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ABSTRACT: The use of multivariate analysis techniques, such
as principal component analysis−inverse least-squares (PCA−
ILS), has become standard for signal isolation from in vivo fast-
scan cyclic voltammetric (FSCV) data due to its superior noise
removal and interferent-detection capabilities. However, the
requirement of collecting separate training data for PCA−ILS
model construction increases experimental complexity and, as
such, has been the source of recent controversy. Here, we
explore an alternative method, multivariate curve resolution−
alternating least-squares (MCR−ALS), to circumvent this issue
while retaining the advantages of multivariate analysis. As
compared to PCA−ILS, which relies on explicit user definition
of component number and profiles, MCR−ALS relies on the
unique temporal signatures of individual chemical components for analyte-profile determination. However, due to increased
model freedom, proper deployment of MCR−ALS requires careful consideration of the model parameters and the imposition of
constraints on possible model solutions. As such, approaches to achieve meaningful MCR−ALS models are characterized. It is
shown, through use of previously reported techniques, that MCR−ALS can produce similar results to PCA−ILS and may serve as
a useful supplement or replacement to PCA−ILS for signal isolation from FSCV data.

Fast-scan cyclic voltammetry (FSCV) has several advantages
over other electrochemical techniques for studying in vivo

extracellular neurotransmitter dynamics, particularly the
selectivity afforded by analyte voltammetric profiles. Full
realization of this, however, demands multivariate data
analysis.1−3 Several methods have been reported, including
partial least-squares and elastic net regression.4,5 Among these,
the factor analysis-based principal component analysis−inverse
least-squares regression (PCA−ILS, elsewhere referred to as
principal component regression, or PCR, but written in full
here for consistency in abbreviation), introduced for FSCV
analysis by our lab, has been shown as a reliable approach for in
vitro and in vivo analyte-signal isolation from multicomponent
data.6−8 Further, its development for FSCV analysis has
resulted in implementation of model-validation procedures,
giving confidence in model-generated estimates.9,10 However, a
primary drawback has been the necessity of separate training-
set construction for model generation. Chemometrics and
previous research suggest training sets must be generated under
the experimental conditions for proper model validation and
confidence in the concentration estimates.11−14 This require-
ment adds to experimental complexity, and the degree to which
unrepresentative training data affects model predictions has
been the subject of recent debate.15−17 Thus, a method that
relaxes this requirement should be of interest to the field.
Here, we explore an alternative method, multivariate curve

resolution by alternating least-squares (MCR−ALS), to resolve

overlapping FSCV signals. Like PCA−ILS, the data are
modeled as a linear combination of appropriately scaled
component signals. However, whereas PCA−ILS model
construction typically relies on user-isolated, single-component
training data for spectral definition, MCR−ALS can use raw
experimental data itself to define component spectral and
concentration profiles, requiring only definition of the number
of components. For this, the unique temporal signature of
components is used for their identification and isolation.
MCR−ALS has been successfully used in the analysis of data
derived from a number of analytical techniques, including mass
spectrometry,18−20 spectroscopic techniques,21−23 and slow-
scan voltammetry.24−27 Thus, this opens the possibility of
circumventing the need for explicit training-set construction.
However, due to increased model freedom, important

concerns must be addressed before MCR−ALS deployment.
First, the aforementioned applications relied on generation of
second-order data (e.g., data separated along two variables).
Limited success is seen with poorly resolved signals.28

Resolution is often achieved using separation techniques (e.g.,
liquid chromatography) or controlled independent-variable
manipulation (e.g., concentration). For FSCV, second-order
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data (i.e., current as a function of potential and time) is
typically collected. However, temporal-signal separation, and
thus the technique’s potential, must rely on naturally occurring
processes.
Second, MCR−ALS solutions are susceptible to a number of

ambiguities, resulting in mathematical solutions that may not
have correspondence to meaningful chemical information.29,30

