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microRNAs (miRNAs) are non coding RNAs with different
biological functions and pathological implications. Given their
role as post-transcriptional gene expression regulators, they
are involved in several important physiological processes like
development, cell differentiation and cell signaling. miRNAs
act as modulators of gene expression programs in different
diseases, particularly in cancer, where they act through the
repression of genes which are critical for carcinogenesis.
The expression level of mature miRNAs is the result of a fine
mechanism of biogenesis, carried out by different enzymatic
complexes that exert their function at transcriptional and
post-transcriptional levels. In this review, we will focus our
discussion on the alterations in the miRNA biogenesis
machinery, and its impact on the establishment and
development of cancer programs.

miRNAs as Cancer Modulators

For over a decade, different studies pointed out the relevance
of miRNAs biology in cancer, indicating that they can act as can-
cer genes, either as tumor suppressors, negatively regulating
protein-coding oncogenes, or as oncomiRs, repressing known
tumor suppressors.1,2 Functional studies have demonstrated that
miRNAs can affect cancer phenotypes, and several reports have
identified miRNA expression profiles that provide information
about tumor origin, prognosis or risk prediction, even better
than other expression profiles like mRNA signatures3,4 (A more
detailed overview is discussed in ref 5). Furthermore,

understanding the physiological and pathological miRNA bio-
genesis mechanisms is important to gain knowledge on the role
of this process in carcinogenesis, a situation that will result in the
development and improvement of tools for diagnosis, risk evalua-
tion and follow up of cancer patients.

From the Beginning: MiRNA Biogenesis

miRNAs sequences are distributed all throughout the genome,
being localized in exonic or intronic regions, as well as intergenic
locations.6 The biogenesis of miRNAs starts with their transcrip-
tion by RNA polymerase II,7 although some other miRNAs are
transcribed by RNA polymerase III,7,8 resulting in a primary
transcript known as pri-miRNA which contains a 33bp hairpin
stem, a terminal loop and a flanking single stranded sequence of
hundreds of bases or even several kilobases. In general, pri-
miRNAs are capped at the 5´end and polyadenylated at the 3´
end.7,9 After transcription, the RNase III Drosha processes the
pri-miRNA by cleaving it 11bp away from the hairpin stem (SD
junction).10 During miRNA biogenesis, Drosha might create 2
different complexes to facilitate pri-miRNA cleavage. One is
composed by the RNA helicases, p68 and p72, and the heteroge-
neous nuclear ribonucleoproteins (hnRNPs). The other complex,
known as the microprocessor, is composed by Drosha and the
DiGeorge syndrome Critical Region 8 protein (DGCR8), a
dsRNA-binding protein that stabilizes Drosha through interac-
tion with its C-terminal domain.11,12 DGCR8, also serves as a
molecular ruler, directing the cleavage of Drosha to the SD junc-
tion.13 Drosha digestion can occur co-transcriptionally or before
splicing,14 and the product of this digestion is an intermediary
RNA molecule known as pre-miRNA, which has »22 nt in the
stem and »48nt in the terminal loop.15,16

Alternatively, some non-canonical biogenesis pathways may
occur during mRNA splicing, giving rise to “miRtrons”. MiR-
trons are in fact, the spliced-out introns of mRNAs, which con-
stitute functional pre-miRNAs. Therefore, production of
miRtrons is independent of Drosha digestion17 (Fig. 1A).

Following pre-miRNA generation, Exportin-5, a Ran-GTP-
dependent dsRNA-binding protein, transports the pre-miRNAs
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to the cytoplasm in a GTP dependent process.18 Exportin-5 can
also protect pre-miRNAs against nuclear degradation.19 Once in
the cytoplasm, Dicer, another RNase III, digests the pre-miRNA
into a 22nt mature duplex miRNA (miRNA:miRNA*, where
miRNA* is called as the passenger strand).20,21 During this pro-
cess, Dicer is associated with other proteins like TAR RNA bind-
ing protein (TRBP) and kinase R–activating protein (PACT) to
increase its stability and its processing activity.22,23 Dicer is an
essential protein of miRNA maturation and its down-regulation
decreases the mature miRNA levels. In fact, under certain condi-
tions the absence of Dicer is lethal24,25 (Fig. 1A).

After generation of the miRNA duplex, the strands are unwound
in an ATP-independent process (it is not clear how this process

occurs). One strand (the
miRNA-guide strand) is loaded
onto the RNA-induced silenc-
ing complex (RISC), formed by
the association of Dicer, TRBP,
PACT, most commonly the
Argonaute 2 protein (Ago2)22,26

and GW182, which promotes
Argonaute stability.27 The resul-
tant complex between mature
miRNA and RISC is denomi-
nated miRSC. In mammals,
selection of the guide strand is

dictated by thermodynamic stability, the less stable strand at the 5´
end has more probability of being incorporated into the RISC; the
remaining strand (miRNA*-passenger strand) is excluded and gener-
ally degraded.28,29 However, recent miRNA sequencing data, as well
as results from our laboratory, demonstrate that a large number of
miRNA* are not degraded and are expressed in similar concentrations
to their corresponding guide strand.30 These observations suggest that
the passenger strand might also be incorporated into the RISC com-
plex. Consequently, one miRNA sequence can produce 2 different
mature miRNAs, each one having different targets and, therefore, dif-
ferent biological functions31 (Fig. 1A).

