41]. Chromosome 14 aside, the three 
methods point to different regions that underpin the cor-
relations between the studied fertility traits. The limited 
number of overlaps identified between CS and exist-
ing methods might be expected as SUPERGNOVA and 
LAVA are not always in agreement either. In one study, 
out of the 80 significant loci identified using LAVA, only 
6 loci were also identified by SUPERGNOVA [42]. Ger-
ring et  al. [42] discussed that the poor overlap between 
SUPERGNOVA and LAVA might be due to the way the 
two methods de-correlate association statistics within 
each semi-independent LD block, which in turn affects 
the distribution of local genetic association across a par-
ticular locus. Therefore, comparing the significant loci 
across these methods might not provide a robust list of 
pleiotropic loci for the trait pair investigated.

To compare the three methods, we also estimated 
the correlation between CS results and results from 
SUPERGNOVA and LAVA. In a previous study, results 
from SUPERGNOVA and LAVA had an correlation sta-
tistic that ranged between 0.31 and 0.58 [24]. In our data-
sets, CS seemed to agree with SUPERGNOVA (r ranged 
from 0.46 to 0.77), but it differed from LAVA (r ranged 
from − 0.16 to 0.15). In a typical scenario, correlation 
statistics stabilize with a sample size of 250 data points 
[43]. In our comparisons between CS and existing meth-
ods, only one comparison had a sample size smaller than 
250 data points (i.e., AGECL vs IGF1b in BB cattle). For 
all other scenarios, the sample size was reasonable. The 
agreement observed between CS and SUPERGNOVA 
was higher than between CS and LAVA. This difference 
could be due to the model assumptions and parameter 
estimations that underpin the three methods. While CS 

http://www.ingenuity.com
http://www.ingenuity.com
http://www.ingenuity.com
http://www.ingenuity.com
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and SUPERGNOVA are similar in model assumptions, 
they differ from LAVA. Both CS and SUPERGNOVA 
assume that the vector of joint genetic effects for a 
given phenotype is random, whereas LAVA assume a 
fixed effect model. Werme et  al. [24] showed that there 
may be substantial differences between the estimate 
of local correlation from LAVA and SUPERGNOVA. 
Our approach of generating SNP effects follows the 
same model assumption (i.e., random effect model) as 
SUPERGNOVA and could be the reason for the higher 
agreement observed (i.e., higher correlation).

The CS approach may facilitate research collaboration, 
and the re-use of GWAS data. Access to individual-level 
genotype and phenotype data continues to be difficult 
due to consent and privacy concerns, and data ownership 
restrictions [43–45]. For these reasons, GWAS summary 
statistics are used to estimate global and local correla-
tions in human genetics [22, 24, 25, 44]. GWAS summary 
statistics are widely available in public repositories, thus 
allowing data to be shared among researchers for novel 
discoveries on the genetic basis of complex traits. In ani-
mal genetics, contractual obligations, the commercial 
value of the data, and intellectual property issues hin-
ders genotype and phenotype data to be shared among 
researchers or public databases. It is more practical to 
use published SNP effects that emerged from genomic 
BLUP analyses. SNP effects have been used to estimate 
global genetic correlations before [46] and now we have 
expanded that concept to create the CS and estimate local 
correlations. The use of published SNP effects alongside 
all GWAS summary statistics and the CS approach could 
pave the way for novel discoveries in animal and human 
genetics.

Our results agreed with the established notion that 
multiple loci regulate reproductive traits [47–49]. Also, 
the mode of action of these loci and the magnitude of 
their effect varies across the genome. While some regions 
had no effect on the genetic correlations under investi-
gation, other loci drive or antagonize the relationships 
between male and female fertility. The identification of 
driver and antagonizing loci creates opportunities to fur-
ther understand complexities, synergism, or trade-offs 
between quantitative traits. For example, correlations 
estimated from SNP effects have allowed researchers to 
construct gene networks [46]. Thereby, these types of 
approaches could contribute to linking genotype with 
phenotype.

