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Myeloid-derived suppressor cells (MDSCs) are a group of cells that regulate the immune

response and exert immunosuppressive effects on various immune cells. Current studies

indicate that MDSCs have both anti-inflammatory effects and proinflammatory effects

on rheumatoid arthritis (RA) and RA animal models. MDSCs inhibit CD4+ T cells, which

secrete proinflammatory factors such as IFN-γ, IL-2, IL-6, IL-17, and TNF-α, by inhibiting

iNOS, ROS, and IFN-γ and promoting the production of the anti-inflammatory factor

IL-10. MDSCs can suppress dendritic cells by reducing MHC-II and CD86 expression,

expand Treg cells in vitro through the action of IL-10, inhibit B cells through NO and

PGE2, and promote Th17 cell responses by secreting IL-1β. As a type of osteoclast

precursor cell, MDSCs can differentiate into osteoclasts through activation of the NF-κB

pathway via IL-1α. Overall, our study reviews the research progress related to MDSCs

in RA, focusing on the effects of MDSCs on various types of cells and aiming to provide

ideas to help reveal the important role of MDSCs in RA.
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Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease mediated by a variety of
immune cells that is mainly defined by the erosive destruction of the joints in the extremities. The
basic pathological changes are the infiltration of inflammatory cells, the destruction of cartilage,
and the erosion of bone (1). The pathogenesis involves the T cell activation pathway (2), B cells
(3), macrophages, osteoclasts (OCs) (4), dendritic cells (DCs) (5), and so on. Since the body’s
immune system is a complex network-regulation system, it is composed of innate immunity
and adaptive immunity and involves interactions and regulation among innate immune cells,
antigen-presenting cells, adaptive immune cells, etc. Myeloid-derived suppressor cells (MDSCs),
inhibitory cells expressing the markers CD11b and Gr-1, have been found to be abundant in
infection (6), tumors (7), inflammation (8), and other diseases and negatively regulate the body’s
immune function. MDSCs are a special group of cells that regulate the immune response. They can
exert their immunosuppressive effects on a variety of immune cells through different mechanisms,
resulting in declines in the body’s innate and adaptive immune functions and promoting the
development and progression of diseases. There have beenmany reports showing that MDSCs have
a strong immunosuppressive effect under abnormal conditions, but the roles of MDSCs and their
subgroups in autoimmune arthritis are still controversial. Therefore, this article aims to review the
role of MDSCs in the pathogenesis of RA and provide a theoretical basis for future research.
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ORIGIN OF MDSCs

MDSCs, which are composed of bone marrow progenitor
cells and immature myeloid cells (IMCs), are a heterogeneous
cell group composed of morphologically, phenotypically, and
functionally diverse but also highly immunosuppressive myeloid
cells (8). Under normal conditions, IMCs develop into mature
DCs, macrophages, and granulocytes after being generated in
the bone marrow and then participate in immune responses
in specific target organs. However, under the pathological
conditions of a tumor, inflammation, infection, trauma,
autoimmune disease, etc., various factors can contribute to
the formation of MDSCs; vascular endothelial growth factor
(VEGF), granulocyte-macrophage colony-stimulating factor
(GM-CSF), interleukin (IL)-4, and other cytokines can block
IMC differentiation (9). IMCs inhibit their own differentiation
by releasing immunosuppressive factors, such as arginase-1
(Arg-1), inducible nitric oxide synthase (iNOS), nitric oxide
(NO), and reactive oxygen species (ROS), ensuring that myeloid
precursor cells cannot mature. IMCs expand in vivo, migrate
out of the bone marrow, and accumulate in the peripheral
blood and spleen or lesions, where they form MDSCs (10–12).
Initially, in the field of tumor biology, MDSCs were considered
to be immunosuppressive cells related to tumor expansion
that accumulated near tumors and in the peripheral blood,
promoted immune escape by tumor cells, and accelerated disease
progression (13, 14). Recent research has found that MDSCs
play an important immunosuppressive role in various immune
diseases, so research on MDSCs in autoimmune diseases has
expanded (15, 16). Under pathological conditions, dilated
MDSCs can be identified in the blood, surrounding lymphoid
tissues, the spleen, cancerous tissues, and inflamed sites in the
corresponding target organs. They can inhibit other immune
cells through direct contact or cytokine secretion, which usually
inhibits the immune response (17).

PHENOTYPES OF MDSCs

The phenotypes of MDSCs are very different in mice and
humans. MDSCs lack the most basic surface recognition
features due to blocked differentiation, so MDSCs are
morphologically indistinguishable from granulocytes and
monocytes (18).

In mice, MDSCs have specific surface markers and are
defined as cells that coexpress the myeloid antigens CD11b
and Gr-1. According to the morphology of this cell population
and the difference in the expression levels of the two Gr-1
epitopes, Ly6G and Ly6C, they can be divided into two subsets:
monocytic MDSCs (M-MDSCs) and granulocytic MDSCs (G-
MDSCs), which have the phenotypes CD11b+Ly6G−Ly6Chigh

and CD11b+Ly6G+Ly6Clow, respectively (19, 20). The
subgroups of M-MDSCs and G-MDSCs can also be
divided by CD49d and CD11b expression patterns, and
their phenotypes are CD11b+Ly6G+/−Ly6ChighCD49d+ and
CD11b+Ly6G+Ly6Clow/−CD49d−. Additionally, some surface
molecules, such as IL-4Rα, F4/80, CD80, CD31, and CD115,

can be used to recognize the inhibitory functions of MDSC
subgroups (21).