Finally, the miRISC functions as a guide to recognize the
mRNA targets, based on complementarity rules, to negatively

Figure 1. Biogenesis of miRNAs
(A) Production of miRNAs starts
in the nucleus with the polime-
rization of the primary hairpin
miRNA transcript (pri-miRNA) by
RNA polymerase II or III, fol-
lowed by the cleavage and
digestion of the pri-miRNA by
the microprocessor complex
(Drosha–DGCR8). The resulting
transcript is the pre-miRNA,
which is exported to the cyto-
plasm by Exportin-5–Ran-GTP.
Once in the cytoplasm, Dicer,
TRBP and Paz proteins cleave
the pre-miRNA hairpin and
digest it to produce a mature
duplex miRNA. Then, one of the
strands is loaded onto the RISC
complex and finally this guides
the miRNA to its mRNA target
to silence it by direct degrada-
tion or by translational repres-
sion. (B) Mechanism of post-
transcriptional regulation of
mRNA target by miRNA i) Regu-
lation by translation repression.
ii) Regulation by repression of
translation initiation. iii) Regula-
tion by mRNA degradation. iv)
Regulation by degradation or
storage of mRNA targets in P
bodies.
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regulate mRNAs. During this process, Ago2, a protein with RNA
cleavage activity, together with GW182, which interacts with the
cytoplasmic poly(A)-binding protein (PABP) and the PAN2–
PAN3 and CCR4–NOT deadenylase27 plays a central role in
miRNA-mediated mRNA silencing.32 There are at least 3 possible
mechanisms by which miRNA mediate repression of gene expres-
sion: (1) mRNA target hybridization and degradation, (2) transla-
tion inhibition during the initiation or elongation phases and (3)
mRNA decay by its recruitment to P bodies33,34 (Fig. 1B).

miRNA Biogenesis Defects and Their Biological
Consequences in Cancer Transcriptional

Regulation, a Transcription Factor Network

In cancer, numerous transcription factors, some of them well-
characterized tumor suppressors or oncogenes, regulate miRNA
transcription. Nucleosome positioning methods and ChIP-on-
ChIP or ChIP-seq analysis suggest that a set of transcription fac-
tors promotes or inhibits miRNA transcription, many of them
overlapping with well-known transcription factors of coding
genes like Myc and p53, as well as cell type–specific transcription
factors such as MEF2, PU.1, and REST.35,36 Furthermore, cellu-
lar context triggers pri-miRNA transcription in response to
growth factor stimuli such as PDGF, TGF-b and BDNF.37-39

Recent evidence indicates that the oncogenic transcription fac-
tor Myc acts as a miRNA transcriptional regulator, promoting the
transcription of some oncogenic miRNAs as well as the transcrip-
tional inhibition of tumor suppressor miRNAs.40,41 One of the
first documented oncogenic miRNA clusters promoted by Myc is
miR-17–92, which is activated when Myc binds to the E-box in
the miR-17–92 coding sequence.42,43 The miR-17–92 cluster is
frequently over-expressed in a variety of tumors like B-cell lym-
phomas, breast, colon, lung, pancreas, prostate, and stomach can-
cers.44,45 Some other tumorigenic miRNAs induced by Myc are
miR-19a/b, implicated in cancer metabolism and cancer cell sur-
vival,46 miR-18a which contributes to angiogenesis47 and miR-9
which modulates the expression of mediators of metastasis.48

Myc can also actively repress the transcription of numerous miR-
NAs, including some members of the let-7 and miR-29 families, as
well as miR-15a/16–1, miR-26a and miR-34a.41 These miRNAs
have been related to antiproliferative, proapoptotic and antitumori-
genic activities in different tumors.49,50 In fact, miRNAs regulated
by Myc can silence some Myc regulators, in a coordinated negative
feedback loop.51 Myc not only regulates miRNA activity during
transcription, it also blocks the maturation of certain miRNAs

through its cooperative relationship with some other binding pro-
teins like Lin28, which acts as negative regulator of let-7.52

Epigenetic Alterations at MiRNA loci

Epigenetic mechanisms are also important for miRNA tran-
scriptional regulation. Different approaches have shown that
DNA methylation and histone deacetylase inhibitors can modify
the expression of several miRNAs.53,54 The characterization of
CpG island content in genomic regions harboring miRNAs,
reveals that such regions share a similar DNA and chromatin
context, for example, the promotion of a closed chromatin
configuration defined by CpG island hypermethylation and
covalent histone modifications.55,56