The two beef cattle populations investigated in this 
study are distinct in terms of their genetic composition. 
Brahman (BB) cattle are typically of Bos indicus ori-
gin whereas TC beef cattle emanated from the crossing 
between Bos indicus and Bos taurus breed [50]. Despite 
these differences, we found that a considerable number 

of annotated genes and QTLs driving trait correlation 
overlaps across breeds, although with variations in the 
size of SNP effects. This corroborates the findings of 
Bolormaa et al. [51], where a substantial number of QTLs 
were found segregating in Bos indicus and composite 
cattle using the same dataset. In this present study, the 
top and most significant genomic signal driving trait cor-
relation across all pairwise traits in BB were located on 
BTA14. The significant region contains a widely known 
and well-characterized QTLs, including the PLAG1 gene, 
reported to be associated with growth and reproductive 
traits in our populations and other studies [37, 38, 39, 40, 
41, 52]. In TC however, the top signal differs across traits 
and mostly spread across two or three chromosomes, 
although with considerable number of overlaps with BB. 
This could be partly due to the variations in the architec-
ture of composite breed [53]. The genome of composite 
breeds usually contains new haplotypes emerging from 
generations of crossbreeding. Moreover, the contribution 
of the founder populations on chromosomes and specific 
genomic regions are usually unevenly distributed, which 
most likely shapes the genome of composite breeds [53]. 
In short, differences between BB and TC are likely to 
impact the results of our analyses. Breed differences are 
expected, and so when two breeds share a similar result, 
it enhances our confidence in calling significant windows 
for the interplay between male and female fertility traits.

Most genomic regions antagonizing the genetic cor-
relations between male and female fertility traits were 
located on chromosome X. Gene expression on chro-
mosome X differs across-sex, resulting in genomic 
sexual conflict [54, 55, 56]. Genes in these antagonizing 
regions include PO1FB, ZNF711, APOOL, HDX, DACH2, 
FAM133A, among others. These genes are associated 
with different disorders including infertility, reproductive 
deficiencies, primary ovarian failure [57, 58, 59]. When 
some of these genes are over-expressed, it can dysregu-
late the cristae morphology of the mammalian mitochon-
dria [60]. Understanding how these antagonizing genes 
interact to influence (in)fertility could help improve the 
reproductive potentials of beef cattle.

In animal production, more research is carried out on 
milk production-related traits, thereby creating large 
proportion of records for these traits in the cattle QTL 
database. These volumes of records can create a bias in 
the QTLs representativeness [31]. The QTL enrichment 
analysis allows testing the significance of the QTL rep-
resentative using chromosome-wide approach to detect 
specific genomic region with many QTLs for a specific 
trait. For example, the driver regions for AGECL vs 
IGF1b in chromosome 14 (BB cattle) co-locate with 33 
different QTLs for economically important traits. The 
recurrent association of BTA14 with multiple traits could 
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suggest complex genetic mechanisms such as pleiotropy, 
epistasis, hitchhiking effects, linkage disequilibrium etc., 
regulating these chromosomal regions [61, 62]. Under-
standing these complex mechanisms within BTA14 could 
inform how these important regions are used in genomic 
selection for fertility traits, and hopefully avoiding antag-
onistic effects on other traits.

Another interesting result from this study is the shared 
biology between the two breeds relative to the traits 
under study. Despite breed differences, the enriched 
reproductive QTLs driving the genetic correlations 
between male and female fertility are the same for the 
two cattle populations. Most of the enriched QTLs are 
related to reproductive traits measured early life. A pos-
sible explanation could be that the reproductive pheno-
types shared common fundamental biology in the two 
populations. For the antagonizing regions, however, most 
of the reproductive QTLs were breed specific depending 
on the trait pair. Perhaps, this could be partly explained 
by the diverse genetic composition of the two breeds. 
Understanding the genomic architectures driving these 
early-in-life male and female fertility traits and their 
known genomic antagonisms could foster effective selec-
tion for both traits in tropical breeds [63, 64].