The most relevant of these are intensity and rotational
ambiguities. Intensity ambiguity refers to the fact that MCR−
ALS only provides the shapes, and not absolute scales, of
spectral and concentration profiles. However, in the analysis of
FSCV data, PCA−ILS suffers from similar ambiguities, and this
problem can be addressed through normalization of obtained
voltammetric profiles and their subsequent scaling by
previously determined calibration factors. Rotational ambiguity,
referring to the fact that the data can be fit by an infinite
number of combinations of voltammetric and concentration
profiles, is a more serious issue. This requires the imposition of
constraints, derived from prior knowledge of meaningful
solution characteristics, on the MCR−ALS fits. Commonly
employed constraints include non-negativity of spectral- or
concentration-profile values, peak unimodality, and hard-
modeling approaches using known equations that govern the
experimental system.29,31 For instance, in the previous study of
electrochemical data, parametric equations for peak-shape
definition and closure (i.e., constant total species concen-
trations) constraints, as well as non-negativity and unimodality
constraints, were used.24 Background-subtracted FSCV data,
however, is more limited in the information that can define the
subset of meaningful fits. For instance, due to the relative
nature of measurements, negative values can be found in
spectral and concentration profiles. Further, the equations
governing the observed voltammetric behavior are not
sufficiently well-defined to use as strict constraints. Thus, a
characterization of the subset of reported constraints that may
be used is needed to ensure their sufficiency for robust MCR−
ALS deployment for FSCV data analysis.31−36

In this study, the potential of MCR−ALS for the analysis of
FSCV data is explored and compared to the performance of
PCA−ILS. First, the basic implementation of the method is
described. Next, the method is characterized in vitro to
determine the conditions that enable successful signal isolation.
This is followed by in vivo comparison of PCA−ILS and
MCR−ALS. It is shown that the method, given appropriate
constraints, is capable of producing similar results to PCA−ILS
without the need for separate training data. Further, methods to
extend the utility of the technique and for model validation
(i.e., residual analysis) are explored.

■ EXPERIMENTAL SECTION
Instrumentation and Software. T-650 type, cylindrical

carbon-fiber microelectrodes (Thornel, Amoco Corporation,
Greenville, SC; pulled in glass capillaries and cut to 75−125 μm
exposed lengths) were used in experimentation. After the
microelectrodes were pulled, the seals of the electrodes were
dipped in epoxy (EPON Resin 828, Miller-Stephenson,
Danbury, Connecticut) mixed with 14% w/w m-phenylenedi-
amine (Sigma-Aldrich, St. Louis, MO) at 80 °C, briefly washed
with acetone, and heated at 100 °C (5 h) and then 150 °C (at
least 12 h).
Data were acquired with a commercial interface (PCI-6052,

16 bit, National instruments, Austin, TX) with a personal home
computer and analyzed using locally constructed hardware and

software written in LabVIEW (HDCV, National Instruments,
Austin, TX).37 Unless otherwise noted, triangular excursions of
the working electrode potential (−0.4 to 1.3 V vs Ag/AgCl)
were made at a scan rate of 400 V/s and repeated at a
frequency of 10 Hz. Measurements were conducted inside a
grounded Faraday cage to minimize electrical noise.

Electrochemical Experiments. Flow-injection analysis
experiments were performed using a syringe pump (Harvard
Apparatus, Holliston, MA) operated at 0.8 mL/min using
PEEK tubing (Sigma-Aldrich) connected to a pneumatically
controlled six-port injection valve (Rheodyne, Rohnert Park,
CA). All solutions were prepared in TRIS (2.0 mM Na2SO4,
1.25 mM NaH2PO4·H2O, 140 mM NaCl, 3.25 KCl, 1.2 mM
CaCl2·2H2O, 1.2 mM MgCl2·6H2O, and 15 mM Trizma HCl)
and adjusted to pH 7.4 with NaOH as necessary.