The identification of miRNAs undergoing DNA methylation
in a broad set of tumors, pointed out the importance of this pro-
cess in miRNA downregulation and in the establishment of can-
cer programs. miR-124 and miR-34, well defined tumor
suppressors, are subject to epigenetic silencing by aberrant DNA
hypermethylation affecting cell cycle pathways in tumors54,57,58;
while down-regulation of miR-34 affects the Notch pathway
involved in cell invasion and apoptosis.59 Furthermore, DNA
methylation profiles in miRNA promoter regions can be useful
as a diagnostic and prognostic marker. For example, miR-23b, a
miRNA with tumor suppressor activity in prostate cancer, is
down-regulated through DNA hypermethylation of its promoter
region and its expression level is correlated with overall survival
and recurrence-free survival.60 A more comprehensive list of
hypermethylated miRNAs in cancer is included in Table 1.

Deregulated expression of miRNAs in cancer is also a conse-
quence of alteration in histone marks, which occur primarily due
to the aberrant action of histone deacetylases and the Polycomb
repressor complex (PRC2). For example, over expression of
PRC2 in prostate cancer contributes to the repression of miR-
101 and miR-205 by increasing the levels of H3K27me3 at their
promoters. These alterations result in an increased rate of cell
proliferation. In colorectal cancer, chromatin at promoter regions
of tumor-suppressor miRNAs show a closed configuration, pro-
ducing a repressed transcriptional state.67 Moreover, BRCA1, a
well-known tumor suppressor, in addition to its canonical func-
tion, can also epigenetically repress the oncomiR miR-155 via its
association with HDAC2, which deacetylates histones H2A and
H3 on the miR-155 promoter.68

CTCF, another epigenetic factor, acts as a border that delimits
the propagation of DNA methylation and histone repressive
marks over different regulatory regions controlling gene

Table 1.Methylated miRNAs and their role in cancer

miRNA Cancer activity Ref

miR-145 Involved in cell pluripotency 61

miR-193 Controls cell differentiation and cell growth in acute myeloid leukemia 62

miR-199a Controls the expression of genes associated with tumor progression in gastric, ovarian and testicular tumors 63

miR-335 Its hypermethylated phenotype has been associated with metastases in breast cancer 64

miR-1–133a cluster Modulates metastases in colorectal cancer by repressing TAGLN2 65

miR-200 family Downregulated in colorectal and breast tumors, favoring epithelial–mesenchymal transition (EMT) phenotypes 66
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expression. In different cancers, CTCF is lost, promoting repres-
sive epigenetic mechanisms.69 Recent studies have shown that
CTCF regulates miRNAs such as the tumor suppressor miR-
125b1 and the oncomiR miR-375 in breast cancer cells.70

Post-transcriptional Regulation

Editing miRNA hairpin base pairs
Another potential regulatory mechanism for miRNA biogenesis

and activity, is the post-transcriptional editing carried out by the
catalyzing enzymes ADAR1 and ADAR2. In this process, adeno-
sine residues are replaced by inosine (A-to-I), therefore, producing
an A–U base pair instead of an I–G base pair.71 Consequently,
miRNA edition may influence the transition from pri-miRNA to
pre-miRNA. Furthermore, it may also affect miRNA-target speci-
ficity by modifying the seed region (a necessary sequence for
mRNA and miRNA hybridization).72 It has been demonstrated
that the miRNA-editing process is affected in gliomas, resulting in
the production of unedited forms of miR-376*, which lacks the
ability to target its natural mRNAs targets, like AMFR. This alter-
ation promotes a higher invasive capacity in the glioma cells.73

Drosha processing and alterations in cancer
Immunoprecipitation analyses reveal that the RNA helicases

p68 (DDX5) and p72 (DDX17) are associated with the micro-
processor complex,74 modulating the association of Drosha and
the pri-miRNA. Additionally, p68 and p72 might interact with
some other RNA processing enzymes or transcription factors,
modifying Drosha processivity.75,76 For example, p68/72 inter-
acts with Smad, p53, and the estrogen receptor, which also regu-
late miRNA processing. The Smad proteins, act as signal
transducers promoting the expression of at least 20 human miR-
NAs by increasing Drosha cleavage activity upon their target pri-
miRNAs.77 Although there is no clear idea about the mechanisms
that determine the set of miRNAs undergoing this type of regula-
tion, sequencing data show that the majority of miRNAs regu-
lated by Smad contain a consensus sequence within the stem
region of the corresponding pri-miRNA, to which Smads bind
directly.78 In breast cancer, especially in invasive tumors, TGF-b
promotes the expression of the oncomiR miR-155 through
Smad4 activity. Moreover, there is a positive co-regulated inter-
action between miR-155 and TGF-b, as miR-155 negatively reg-
ulates RHO A, which in turn silences TGF- b, favoring EMT,
cell migration and invasion79 (Fig. 2A).