Leveraging the directionality of gene effects from 
our method with IPA knowledge base, several biologi-
cal pathways known to be involved in reproduction (i.e., 
studied trait) were significantly enriched for all pairwise 
traits investigated across the two breeds. These pathways 
include sperm motility, estrogen receptor signaling, p38 
MAPK signaling, GnRH signaling, cAMP-mediated sign-
aling, AMPK signaling,  and androgen signaling, among 
others. Although IPA provided information about the 
activation or inhibition state for the enriched canoni-
cal metabolic pathways with the use of the r estimates 
in place of the gene expression values, we are not sure if 
these pathways were being activated or inhibited since 
we don’t have information about the expression values 
of the genes in these pathways. For example, Rho GDP 
Dissociation Inhibitor (RHOGDI) pathway was the only 
significant signaling pathway found to be inhibited across 
breeds in all pairwise traits investigated using IPA com-
parison analysis. Numerous studies have also reported 
that the RHOGDIs protein are involved in sperm move-
ment, sperm capacitation and acrosome reaction, a pro-
cess that is critical to occur for the sperm to interact and 
penetrate the egg for fertilization to take place [65, 66, 
67]. The knockout of any of the RHODGI genes could 
results in impaired spermatogenesis in male, implanta-
tion problem in females and more severe phenotypes 
with additional immunological defects [68, 69, 70]. Nota-
bly, low reproduction performance is one of the major 
challenges facing beef producers in Northern Australia 

[71, 72]. Reproductive wastage is usually common, which 
is often a result of pregnancy failure and calf mortal-
ity [73, 74]. Given the role of the RHODGI pathway in 
reproduction, future studies could use gene expression 
data to investigate the genes involved in these pathways 
as a candidate region for infertility in cattle since we only 
use the r estimates in this study.

Finally, the CS methodology is not without limita-
tions. CS can only analyse local correlations between two 
phenotypes, unlike LAVA that offers the opportunity to 
identify local genetic correlations across several traits. As 
always, using a larger sample size could result in better 
estimates of SNP effects, which might impact in the CS 
windows significance. As it stands, the CS uses GBLUP 
solutions of SNP effects to account for genotype co-var-
iance. There are other methods that could be useful in 
this framework, such as the Bayesian alphabet [49, 75]. 
Bayesian methods such as BayesR provide precise esti-
mates of SNP effects that might shrunk less than those 
from genomic BLUP analyses and might fit the genetic 
architecture of some traits better [76, 77, 78]. We aim to 
expand the CS framework to multiple traits and to Bayes-
ian approaches in our future work. This goal is beyond 
the scope of the current study.

Conclusion
Overall, the framework developed in this study extends 
our knowledge about the regions driving and antago-
nizing correlations between quantitative traits. These 
regions confirmed the polygenic nature of the traits being 
studied and pointed to genes of interest. Most of these 
genes co-localized with known QTLs related to milk pro-
duction and fertility traits, especially puberty. While the 
enriched reproductive QTLs driving the genetic corre-
lations between male and female fertility were found to 
be same for both cattle populations studied, the antago-
nizing regions were population specific and were mostly 
mapped to chromosome X. These suggest regions of the 
chromosome X for further investigation into the trade-
offs between male and female fertility. Although the 
methodology was applied to cattle phenotypes, using 
high-density SNP genotypes, the general framework 
developed can be applied to any species or traits, and it 
can easily accommodate genome sequence data.

Materials and methods
Traits, genotypes and estimated genetic correlations
The traits used to demonstrate this methodology are 
a subset of traits from our previous study [29], where 
bivariate genetic correlations were estimated between 7 
male and 6 female early-in-life reproductive phenotypes 
in two independent tropical beef cattle populations (BB 
and TC). The two female traits selected for this study 
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are age at detection of the first corpus luteum (AGECL, 
days) and cows’ blood concentration of insulin growth-
factor 1, measured at 18 months of age (IGF1c). Only 
one male trait was selected: the blood concentration of 
insulin growth-factor 1, measured at 6 months of age 
(IGF1b). The selected traits consisted of ~1000 individu-
als measured precisely through frequent ovarian scan-
ning, i.e., AGECL and laboratory assay i.e., IGF1b and 
IGF1c. These traits are important in beef cattle fertility, 
especially during pubertal development. The estimated 
global genomic correlations between the traits listed 
above in each population using high-density SNPs have 
been reported in our previous study [29]. The estimated 
genomic correlations and their corresponding standard 
error (S.E), heritability of each trait, number of SNPs 
and number of animals in each population are provided 
in Additional file 6 (Table S20). The traits were selected 
because they had significant estimates of genomic cor-
relation (i.e., traits with standard error (S.E) less than 
half of the size of the correlation) and different strength 
or direction of genetic relationships (i.e., negatively, and 
positively correlated traits).