In Vivo Measurements. Male Sprague−Dawley rats from
Charles River (Wilmington, MA, USA) were housed
individually on a 12/12 h light/dark cycle. Animal procedures
were approved by the UNC-Chapel Hill Institutional Animal
Care and Use Committee (IACUC). Surgery was performed on
the animals in the manner described previously for intracranial
self-stimulation (ICSS) experiments and given a minimum of 3
days of recovery prior to training.38 Rats were trained in ICSS
using a fixed-ratio 1 or fixed-interval 5 schedule.39

Data Analysis. Data and statistical analyses were performed
in GraphPad Prism 6 (GraphPad Software Inc., La Jolla, CA),
LabView (National Instruments, Austin, TX), and MATLAB
(Mathwork, Natick, MA). Convergence was defined as
achievement of differences in consecutive residual values of
0.1% or the performance of 200 iterations, whichever was
achieved first.

■ THEORY
Multivariate Curve Resolution−Alternating Least

Squares. The theory of PCA−ILS has been previously
discussed.16 Here, we address the general theory behind
MCR−ALS. As in PCA−ILS, the “bilinear” model is
used.28,32,36 That is, each measurement (i.e., individual current
measurements and entire voltammograms) is assumed to be a
linear combination of the independent contributions of analytes
and noise

= +D CS ET (1)

where D is the (r × c) data matrix containing c spectra
consisting of r individual measurements (e.g., current measure-
ments in a voltammogram), C and S are (r × l) and (c × l)
matrices containing the l pure concentration profiles and
spectra, respectively, and E is the (r × c) error matrix. This
equation is visually shown in Figure 1.
First, the model parameters and inputs, namely, the number

of expected components and the initial estimates of the either
the voltammograms or concentrations, must be defined.32,40

There exist many ways to achieve the former, and a comparison
of the effectiveness of a large number for LC−NMR data
analysis has been reported.41 One class of techniques relies on
factor-based analysis of the experimental data, including
evaluation of PCA-generated singular values (e.g., Malinowski’s
F-test) or other PCA-based methods (e.g., evolving-factor
analysis, or EFA, and target-factor analysis).42−48 Additionally,
orthogonalization methods (e.g., orthogonal-projection ap-
proach, or OPA), which select the most dissimilar spectra
from the data, may be used, and have been shown to perform
favorably relative to Malinowski’s F-test in HPLC-DAD data
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analysis.49,50 Alternatively, this can be set through a priori
knowledge or multiple fits with varying number of components
to yield meaningful solutions.31,32,40,51,52 For initial estimates of
either the voltammetric or concentration profiles, many of the
same methods apply. Otherwise, expected concentration or
spectral profiles or even the data themselves may be used as
inputs.36,40 Here, Malinowski’s F-test, which has been used
previously for FSCV, and the EFA and OPA techniques are
explored, the latter described briefly below.
With the model defined, eq 1 is solved using the alternating

least-squares (ALS) approach. This method iterates between
generating concentration or spectral estimates, given spectral or
concentration estimates, respectively. In its unconstrained form,
the following equations are used

= +C DSest est (2)

= +S C Dest est (3)

where the superscript + indicates the matrix pseudoinverse.
This process continues until a predefined threshold of
convergence, or a set number of iteration cycles, is reached.
If constraints are to be applied, this is done either through
direct alteration of the obtained estimates,40 the use of penalty
functions,36 or alternative means of regression.53,54 Addition-
ally, the experimental-data matrix is often pretreated by factor
analysis (e.g., PCA) itself prior to fitting, as this reduces the
effect of noise.32,34 If this is done, the reconstructed data set
using only significant principal components (D*) is used in lieu
of the original data matrix (D) in eqs 2 and 3. Such an approach
is particularly advantageous for low signal-to-noise data and is
used here.
Implementation of Soft Constraints Using Penalty

Functions. As mentioned before, FSCV data fails to meet the
criteria for the application of many commonly used constraints.
However, reference data may be incorporated to help define the
fits through equality constraints (i.e., spectral or concentration
estimates are forced to equal to values of reference data).55

Further, constraints can be enforced in a “soft” manner,
allowing deviations from the reference values through
incorporation of weighted penalty functions into the model.
Here, we use the P−ALS algorithm introduced by Gemperline
and Cash to realize this.36 While illustrated in detail in reference

34, in short, “soft” equality constraints with a complete set of
spectral reference data are implemented through modification
of the system of equations represented by (1) by addition of
the equivalent of the following