In a different cellular context, the tumor suppressor p53 is
related with the biological activity of miRNAs, not only because
p53 is, in itself, targeted by miRNAs, but also because it regulates
miRNAs expression at different levels. Immunoprecipitation
experiments have demonstrated that p53 might enhance the
cleavage processivity of Drosha.80,81 Thus, p53 can promote the
processing of specific pri-miRNAs to pre-miRNAs such as miR-
145 and miR‑34, which regulate the cell cycle,82 miR-192, miR-
194, miR-195, miR-15a and miR16–1,83 and miR‑200a/200b/
429, miR-200c/141 that antagonize EMT.84 Recent data showed
that p53 plays another regulatory role in miRNA maturation by

influencing the accessibility to miRNA targets through the
recruitment of RNA-binding proteins, which compete against
miRNAs for binding to the 3ʹ UTRs on mRNAs85 (Fig. 2A).

BRCA is also a post-transcriptional modulator of miRNA
biogenesis. The tumor-suppressor BRCA1 binds directly to the
pri-miRNA sequences of let-7a-1, miR-16–1, miR-145, and
miR-34a (all of them tumor suppressors), and increases the pre-
miRNA levels of this subset of miRNAs through the interaction
with Drosha, Smad and p53. This regulatory mechanism
expands the potential consequences of BRCA disruption in can-
cer and its possible impact in genomic stability86 (Fig. 2A).

The increased proliferation rate of cancer cells is reflected in
many genomic and biochemical processes, which also have an
important impact on miRNA biogenesis. For instance, under
physiological conditions Arsenic Resistance protein 2 (Ars2) is
required for cell proliferation,87 furthermore, ARS2 contributes
to microRNA biogenesis under cell proliferation signaling. Ars2
depletion represses the biogenesis of a subset of miRNAs that are
important in cancer, including let-7 and miR-2188 (Fig. 2A).
Experimental evidence suggests that Ars2 either binds directly to
pri-miRNA transcripts and recruits the Drosha microprocessor
or acts as a cofactor for Drosha’s enzymatic activity.89 Other
examples involve apoptotic modulators, like DR5 (TRAIL-R2)
which also inhibits miRNA maturation of let-7 through direct
interaction with Drosha and DGCR8 in pancreatic cancer cell
lines, promoting proliferation of cancer cells. Moreover, the
expression level of DR5 in pancreatic tumor samples is correlated
with poor outcome90 (Fig. 2A).

In addition to its previously mentioned editing function,
ADAR1, can form a complex along with DGCR8, preventing
the association between DGCR8 and Drosha during pri-miRNA
processing. Moreover, it seems that ADAR1 can control the
expression of more than 100 miRNAs which are positive regula-
tors of metastatic programs in melanoma91(Fig. 2A).

The participation of several signal transduction pathways in
the maturation process of miRNAs has also been described.
Recent work has demonstrated that upon activation, the kinase
MAPK-activated protein kinase 2 (MK2) phosphorylates p68,
enhancing its nuclear localization and incorporation into the
microprocessor complex. In breast cancer cell lines, the inhibition
of MK2 signaling promotes cell proliferation by enhancing the
expression of c-Myc through the suppression of pri-miRNA
processing of miR-145, which targets c-Myc92(Fig. 2A).

Apart from their activity as transcription factors, hormone
receptors could affect the maturation of miRNAs by preventing the
pri-miRNA to pre-miRNA conversion. In breast cancer, ERb
down-regulates miR-30a inhibiting pri-miRNA polymerization,
while ERa, but not ERb, shows inhibitory effects over the matura-
tion of the pri-miRNA cluster miR-23b/27b/24–1 through its
direct binding to the p68/p72 Drosha microprocessor complex,
which can be activated by E2.93 A Recent study reported that E2
negatively regulates the expression of miR-30c in endometrial can-
cer cells, likely through prevention of miRNAmaturation.94More-
over, the androgen receptor, an important tumorigenic player in
prostate cancer, induces the transcription of miR-23a, miR-27a
and miR-24–2, but more significantly accelerates primiR-23a/27a/
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24–2 cluster processing. The
evidence indicates that pri-
miR-23/27/24 cluster is regu-
lated by hormone signaling in
different cancers, which high-
lights its potential implication
in the therapeutic area as a new
drug target95 (Fig. 2B).