Overview of methods
For each trait considered in the two beef cattle popula-
tions, we estimated the genomic breeding values (GEBVs) 
of individuals using the genomic best linear unbiased 
prediction GBLUP model implemented in GCTA [79]:

where y is the vector of phenotypes, X is the incidence 
matrix of fixed effects, b is the vector of fixed effects, Z 
is the design matrix assigned to GEBV, a is the vector of 
GEBVs for each animal, and e is the vector of residuals. 
Vectors a and e are assumed to follow a normal distribu-
tion, thus a ∼ N (0, Gσg

2⁠) and e ∼ N (0, Iσe
2) ⁠. The general 

solution of the mixed model equation is in the form:

Here, G− 1 is the inverse matrix of the variance-covar-
iance matrix of random effects, which indicates the 
SNP-SNP variance-covariance matrix i.e., the GRM 
and was constructed following Method 1 of VanRanden 
[80]. α is the shrinkage factor, calculated as ratio of the 
residual variance (σe

2) to the additive variance (σg
2). The 

full details of the fixed effects used in the model have 
been reported in our previous study [29]. For AGECL, 
the contemporary groups (i.e., cohort of animals born 
in the same year and raised together under the same 

(1)y = Xb+ Za + e

(2)

(

X’R−1X X’R−1Z

Z’R−1X Z’R−1Z+G−1
α

)(

b
a

)

=

(

X’R−1Y

Z’R−1Y

)

management conditions) were used as the fixed effect. 
For IGF1c and IGF1b, the contemporary groups and the 
age of animals at the time if measurement were used as 
fixed effect. We used the first two principal components 
in addition to the GRM to account for the, quite varied, 
breed composition in the TC breed, for these traits.

Following the estimation of GEBVs for each animal in 
each trait, we then back-solved these GEBVs to obtain 
SNP effects for all chromosomes following the method 
illustrated by Strandén and Garrick [81];

Where û is the vector of estimated SNP effects; m is the 
number of SNPs; pj is the allele frequency of the second 
allele of the jth marker; X is a matrix with gene contents 
for all markers; G is a genomic relationship matrix and â 
is a vector of GEBVs.

The estimation of GEBVs used a GBLUP method, a 
mathematical transformation of SNP BLUP [82], which 
explicitly fits the unscaled correlation matrix among 
the SNPs [80, 83, 84], in other words, the LD matrix 
among the SNPs. The SNP effects were then obtained 
by back-solving as per eq. (3). The solution of SNP 
effects with this approach intrinsically accounts for 
LD among SNPs [82, 85, 86] and the effect of a QTL 
is likely distributed across all SNPs that have a non-
random association with the QTL [87, 88]. As a result, 
the SNP effects are not biased by LD and resulting 
effect sizes can be considered independent. These SNP 
effects has been used in GWAS to get insight into the 
genetic architecture of traits [89, 90] and to estimate 
direct genomic breeding values (DGV) based on small 
genomic regions, termed ‘local DGV’ for quantitative 
trait loci mapping [91, 92].

Using a chromosome-wide approach, we divided the 
SNP effects on the same chromosome into small slid-
ing windows of 500 SNPs each and then estimated the 
local correlation (r) between traits as being the correla-
tion between the 500-SNP effects estimated for trait A 
and the 500-SNP effects estimated for trait B. We then 
moved 100 SNPs further from the start of the previous 
window to select the next 500-SNP window, which par-
tially overlapped with previous window, hence producing 
sliding windows that were 100 SNPs distant from the pre-
vious window. This was repeated for each trait pair, and 
for each chromosome, in a chromosome-by-chromosome 
approach.

For mathematical illustration, the r between the first 
trait (x) and second trait (y) of length N is defined as 
follows:

û =
1

m
j=1 2pj(1− p)

X ′G−1â
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Where xi and yi denote the ith SNP effects of x and y 
across all chromosomes. Thus, each 500 SNP effects of 

r =

N
∑

i=1

(xi − x)
(

yi − x
)

√

[

N
∑

i=1

(xi − x)2
][

N
∑

i=1

(

yi − y
)2

]

the 100 sliding window r estimates between x and y can 
be formalized as below;

r[j] =

ji
∑

i=j

(xi − x)
(

yi − x
)