=w wS Href (4)

where Sref is the reference spectral matrix, H is diagonal matrix
of ones, and w is a scalar weighting factor that determines the
relative importance of this equation during the fitting
procedure. Note that the symbol for the weighting factor
here (w) is changed from that (λ) used by Gemperline and
Cash to avoid confusion with its use to represent eigenvalues,
used below and in previous work from our lab.47 The power of
this equation lies in its flexibility. Incomplete reference data
(e.g., one spectrum for a multicomponent system) can be used
by appropriately adjusting the H matrix. Further, the weighting
factor w can be used to tune how strictly this constraint is
enforced. Small values of w allow strong deviations from the
reference spectra, while very large values force strict adherence.
Of note, use of the k vectors, PCA model estimates of spectral
shape from training-set analysis, as reference spectra with this
P−ALS method and a high w (approaching infinity) would
produce the results obtained from PCA−ILS.

Methods for Model Initialization. Here, the methods
described above that were explored in this study for model
definition will be briefly covered with the exception of the
Malinowski’s F-test, which has been explored in detail in the
context of FSCV elsewhere.47

Orthogonal Projection Approach. The orthogonal-projec-
tion approach (OPA) relies on the iterative determination of
most dissimilar spectra in the data. For each iteration, every
spectrum (si) is compared to a normalized reference spectra set
(sref), first defined as only the mean data spectrum (s)̅. The
dissimilarity (di) is calculated as the determinant of the square
matrix formed by the product of a matrix Yi, which has sref and
si as its rows, and its transpose

=d Y Ydet( )T
i i i (5)

On the first iteration, the spectra (sref,1) with the highest
dissimilarity replaces s ̅ as the reference spectrum in Yi.
Dissimilarities are calculated again; however, the most
dissimilar spectrum with sref,1 is now added to Yi. This process
continues until a plot of the dissimilarity versus time (Figure
2B) shows no distinct peak or contains only random noise, or
there is redundancy in the reference shapes.

Evolving-Factor Analysis. For evolving-factor analysis
(EFA), PCA is performed on successively larger portions of
the data window, typically in the forward and backward
direction along the relevant variable (e.g., time). For
identification of the number of components (NC), an EFA
plot (logarithm of the eigenvalues vs time) is constructed
(Figure 2C) for the forward and backward analyses. In the
forward direction, an increase (moving from time 1 to T) in the
nth eigenvalue suggests the appearance of the nth analyte (e.g.,
the rise in the orange solid line at t ≈ 7 indicates the
appearance of dopamine in Figure 2C). In the backward
direction, an increase (moving from time T to 1) in the nth
eigenvalue is interpreted as the disappearance of the (NC − n +
1)th analyte, provided the analytes appear and disappear in
successive order. A rough estimate of the concentration profile
can be obtained by combining the forward and backward
analysis, taking the lower value of the two at any given time.

Figure 1. Graphical representation of the bilinear calibration model
(eq 1) with background-subtracted FSCV data. Above are shown the
dopamine (1) and pH (2) concentration traces. Below are shown the
dopamine (3) and pH (4) voltammograms.
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■ RESULTS AND DISCUSSION
In Vitro Evaluation of Dopamine-pH (DA-pH) Mix-

tures with MCR−ALS. First, the utility and limitations of
MCR−ALS for FSCV signal were assessed using data from in
vitro flow-injection analysis of the previously studied system of
dopamine and pH changes.15,16 Note that no attempt at
determining “true” concentration values will be made, as signal
isolation, not quantitation, is the focus here.
It was first verified that the technique successfully isolated the

signals from single-component solutions, which could be done
through unconstrained MCR−ALS. Various initialization
methods (current at the dopamine oxidation potential for
concentration, data spectra, and an OPA-generated spectra)
and use of PCA pretreatment were tried, and nearly identical
solutions were obtained (data not shown). Figure 3A shows an

example fit to data from flow-cell analysis of a 1.0 μM
dopamine bolus (initialized with the dopamine oxidation
current and untreated with PCA) compared to an experimental
dopamine CV and the current−time trace. It can be seen that
the MCR−ALS estimates are nearly identical to these
references, but have lower noise levels.
Next, the potential for MCR−ALS for separating DA-pH