More than a Loop,
the Architecture of
Pri-miRNA and its
Regulatory Role

An important aspect in
miRNA genomic organization
is that a set of miRNAs can be
located within the same transcription unit in the same manner as a
polycistronic transcript. These miRNAs clustered inside the same
transcriptional unit may be subject to independent regulation.
There are few examples of miRNAs located in the same cluster,
which are processed independently from each other. Some studies
indicate that the hnRNP A1 binds to the loop region of miR-18,
contained in the cluster mir17–92, generating a structural rear-
rangement in the hairpin that promotes Drosha cleavage, favoring
the independent and unique processing of miR-18.96 The loop
region of miR-18a is evolutionarily conserved, suggesting that
some other well-conserved loop regions can be modulated by this
mechanism (Fig. 2A). Some other studies have pointed out the

importance of the loop region in pri-miRNA processing regulation,
and have described the action of KH-type splicing regulatory pro-
tein (KSRP) which directly interacts with G-rich regions present in
the loop of some pri-miRNAs, like let-7a and miR-206, promoting
Drosha andDicer processing97 (Fig. 3).

Another well-described mechanism is the link between Lin28
and let-7. Lin28 proteins are oncogenes activated in cancer which
function through the repression of the let-7 miRNA family.98 It
has been described that Lin28 blocks let-7 processing at the pri-
and pre-miRNA steps, inhibiting the association of the micro-
processor or Dicer complexes. This inhibitory mechanism can be
the result of the strong interaction between Lin28 and Drosha/

Figure 2. Post-transcriptional
regulation of miRNA biogenesis
in response to cellular signals.
(A) RNA helicase (promotes the
structural remodeling), TGF-b
stimulation, DNA damage (p53),
Smads and BRCA promote
miRNA processing enhancing
pre-miRNA production. Con-
versely, DR5 and ADAR1 prevent
the transition between pri-
miRNA to pre-miRNA of a subset
of miRNAs. (B) Hormone recep-
tor stimulation or negative regu-
lation over miRNA biogenesis.
Androgen receptor (AR) pro-
motes the transcription of the
miR-23a/27a/24-a cluster. More-
over, AR enhances the progres-
sion from pri-miRNA to pre-
miRNA of this cluster. Further-
more, when E2 and ER-a bind
the pri-miRNA of the miR-23a/
27a/24-a cluster it reduces its
processing by Drosha. Addition-
ally, ER-b prevents the biogene-
sis of the pri-miR-30a through its
direct association with Drosha.
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DGCR8. Alternatively, the interaction of Lin28 with the loop
region might rearrange the secondary structure of the hairpin and
inhibit Drosha cleavage.99 Lin28A and Lin28B are in fact targets
of let-7, indicating that Lin28/let-7 regulation involves a double-
negative feedback loop, which under physiological conditions
serves as a developmental switch100 (Fig. 3).

In cancer, germline mutations play an important role in the
establishment of tumor pathways. In this context, the effect of
germline mutations on the regulation of let-7/Lin28 loop might
have a huge impact, in particular in breast cancer. The Lin28
rs3811463 (T/C) SNP, located near the let-7 binding site, might
disrupt the loop of Lin28/let-7. Specifically, the C allele induced
the repression of let-7 by Lin28, resulting in an increased expression
of Lin28 and the consequent downregulation of mature let-7.101

Exportin 5: Defects in Pre-miRNA Transportat
to the Cytoplasm

ThemiRNAbiogenesis pathway can also be affected bymutations
in the conveyor exportin 5 (XPO5). Some tumors have mutations
that generate pre-miRNA accumulation in the nucleus, reducing

miRNA pro-cessing and diminishing
mature miRNA expression.102 The
mutant exportin protein lacks a C-ter-
minal region that prevents its associa-
tion and the export of the pre-miRNA
to the cytoplasm, inducing pre-miRNA
degradation in the nucleus.103

Cytoplasmatic Regulation

Role of Dicer cleavage
and expression in cancer

Studies in murine models show
that partial depletion of Dicer and
Drosha accelerates cellular trans-
for-mation and tumorigenesis.104 Fur-
thermore, the complete depletion of
Dicer causes miRNA silencing, tumor
development and lethality. Heterozy-
gous germ-line mutations in Dicer1
have been described in the pleuropul-
monary blastoma-inherited cancer
syndrome,105 and somatic missense
mutations have been detected in ovar-
ian tumors.106 In addition, mutations
in other proteins can also alter the
expression of Dicer and consequently,
its function. For example, truncating
mutations in TARBP2, a stabilizer of
Dicer 1 protein, down-regulates
miRNA global expression in sporadic
and hereditary colon carcinomas with
microsatellite instability.107