√

√

√

√

[
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∑

i=j
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][
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(
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Fig. 6  The graphical illustration of the sliding window framework. The framework involves 2 steps. Step 1 start from the estimation of genomic 
breeding values to the obtainment of SNP effects for each pairwise trait. Step 2 start from the estimation of 500-SNP effects in a chromosome-wide 
approach to the obtainment of the correlation estimate in a 100-sliding window
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Where j ∈ [0, N – K + 1] is the start point of each win-
dow, K is the window length and ji = j + K-1. The window 
is then shifted 100 SNP effects away from the start of 
the previous window and a new r is computed for each 
shift yielding a new estimate for each chromosome. The 
resulting r estimates for all the chromosomes combined 
were denoted as W1….Wn. The graphical illustration of 
this framework is presented in Fig. 6.

Depending on the global correlation observed between 
the traits considered, the driver and antagonizing windows 
can be deduced. In this study, AGECL and IGF1b were 
negatively correlated. Hence, the driver windows were win-
dows with significant and negative r estimates, while the 
antagonizings were windows with significant positive r esti-
mates. For the positively correlated relationship between 
IGF1c and IGF1b, the driver windows were windows with 
significant and positive r estimates and the antagonizings 
were windows with significant and negative r estimates.

To showcase that the SNP effects from the back-solve 
approach are not biased by LD, we pruned the geno-
types data of each breed based on pairwise LD to obtain 
a pruned subset of SNPs that are in approximate linkage 
equilibrium (LE) using PLINK v.19 [93]. The LD based 
SNP pruning method was applied with a window size of 
500 SNPs, shifting the window by 100 SNPs at the end of 
each step and removing SNPs with LD > 0.5. The result-
ing pruned genotypes were then used to re-run the CS 
methodology as described above.

Identification of significant windows
Significant window for each r estimate were obtain using 
Fisher’s Z method [94]. Firstly, we performed permuta-
tion test by randomly reshuffling the SNP effects in each 
window across all the chromosomes in 10,000 iterations 
(p1…p10000) for each trait. Subsequently, we estimated 
correlations for 100-sliding windows of 500-SNP effects 
for each iteration in each window between the two traits 
as described above. We then estimated the mean of the 
permutation distribution of the r estimates across all the 
iterations to obtain a single value (rp) for each window. 
Next, the significance between the real estimate r and rp 
for each window was determined by Fisher’s Z-statistic: 
for r and rpZr =

1
2
ln

(

1+r
1−r

)

 and Zrp =
1
2
ln

(

1+rp
1−rp

)

 , respec-

tively. This allowed for normal distribution and facilitated 
the calculation of standard error-based Z-difference 
between correlation coefficient of both r and rp i.e., Zr-rp:

Where n is the sample size of the SNP effects for 
each window, in our case i.e., 500. To retrieve the 

Zr−rp =
| Zr − Zrp |
√

1
n+3

+ 1
n−3

corresponding P-values for each window, we estimated 
the cumulative distribution function for Zr-rp while 
accounting for a two-tail test. The significance level was 
then set at Bonferroni-corrected P-value < 0.05. As a 
result, significant windows were selected for the drivers 
and antagonizings genomic regions for each trait pair. 
Windows that were not significant were tagged “neutral 
windows” i.e., windows with no effect on the trait pairs. 
Finally, the r estimates of the significant windows for the 
driver and antagonizing regions were ranked from top 
to bottom in percentage (%). The rank values were used 
solely for the purpose of subsequent downstream analy-
ses, i.e., pathway analyses. The ranking was done sepa-
rately for the driver and antagonizing windows for each 
pairwise trait investigated in each population.

Performance comparison with other methods
To showcase the performance of CS, we compared the 
results from CS for each trait pair in the two popula-
tions with the results SUPERGNOVA and LAVA. Both 
SUPERGNOVA and LAVA are tools used to estimate 
local genetic correlation between complex traits in 
human using GWAS summary statistics.

For illustration, consider two traits Y1 and Y2 with 
sample size n1 and n2, respectively. The standardized 
trait values of Y1 and Y2 follows the linear model below: 
Y1 =

∑i
i=1 X iβ i + ǫ and Y2 =

∑i
i=1 Ziγ i + δ . The Xi and 

Zi are standardised genotype matrices and βi and γi are 
the vector of joint genetic effects in region i. ϵ and δ are 
the error terms.