mixtures was evaluated. As noted before, the success of MCR−
ALS is anticipated to be dependent on the temporal signal
separation. Thus, simulated mixture data were created from
independent injections (8 s duration) of dopamine and pH by
adding these data together with differing time delays between
the appearances of analyte signal. The performance of the
methods described in the Theory section for model definition
was evaluated using this data (Table S-1). Malinowski’s F-test
has been used in FSCV analysis in the context of rank selection
in PCA−ILS; however, abnormally high rank estimates were
obtained when large portions of the data matrix were analyzed,
similar to the results reported by Vivo-Truyols et al. in the
analysis of HPLC-DAD data.50 Visual inspection of the PCs
and PC-reconstructed data confirmed that these extra
components consisted of random noise (data not shown).
This may be due to the large number of voltammograms that
carry no chemical information in the in vitro data or issues
related to well-documented limitations and criticisms of the
method (e.g., the small number of degrees of freedom used in
calculation of the F-statistic and assumption of homoscedastic
and uncorrelated noise).47,50,56−58 Data-matrix truncation, and
also confidence-level increases, decreased the number of
predicted components; however, the results were inconsistent
and always greater than two. While not as readily automated,
the OPA and EFA approaches proved reliable indicators of the
number of components, correctly predicting two components
regardless of time separation. With regard to OPA, the most
dissimilar spectra identified in all analyses, except with no
separation, matched the pure DA and pH CVs present in the
data. With no separation, only DA-pH mixture voltammograms
were selected. However, the dissimilarity plots only degraded to
random noise after three CVs. EFA analysis correctly indicated
the time of appearance and disappearance for all cases, except

Figure 2. Evaluation of color plot with orthogonal-projection
approach (OPA) and evolving-factor analysis (EFA). (A) Color plot
with 8 s dopamine and pH injections, with onset separated by 6 s and
dopamine appearing first. (B) Dissimilarity plots determined from (A)
for the first (orange) and second (green) runs of OPA. The spectra
shown to the right are those selected by OPA for a given run (i.e., the
voltammograms at the time corresponding to the maximum
dissimilarity value). (C) EFA plot of logarithm of eigenvalues shown
for forward and backward analysis. Note the colors for the first and
second eigenvalues are swapped between the forward and backward
direction to aid in the interpretation detailed in the text (i.e., the same
colored lines for the forward and backward direction indicate the
appearance and disappearance of a given analyte).

Figure 3. Results of unconstrained MCR−ALS analysis of FSCV data
from a flow-injection analysis of a bolus of dopamine. Clockwise from
top left: Color plot representation of the background-subtracted data,
with time as the abscissa, the applied potential as the ordinate, and the
current in false color; dopamine CV during injection (orange) and
MCR−ALS estimate (black); current at the dopamine oxidation
potential as a function of time (orange) and MCR−ALS estimate
(black); color plot of the residual current after MCR−ALS analysis.
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again with no temporal separation. However, in that case, the
technique was able to detect subtle differences in the rate of
disappearance after injection to suggest two components.
These approaches are also advantageous, as they provide

information about the expected spectra (OPA) and concen-
tration traces (OPA and EFA, the latter more reliably) that can
be used for fit initialization. Since OPA is computationally
inexpensive, this was chosen as the initialization method. For
temporal separation greater than 8 s (complete injection
separation), OPA spectral initialization and unconstrained
MCR−ALS provided excellent agreement with the results
expected from the individual single-component runs. With
smaller separations, significant distortions appeared in the
solutions. For example, at separations of 2−7 s, the
concentration estimates had sudden artificial changes during
the periods of signal overlap, despite having similar spectral
profiles to those obtained from the single-component runs. At
separations of 1.5 s or less, DA-pH mixture voltammograms
were primarily obtained (as shown in Figure 4A for a 1 s
separation), likely due to rotational ambiguity. Thus,
constraints that could provide meaningful solutions were
explored.
One approach is the use of reference data, obtained