Lin28 can also be transported between the nucleus and cyto-
plasm, although it is enriched in the cytoplasm, suggesting that
this is its primary compartment. Lin28 over-expression results
in the reduction of Dicer association with let-7 pre-miRNA
and, therefore, reduces mature duplex miRNA levels. One pos-
sible explanation, is that Lin28 competes with Dicer for recog-
nition of the let-7 pre-miRNA sequence.108 Another
mechanism involves the 30-polyuridylation of pre-let-7, accom-
plished through cooperative activity of Lin28 with terminal uri-
dine transferase-4 (TUT4).99 Sequencing data revealed that the
loop of pre-miRNA let-7 has a tetra-nucleotide sequence
required for Lin28 binding and consequently Lin28/TUT4 uri-
dylation.109 Furthermore, knockdown of TUT4 and Lin28 in
cancer cells decreased the level of stem cell markers, suggesting
that they are required for the maintenance of a tumoral stem
cell phenotype (Fig. 3).

p53 mutations are common alterations in the majority of
tumors with a variety of consequences. In this regard, it has been
shown that mutant p53 can down-regulate Dicer expression
through different inhibitory mechanism such as the direct associa-
tion of TAp63 (a pro-apoptotitc p53 family member) to the
DICER promoter in a transcriptional regulatory manner.110 In

Figure 3. Several post-transcriptional mechanisms of miRNA biogenesis regulation. (A) Lin28 prevents
the association of Drosha to the pri-miRNA let-7. (B) KSRP binds to the loop region and promotes Drosha
processing. (C) Lin28 prevents the association of Dicer to the pre-miRNA let-7. (D) Lin28 promotes the
association of TUT4 with the pre-miRNA let-7, enhancing the 30 uridinylation of the pre-miRNA, and con-
sequently its degradation. (E) KSRP binds to the loop region and promotes Dicer processing. (F) MAPK/
ERK signaling modulates the expression or activity of Dicer, by promoting phosphorylation of TRBP.
(G) The recognition of the 50 monophosphate of the pre-miRNAs by Dicer is disrupted by the RNA-meth-
yltransferase BCDIN3D, which phospho-dimethylates the pre-miR-145, and decreases miRNA processing
by Dicer. (H) EGFR inhibits the processing of pre-miRNA through phosphorylation of AGO2-Y393, which
attenuates the processing of pre-miRNAs to mature miRNAs under hypoxic conditions.
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murine models, the relationship between mutant p53, TAp63, and
Dicer might contribute to the metastatic process promoting cell
invasion111 (Fig. 3).

In several cancer programs, the pleiotropic activity of miRNAs
constitutes a mean that provides a wide range of modulatory fac-
tors which can considerably modify the malignant phenotype of
cancer cells. Particularly, in cell reprograming, miRNAs have
been proved to work as factors that may accelerate or suppress
the reprogramming process. Recent work in colo-rectal cancer
demonstrated that Dicer1-deficient cells showed a reduced num-
ber of reprogrammed cells than wild type cells, suggesting that
the miRNAs biogenesis machinery can also impact the reprog-
ramming process and tumor phenotype.112

The expression of Dicer may also be regulated by cofactors
such as TRBP and PACT. Depletion of either of these cofactors
decreases the basal levels of Dicer protein.23 Furthermore, TRBP
mutations have been described in cancer and are associated with
decreased miRNA levels and with the destabilization of Dicer.
Moreover, the overexpression of TRBP contributes to the malig-
nant phenotype of cancer cells.113 It has been shown that cellular
signaling pathways like MAPK/ERK can also modulate the
expression or activity of Dicer by promoting the phosphorylation
of TRBP, which enhances miRNA production by increasing the
stability of Dicer113(Fig. 3).

Finally, the recognition of the 50 monophosphate in pre-
miRNAs by Dicer has been reported to be an important mecha-
nism to achieve effective miRNA biogenesis. Recently, the RNA-
methyltransferase BCDIN3D, has been identified as a negative
regulator for miRNA maturation. In breast cancer, BCDIN3D
phospho-dimethylates the tumor suppressor pre-miR-145 caus-
ing a reduction in its processing by Dicer114(Fig. 3).

Clinical Value of miRNA
Biogenesis Machinery Profiles

Consistent with the functional consequences of alterations in
the expression of proteins involved in miRNA biogenesis, differ-
ent studies have highlighted the clinical relevance of defining
markers for tumor prognosis and aggressiveness based on the sta-
tus of the miRNA biogenesis machinery. For example, differen-
ces in the expression levels and cellular localization of Dicer
between different tumor types and clinical outcomes suggest that
Dicer and Drosha might have more than one function among
cancer cells with different phenotypes. Table 2 summarizes some
of the studies that report the relationship of Dicer and Drosha
expression with clinical outcomes in different cancers.