SUPERGNOVA assumes the vector of joint genetic 
effect for the traits to be random and follows a multivari-
ate normal distribution. The genetic covariance (p) 
between the two traits in region i is then estimated by 
minimizing the distance between the empirical covari-
ance of Z scores [25]. LD matrix for region i are estimated 
from an external reference panel (e.g., the 1000 Genomes 
Project using LDdetect [25, 95]. To account for sample 
overlap, the first Ki eigenvectors, which is determined 
adaptively in SUPERGNOVA, are used to transform and 
decorrelate Z scores in any given region i. Subsequently, 
local genetic covariance in each region is estimated using 
a weighted least squares regression [25]. Finally, local 
genetic correlation in a region i is estimated by pi

√

h21i
h22i

 , 

where pi is the local genetic covariance and h21i and h22i are 
the heritability estimates of trait 1 and 2 at the region i.

In contrast to SUPERGNOVA, LAVA assumes the 
vector of joint genetic effects βi and γi for the two traits 
to be fixed rather than random [24]. To estimate the pi, 
LAVA apply Method of Moments approach [96] using 
the computed standardize principal components and the 
matrix of the genetic effects for a given region i. Thus, 
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LAVA differs from SUPERGNOVA in both the underly-
ing model assumption and the parameter estimation [24]. 
Finally, local genetic correlation in a region i is estimated 
as the ratio of scaled covariance of the genetic compo-
nents for trait 1 and 2 to the square root of the scaled 
variance of the genetic component of trait 1 and trait 2 in 
that region.

For these comparisons, we performed a single-trait 
GWAS for each of the trait to obtain the summary sta-
tistics data to be used for SUPERGNOVA and LAVA. 
Instead of using independent LD blocks as described in 
the two methods, we partitioned each chromosome to 
align with our sliding window methodology of 500 SNP 
effects with 100-sliding windows for equal comparison. 
Where applicable, we used the genotype data se external 
reference panel. To ensure that all loci in LAVA were ana-
lysed irrespective of whether they are signalled or not, 
we set the univariate threshold to 1 and use the default 
param.limit of 1.25.

Gene and Quantitative traits loci (QTL) annotation
The significant windows along with their correspond-
ing chromosome coordinates, r estimates and rank val-
ues for the driver and antagonizing regions that passed 
the specified threshold criteria following the Fisher’s Z 
method in BB and TC were selected. The selected win-
dows were used for gene and QTL annotation using R 
package GALLO: Genomic Annotation in Livestock 
for positional candidate Loci (https://​CRAN.R-​proje​
ct.​org/​packa​ge=​GALLO) [31]. The .gtf annotation file 
corresponding to the bovine gene annotation from 
ARS-UCD1.2 assembly and the .gff file with the QTL 
information from cattle QTL Database (https://​www.​
anima​lgeno​me.​org/​cgi-​bin/​QTLdb/​index [97, 98]), were 
used for gene and QTL annotation, respectively [31]. 
The two files use the same bovine reference genome 
(ARS-UCD1.2) to map the gene and QTLs. A remark-
able advantage of GALLO is that the software retains 
all the information present in the input file when pro-
ducing the output file. As a result, genes within each 
window can retain their r estimates and the rank values 
specific for their window.

The number and percentage of genes and QTLs anno-
tated within a population (BB or TC) and the overlaps 
across populations (BB and TC) were investigated. Fur-
thermore, we examined the QTLs representativeness 
and diversity to explain better the genomic content of 
the significant windows for the driver and antagoniz-
ing regions. Hence, the visualization of the percent-
age of cattle QTL classes from the cattle QTL database 
(i.e., milk, reproduction, production, meat and carcass, 
health and exterior) were plotted using a pie chart by 
GALLO (27).

QTL enrichment analysis
To further test the significance of the QTLs, a within 
population QTL enrichment analysis was conducted 
using a chromosome-based approach. The QTL 
enrichment analysis, using all the QTL informa-
tion annotated within the significant windows for 
the driver and antagonizing regions, was performed 
using the qtl_enrich function from GALLO [99, 100]. 
Briefly, the observed number of QTLs for each trait 
in each annotated chromosome were compared with 
the expected number using a hypergeometric test 
approach in a 1000 iteration rounds of random sam-
pling from the entire cattle QTL database. With this 
approach, a P-value for the QTL enrichment status 
of each annotated QTLs within the significant win-
dows was estimated. These estimated P-values were 
corrected for multiple testing using a false discovery 
rate (FDR) of 5%. In addition, we used chord plots to 
reveal the relationships between the two breeds for the 
enriched reproductive QTLs based on the driver and 
antagonizing genomic regions.