separately from the experimental data being analyzed. It is
worth noting that this library approach has been used with
cross-validated elastic net regression using in vitro data.
However, given that this reference data is not expected to be
perfectly descriptive of the experimental data, we sought to
explore the use of library reference data (here, the average of 10
DA and of 10 pH CVs obtained from separate experiments
using separate T-650 carbon fibers) with “soft” penalty
functions (P−ALS) for imposing loose equality constraints to
guide solutions. First, the effects of the “weighting” parameter w
on obtained solutions for single-component runs was
characterized. MCR−ALS fits to these were obtained with
various w values (w = 0 to 8), and the sum of the squares of the
residuals were determined. For both DA and pH data (Figure
S-1A), a smooth transition can be seen between two different
solutions, the unconstrained (w = 0) and that defined entirely
by the average library CV (large w). As expected, fits with large
w values had higher residual values, as the average CV is
unrepresentative of the data. The largest changes occurred
around w values of 1 for both data sets, as evidenced by the
derivative plot of the sum of squares of the residual with w
(Figure S-1B). The use of a pH library CV for fitting also lead
to considerably higher error, due to the larger variability seen
between pH CVs at carbon-fiber electrodes as compared to DA
CVs.15,47 Thus, the use of DA library reference CVs is preferred
to use of pH CVs. Additionally, the approach should not be
used with large weighting parameters, as these introduce
considerable error into the fits. However, ideally, these
constraints can be removed before the final fit is obtained.
This library P−ALS approach was used to analyze the DA-

pH mixture data. During the initial fit, soft constraints (wpH,
wDA = 1) were imposed on both analytes using the library CVs
as reference data until convergence was achieved. Then, since
the pH library is less reliable, the pH equality constraint was
lifted (wpH = 0, wDA = 1). The solution, using the previous fit as
the initialization, was again allowed to converge. Finally, the DA
equality constrained was lifted (wpH, wDA = 0), and the final
solution was obtained. The process was then repeated to ensure
overall convergence. The approach proved successful in
mitigating the issues seen with unconstrained MCR−ALS, as

highlighted for the 1 s separation data in Figure 4. The
unconstrained solution (Figure 4A) shows distortions in both
the concentration and spectral profiles. After imposition of soft
constraints on both analytes (Figure 4B), the spectral and
concentration profiles significantly improve; however, the sum
of squares of the residual values is over 9 times higher for this
constrained fit than the unconstrained fit. Removal of the pH
constraint (Figure 4C) leads to a better fit at the cost of fidelity
of the spectral shapes. Finally, the removal of both constraints
(Figure 4D) leads to improved spectral and concentration
profiles with an identical residual value as that of the original
unconstrained solutions.

Evaluation of In Vivo FSCV Data. MCR−ALS was then
evaluated using in vivo FSCV data obtained during intracranial
self-stimulation (ICSS) sessions (n = 25 rats, 1 session per rat
containing multiple, typically greater than 50, electrically
evoked dopamine transients). These data mainly contain
contributions from pH and DA, but are less well-defined and
noisier than the in vitro data. However, within a given

Figure 4. Successive fitting using P−ALS “soft” equality constraints for
analysis of simulated in vitro DA-pH mixtures (temporal separation of
1 s). (A−D) MCR−ALS spectral (left) and (concentration) estimates
for the initial unconstrained model (A), the DA/pH “soft” equality
constrained model (B), the DA-only “soft” equality constrained model
(C), and the final unconstrained model after successive iterations of
A−C. (D). The dashed lines indicate the concentration estimates for
the isolated runs for comparison.
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experiment, the presence of multiple electrically evoked
transients opens the possibility of using multiple data sections
for model definition. These data were originally analyzed using
PCA−ILS models built from training data collected during the
experiment, which served as a reference point for comparison.
First, the advantages of using multiple transients for model

definition were explored. Separate background-subtracted color
plots were obtained from a given experimental run and
concatenated together to form the data matrix for MCR−ALS
analysis. Figure 5A shows an example using three separate

transient windows. Unconstrained MCR−ALS spectral fits were
determined for increasing numbers of snippets, and the PCA−
ILS k vectors are shown for comparison. Analysis of only one
snippet provided a moderately accurate estimate of the DA
spectrum; however, the pH spectrum is only weakly
determined and both are considerably noisy (Figure 5B).
Increasing the number of snippets (Figure 5C,D) provided
increasingly good estimations of the underlying component
spectra, with improvements in the spectral shapes and noise.