Argonaute, a Multi-role Protein in Cancer

During the final steps of miRNA biogenesis, the expression of
Ago2 is not only critical for the formation of the miRISC, but
also for the amount of mature miRNAs. Ectopic expression of
Ago proteins results in an increase in mature miRNA levels.128

This correlation between Ago and mature miRNA levels, suggests
that Ago must be expressed in a controlled and limited fashion in
the cell to maintain miRNA homeostasis under physiological
conditions. Interestingly, the altered expression of Ago2 is also
associated with a transformed phenotype in breast cancer cells.129

Hypoxia contributes to altered gene expression in tumors. In
addition to affecting the activity of coding genes, increased levels
of hypoxia in cancer cells also affects miRNA maturation and sta-
bility. Hypoxia leads to an increase in the expression of the

Table 2. Relation between Drosha and Dicer with clinical parameters

Molecule Cancer type Clinical Cite

Drosha Cutaneous melanoma Reduced nuclear expression of Drosha, and its aberrant subcellular localization are
correlated with disease progression

115

Drosha Non-small cell lung cancer Overexpression of Drosha is an independent predictor of reduced disease-specific
survival.

116

Dicer Non-small cell lung carcinoma Downregulation of Dicer is related to poor prognosis. 117

Dicer Breast Cancer Deregulated Dicer expression is associated with aggressive tumors and is an
independent prognostic marker for overall survival.

118

Dicer Oral squamous cell carcinoma Dicer is a potential marker for clinical response to 5-FU-based chemoradiotherapy
and overall survival

119

Dicer Colorectal cancer patients Low expression of Dicer seems to be an independent predictor of positive
outcome and response to Bevacizumab therapy.

120

Dicer Soft tissue sarcomas Elevated Dicer immunoreactivity was significantly associated with poor outcome
and Dicer expression level is an independent negative prognostic factor.

121

Dicer Chronic lymphocytic leukemia Low expression of Dicer is associated with a more aggressive tumor 122

Dicer and Drosha Ovarian cancer Patients with over-expression of Dicer and Drosha have a higher median survival
time, while low Dicer expression is associated with advanced tumor stage.

123

Dicer and Drosha Gallbladder adenocarcinoma Loss of Dicer and Drosha expression is related to metastasis, invasion, and poor-
prognosis.

124

Dicer and Drosha Triple negative breast cancer Deregulation of Dicer and Drosha cellular localization. These tumors exhibit
detectable levels of Dicer protein in the nuclear compartment.

125

Drosha and Dicer Nasopharyngeal cancer Positive correlation between Drosha and Dicer expression with progression-free
survival and overall survival

126

Drosha and Dicer T-Cell Lymphoma Single Nucleotide Polymorphism of Drosha (rs6877842) and Dicer (rs3742330) are
significantly associated with survival.

127
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enzyme prolyl hydroxylation, which hydroxilates Ago2. Thus,
hydroxylation of Ago2 is required for miRNA loading onto the
RISC; more hydroxilated Ago2 protein results in an increase level
of mature miRNAs. These data show how a posttranslational
modification of Ago2 via hypoxia might mediate the miRNA
biogenesis pathway.130

Stress responses in tumor cells are also important for the mod-
ulation of miRNA biogenesis. EGFR, a well-known oncogene,
suppresses the maturation of specific miRNAs in response to
hypoxic stress. The association between EGFR and Ago2 pro-
motes the Ago2-Y393 phosphorylation, which in turn inhibits
miRNA processing by impairing the proper formation of the

Table 3. Novel mechanisms of miRNA biogenesis and their possible impact on cancer

Mechanism Description Cancer implication Ref

Novel miRNA product: semi-miRNA A semi-microRNA of 12-nt long, corresponding to
the 50 region of the microRNA let-7 is generated
during miRNA biogenesis.

This new miRNA biogenesis product could
participate in gene expression regulation by
controlling the activity of mature microRNAs.

136C

Autoregulation of microRNA
biogenesis

Argonaute binds to pri-miRNA let-7 in human cells
promoting downstream processing events.
There is an interesting positive feed back loop, in
which the mature let-7 miRNA modulates the
interaction of Ago and the pri-miRNA.

Novel role for Argonaute in promoting the
biogenesis of the tumor-suppressor let-7, and
possible nuclear activity of Ago. This data
suggests that miRNAs can also hybridize with
non-coding RNAs. This study reveals a new
mechanism for controlling miRNA expression
and possible implications in disease.

137

New control steps for miRNA length
and activity

It has been observed that the average length of
many miRNAs is diminished during neuronal
development. This decrease is correlated with an
increased expression level of Ago2 in the adult
brain. Ago may function in size establishment
through its interaction with the Paz domain.

Mammalian Argonautes may define the length
and, possibly, the biological activity of mature
miRNAs in a developmental controlled
manner. In cancer, this mechanism could
impact cell biology and cancer phenotype,
since Ago expression and activity is disrupted.

138

Independent mechanisms Hairpin length confers advantage to certain
miRNAs to undergo independent maturation
process via Ago2-mediated pathways. These
data show the importance of the hairpin
architecture in miRNA biogenesis.