Functional enrichment analysis
The annotated genes along with their corresponding 
r estimates and rank values for the significant driver 
and antagonizing windows for each pairwise trait in 
BB and TC populations were subjected to enrichment 
analysis using the commercial QIAGEN’s Ingenuity 
Pathway Analysis (IPA; v.8.8, http://​www.​ingen​uity.​
com). The IPA allows identifying overrepresented bio-
logical mechanism, metabolic pathways, and diseases 
and biological functions that are highly relevant to the 
traits of interest using the directionality of the sub-
mitted gene list [101, 102]. From out outcome of our 
methodology, genes within each window come with 
their directionalities, in this case, r estimates. Thus, 
we leveraged on the directionality of each gene by 
allowing the driver genes to be upregulated and antag-
onizing genes to be downregulated.

Summarily, a merged dataset containing gene iden-
tifiers that were significant for both the driver and 
antagonizing windows for each pairwise trait in each 
population and their corresponding r estimates and 
rank values were uploaded into IPA. The r estimates 
were used as the “Expr Log Ratio” and the rank values 
(see identification of significant windows in methods) 
were used as P-values. The IPA software recognizes 
gene with positive signs (+) for “Expr Log Ratio” as 
upregulated genes and negative sign (−) as downregu-
lated genes. We aim to allow the driver gene lists to have 
positive values for “Expr Log Ratio” and the antagoniz-
ing gene lists to be negative. Where this is not achiev-
able based on the original r estimates (i.e., AGECL vs 

https://cran.r-project.org/package=GALLO
https://cran.r-project.org/package=GALLO
https://www.animalgenome.org/cgi-bin/QTLdb/index
https://www.animalgenome.org/cgi-bin/QTLdb/index
http://www.ingenuity.com
http://www.ingenuity.com
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IGF1b, where the drivers are negative and the antago-
nizers are positive), we reversed the sign for the driver 
and antagonizing genes to meet this objective.

Of note, IPA can only analyse a maximum of 8000 
gene list. In most cases, the merged gene list for each 
trait pair  in each population is often > 8000. Hence, 
we used the rank values as the cut-off to select the top 
~ 80% genes from the driver and antagonizing gene 
list for the pathway analyses whenever the gene list 
is more than 8000. Using a proportion of the gene list 
to infer biological pathways might result in the loss of 
some important biological information relevant to the 
trait of interest. We analysed the driver and antagoniz-
ing gene list separately for each pairwise trait in each 
population to ensure no important information was 
lost because of the cut-offs. Further, we compare the 
result of the separate analyses with the merged gene 
list from the ~80% cut-off.

The pathway analysis was conducted using the 
“Core Analysis” function implemented within IPA. 
In this analysis, associations were calculated using 
direct and indirect relationships among the gene lists. 
At first, the gene lists were mapped to human gene 
data. Genes without an associated gene symbol or 
gene annotation were subjected to an annotation by 
homology using BioMart application available in the 
Ensembl database (http://​www.​ensem​bl.​org/​bioma​rt/​
martv​iew/) [103, 104]. With this approach, we only 
considered non-annotated genes with percentage 
of identity ≥80% with human homolog. Genes with 
duplicate gene names were removed from the list. The 
final datasets used for the IPA analyses are presented 
in Additional file 11 (Table S29-32). Finally, the “Core 
Analysis” was used to identify canonical metabolic 
pathways enriched at Benjamini–Hochberg corrected 
P-values (B-H-P-value) of p < 0.01.

Code availability
CS was implemented as a Perl package, which is publicly 
available at the GitHub repository (https://​github.​com/​
optim​ist03​72/​Corre​lation-​Scan). Analysis script and the 
exact package version (v0.05) used to generate the main 
results can be downloaded from https://​github.​com/​
optim​ist03​72/​Corre​lation-​Scan.
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