The most computationally inexpensive application of MCR−
ALS relies on determining a subset of the experimental data for
model definition that is used to analyze the entirety.
Voltammetric profiles are anticipated to remain constant
throughout a given experimental session, and thus, the spectral
estimates were determined. Ideally, the training subset should
contain considerable contributions from all components
expected throughout the experimental data. Additionally,
signals should be resolved from one another, which may be
evaluated using analysis of EFA time-course estimates of the
analytes present in a given window. Single-analyte data subsets
can be used; however, care must be taken to ensure that all
analytes are represented in the training subset. Under-
representation of a given analyte can lead to poor estimates
of its spectral profile. Further, depending on data quality,
constraints, like the P−ALS equality approach, may be needed,
using either using single-analyte experimental CVs or a library
approach using separately collected data.
To test MCR−ALS performance, each experimental-data set

was analyzed to select a training submatrix to generate
dopamine and pH spectral-profile estimates, which were
subsequently used to analyze the other experimental data.
These results were compared to those obtained from PCA−ILS
using separate training data (Table 1). For each fit, the
correlation coefficient between the MCR−ALS and the PCA−
ILS estimates and the signal power of the difference between
the MCR−ALS and PCA−ILS estimates (their lack of
agreement, normalized to signal power of the PCA−ILS
estimates) were determined. Overall, there was good agreement
between PCA−ILS and MCR−ALS. In general, the estimation
of pH profiles differed more between the two techniques than
those for DA, and there was greater variability in the
performance of MCR−ALS for determining the pH profiles.
This was generally due to the difficulty in finding isolated pH
spectra within the ICSS data, given that electrical stimulations
were typically closely spaced, to use for model training.
However, no separate training data was used in this analysis,
and the collection and inclusion of even minimal amounts of
reference data collected separately from the experiment could
be expected to improve this performance.

Residual Analysis. One of the advantages of using higher-
order calibration models is the use of residual analysis for
interferent detection and evaluation of model applicability.
Thus, we sought to explore adoption of the residual-analysis
procedure introduced by Jackson and Mudholkar,59 currently
used in FSCV with PCA−ILS analysis, as a first step toward
establishing a means of model validation during the application
of a constructed model to other experimental data. During the
training phase, significant interferences can typically be
detected, through methods such as EFA and OPA or fit
distortion.
This residual-analysis procedure relies on calculation of an

experiment-specific Qα value, a threshold for residual-value
evaluation for each voltammetric measurement to determining
model suitability (Qt > Qα leads to model rejection for analysis
of that data) that is characteristic of the noise level.9 This is
done using PCA, identification of the significant components,
and error eigenvalue analysis (i.e., those associated with the
nonsignificant principal components). In PCA−ILS analysis,
this step is performed during spectral-profile definition through
training-data analysis. However, we sought to evaluate whether
the use of the experimental data itself could generate a suitable
estimate. For each experimental-data set, random sets of 5 s

Figure 5. Spectral fits for MCR−ALS analysis of increasing numbers of
electrically evoked dopamine transients. (A) Color plot showing three
separate transients joined together, with the arrows underneath
indicating the data windows used in subsequent MCR−ALS analysis.
(B−D) Spectral fits (solid lines) for dopamine (left) and pH (right)
for analysis of one (B), two (C), and three transients (D). PCA−ILS k
vectors for the two analytes are shown as dashed lines for comparison.
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windows (n = 6 windows/data set, 50 CVs per window, 25 data
sets) were obtained and analyzed with PCA to estimate Qα

using the eigenvalues of the nonsignificant components
identified by Malinowski’s F-test. Table 2 shows a summary