The conserved pre-mir-451 hairpin is directly
cleaved by Argonaute via slicer activity, in a
Dicer independent manner. This new
mechanism can have a potential role in cancer
since miR-451 has already been related with
oncogenesis. The down-regulation of miR-451
has been described in esophageal squamous
cell carcinoma 139, in gliomas 140, and in drug
resistance in colorectal cancer.141

142

Circulating miRNAs Ago2 generates complexes and microvesicles
(MVs) to provide specific and non-specific
protection for circulating miRNAs.

Different studies have described the altered-state
of circulating miRNAs in cancer, with potential
consequences in cancer development. Ago2
plays a critical role in stabilizing circulating
miRNAs. Moreover, the identification of
extracellular Ago2-miRNA complexes in plasma
reveals the possibility that cells release a
functional RISC into the circulatory system.

124

Alternative ways to generate
miRNAs

A small number of miRNAs are generated from
single-stranded regions known as loop-miR.

Further studies are necessary for unravel the
pathological roles of the endogenous loop-
miRs.

143

Another intermediate processing
product

AGO2-cleaved pre- miRNAs (ac-pre-miRNAs) are
generated as a secondary product of miRNA
biogenesis and as a functional substrate for Dicer.

A large number of isomiRs, isoforms of mature
miRNAs, potentially derive from ac-pre-miRNAs,
with similar expression as the canonical
miRNAs. These studies reveal the functional
activity of ac-pre-miRNAs, targeting genes
enriched in pathways important in cell
maintenance and cancer pathways.

128,144

miRNA sponges miRNA sponges, also known as circular RNA
(circRNA) bind to miRNAs and suppress their
function.

Bioinformatic predictions suggest the presence of
thousands of circRNAs in the cancer genome
with critical post-transcriptional functions.

145,146

Nuclear mature miRNAs Increasing evidence reports the function of miRNAs
in the nucleus. It has been described that mature
miRNAs can shuttle between the cytoplasm and
the nucleus via Exportin 1 (XPO1).

Specific miRNAs contain sequence elements that
control their subcellular localization with
potential different implications in cancer cells.

147

RISC proteins act as oncogenes in
hormone-dependent cancers in
the nucleus

TRBP acts as nuclear receptor co-activator that is
recruited to hormone-responsive promoters in
cancer cells. Dicer also acts as nuclear receptor
co-activator in prostate cancer cells and
enhances androgen receptor signaling.

Relationship between endocrine signaling and
the miRNA processing machinery would
provide new knowledge for the engineering of
novel therapeutics.

148
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RISC-Ago2 complex. Strikingly, high levels of phosphorylated-
Y393-Ago2 have been correlated with poor survival in breast
cancer.131

The role of Ago2 in the function of mature miRNAs extends
beyond its activity as member of the RISC complex. In fact,
down-regulation of Ago2 reduces the half-lives of multiple miR-
NAs. Argonaute proteins post-transcriptionally regulate mature
miRNA levels via increasing miRNA stability.132 Ago2 may also
have a role as translational repressor of the miRNA-mRNA
duplex. All this data highlights the versatility of Ago2 as modula-
tor of miRNA gene expression and function.133

Even though Ago2 is the only catalytic argonaute protein in
mammals, all 4 human argonaute proteins bind to miRNAs.
Genomic approaches have shown that some miRNA subpopula-
tions preferentially bind to a certain argonaute protein (Ago1,
Ago3, Ago4 - which might be redundant- and Ago2) in a context
dependent manner with different implications in carcinogene-
sis.134,27 Conversely, miRNA incorporation to the RISC com-
plex might be regulated and influenced by different factors; one
of them is incorporation of ago 3, which enhances the incorpo-
ration of the passenger strand of the tumor suppressor let-7a
(let7-a*) to the RISC complex, and by consequence, promotes its
biological activity in cancer cells. It seems that Ago3 modulates
the ratio between microRNA guide and passenger strands.135

Conclusion - New Insights

The advent of new analytical methods, such as RNA-seq and
Chip-seq, has allowed us to gain insight into the versatility of fac-
tors controlling gene expression and how the disturbance of such
factors might operate to determine the altered phenotypes of can-
cer cells. Since their discovery, miRNAs have been the subject of
intense research. During this time, we have gained considerable
understanding about the biogenesis pathways and mechanisms of
action of miRNAs. However, one thing we have learned is that
there are many ways in which the processes of miRNA produc-
tion, stability and maturation can be orchestrated. Moreover,
new mechanisms for miRNA biogenesis have been described and
they might play important roles as cancer drivers (Table 3). It is
possible that as we increase our power to unveil novel factors
involved in miRNA biogenesis, we will also find new disruption
mechanisms that alter the proper function of these molecules in
the cancer scenario, giving us the opportunity to explore new
veins for biomarker discovery and development of new targeted
drugs.
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