of these estimates, as well as those from PCA analysis of the
associated training-set data. Overall, moderate agreement
between the values obtained from analysis of training set and
experimental data was observed. Although there was a large
spread of the percent differences, the Qα values obtained from
the different experimental windows were consistent (average
relative standard deviation of 17.5%). The majority of cases
(60%) had lower Qα values obtained from experimental data
than from the training-set data, meaning that for these data, the
former approach generates more conservative Qα values.
Finally, one advantage of MCR−ALS as an exploratory

technique should be highlighted. In PCA−ILS, the number of
components is defined using a priori knowledge, and data that
fails residual analysis is thrown out. Further, residual analysis
reveals the presence of interferents but does not necessarily
provide robust information about the interferent spectra. With
MCR−ALS, should a set of data fail residual analysis, a
component can be added to the model, and MCR−ALS can be
performed to attempt to gather information on the nature of
the interferent. This advantage is highlighted in Figure 6. Here,
a DA-pH mixture (Figure 6A) is analyzed with both PCA−ILS
(using only a dopamine training set) and MCR−ALS with two
components. The PCA−ILS residual spectrum (Figure 6B)
does have general features resembling the reference pH k
vector; however, some of the current has been assigned as
arising from dopamine, resulting in a deviation in the residual
spectrum from a “pure” pH signal. Alternatively, the MCR−
ALS estimate (Figure 6C) gives a more robust estimate of the
interferent spectra, giving greater confidence in component
identification.

■ CONCLUSIONS

The MCR−ALS approach has several advantages over PCA−
ILS in the analysis of FSCV data, including more flexibility in
model definition, decreased experimental requirements (i.e.,
relaxation of the need to collect separate training data), and
more robust handling of interferents. However, due to this
increased freedom in model definition, considerably more
caution must be employed, and the methods explored here for
its deployment (OPA, EFA, and P−ALS) require more user
input than the currently established PCA−ILS protocols.
Regardless, the two techniques generated highly similar spectral
and concentration estimates under the conditions studied here,
and MCR−ALS demonstrates considerable potential as a
complementary or alternative analysis method to PCA−ILS or
other reported methods like elastic net regression. However,
further characterization of the technique for FSCV will greatly
help in understanding its potential and limitations. In particular,
the data studied here contained relatively high signal-to-noise
ratios, allowing ready discrimination of analyte and noise
contributions. Preliminary studies suggest that MCR−ALS may
be suitable for analysis of noisier data; however, pretreatment of
the data (PCA data reconstruction), the use of larger number of
signal-containing spectra, and the strength of constraint
imposition become important considerations.

Table 1. Summary of Correlation and Lack of Agreement between PCA−ILS and MCR−ALS Estimates of Spectral and
Concentration Profiles§

correlation coefficient (R2) lack of agreementa (%)

average min max average min max

spectra DA 0.985 0.971 0.995 3.76 2.16 5.77
pH 0.984 0.963 0.996 4.35 1.21 12.1

concentration DA 0.994 0.983 0.999 1.82 0.37 4.92
pH 0.980 0.942 0.999 4.77 0.48 15.8

aLack of agreement = 100%*
∑ −

∑
= − −

= −

x x

x

[ ( ) ]

[ ( ) ]
i
N

i i

i
N

i

0 ,MCR ALS ,PCA ILS
2

0 ,PCA ILS
2 . §For the in vivo FSCV data collected during the intracranial self-stimulation trials (n = 25

rats).

Table 2. Percent Difference between Qα Valuesa

average minimum maximum

percent difference (%) between
training-set- and experimentally-
derived Qα values

(+)10.4 (−)0.8 (+)132.9

relative standard deviation of
experimental Qα values

16.6 5.5 48.3

aDetermined from Malinowski F-test analysis of independently
collected training set (10 CVs × 1) and experimental data (50 CVs
× 6) for 25 intracranial self-stimulation data sets and relative standard
deviation of the latter.

Figure 6. Interferent identification using MCR−ALS. (A) In vivo color
plot containing both DA and pH signals. (B) Residual spectrum (solid
line) after PCA−ILS analysis with a DA-only training set. (C) MCR−
ALS spectral estimate (solid line) using a two-component model. The
dashed line shows the PCA−ILS pH k vector estimated for this
experiment.
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