In patients, MDSCs can also be divided into M-MDSCs
and G-MDSCs. Because CD33 and CD11b are coexpressed
in human subsets, which also express CD14 and CD15,
respectively, the phenotypes of human M-MDSCs and G-
MDSCs can be expressed as CD33+CD11b+CD14+ and
CD33+CD11b+CD15+CD14−, respectively (22, 23). In
addition, because MDSCs lack surface markers expressed
by mature myeloid cells or lymphoid cells and express the
MHC-II molecule HLA-DR, they can also be defined as
CD33+CD11b+HLA-DR−/low. Due to their lack of lineage-
specific antigens (Lin), such as CD3, CD19, and CD56, MDSCs
are often described as Lin−CD11b+CD33+HLA-DR− (24, 25).
MDSCs express various surface markers and are divided into
different subsets, probably because of different transcription
factors and immunomodulatory molecules, such as cytokines,
growth factors, and inflammatory mediators, which are
presented in different disease microenvironments, blocking
the normal differentiation of IMCs and thereby causing these
cells to arrest in various stages of development. Therefore,
MDSCs have different surface marker expression patterns at
different stages. The complexity of these surface marker patterns
leads to the heterogeneity of MDSCs. Thus, according to the
actual pathological condition, MDSCs show different inhibitory
capabilities and functional mechanisms (Tables 1, 2).

REGULATION BETWEEN MDSCs AND
IMMUNE CELLS

MDSCs and CD4+ T Cells, Including Their
Subpopulations
CD4+ T cells are a subset of lymphocytes that play an important
role in specific immune responses. Antigen-presenting cells
can activate self-reactive CD4+ T cells by presenting cognate
antigens, which results in the T cells differentiating into various
types of CD4+ helper T cells subpopulations, including Th1 cells,
Th2 cells, and Th17 cells; these T cells can also differentiate into
regulatory T cells (Treg cells) (36). T cells play an important role
in the immune response involved in RA.

Regulatory Effect of MDSCs on CD4+ T Cells
Kurko et al. found that MDSCs exist in the synovial tissue of RA
patients. Most of these MDSCs exhibit a neutrophil phenotype
and morphology and can inhibit T cell infiltration in RA. This
suggests that the increase in MDSC numbers observed in the
synovial fluid (SF) of RA patients may be beneficial (26). Fujii
et al. found that when the severity of arthritis in collagen-
induced arthritis (CIA) mice peaked, MDSCs accumulated in the
spleen; adoptive transfer of MDSCs into CIA mice could reduce
the severity of disease and the numbers of CD4+ T cells and
Th17 cells in the lymph nodes. MDSCs could also inhibit the
proliferation of CD4+ T cells, their differentiation into Th17
cells in vitro and the production of proinflammatory factors
secreted by CD4+ T cells such as IFN-γ, IL-2, IL-6, and TNF-
α and promote the production of the anti-inflammatory factor
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TABLE 1 | Subpopulations and phenotypes of MDSCs in RA patients.

Source Sample Subset Phenotypes Function Reference

RA patient Synovial fluid G-MDSCs CD11b+CD33+HLA-DRlo/−CD14−CD15+ Inhibit T cells proliferation (26)

Synovial fluid M-MDSCs CD11b+CD33+HLA-DRlo/−CD14+CD15− / (26)

Peripheral blood G-MDSCs CD14−HLA-DR−CD33+CD11b+ The proportion of MDSCs is negatively

correlated with the proportion of Th1 cells

(27)

Peripheral blood G-MDSCs CD14−HLA-DR−CD33+CD11b+ The proportion of MDSCs is negatively

correlated with the proportion of Th1 cells

(28)

Synovial fluid / CD11b+CD33+ Promote the differentiation of human Th17 cells

in vitro

(29)

Peripheral blood MDSCs CD11b+CD33+ Positive correlated with Th17 cells and RA

activity

(30)

Peripheral blood MDSCs CD14−HLA-DR−CD33+CD11b+ Th17 cells were negatively correlated with

MDSCs

(31)

Peripheral blood / CD11b+CD33+ MDSCs increased significantly in RA patients

with high disease activity and promoted B cell

proliferation in vitro

(32)

TABLE 2 | Subpopulations and phenotypes of MDSCs in animal models.

Source Sample Subset Phenotypes Function Reference

DBA/1J mice Spleen G-MDSCs CD11b+Gr−1high Reduction at an early stage, related to the expansion of

Th17 cells

(30)

CIA model Spleen M-MDSCs CD11b+Gr−1medium Increased at a late stage, promotes Th17 cells

differentiation in vivo

(30)

Spleen G-MDSCs CD11b+Ly6C+Ly6G+ Inhibit T cells proliferation and Th1, Th17 cells

differentiation

(25)

Spleen M-MDSCs CD11b+Ly6C+Ly6G− Moderately inhibits T cells proliferation, but its adoptive

transfer does not affect Th1 and Th17 responses in vivo

(25)

Bone marrow M-MDSCs CD11b+Ly6ChighLy6G− Inhibit the proliferation of T cells, B cells (33)

Spleen M-MDSCs CD11c−CD11b+Ly6G−Ly6Chigh IL-10-mediated reduction of joint inflammation after

adoptive transfer

(34)

Spleen G-MDSCs CD11c−CD11b+Ly6G+Ly6Clow Inhibit Th17 differentiation and promote Treg cells

expansion

(34)

C57BL/6 mice Spleen, Paw M-MDSCs CD11b+Ly6ChighLy6G− Inhibit T cells proliferation and IFN-γ secretion, promote

Th17 cells differentiation in vitro

(29)

CIA model G-MDSCs CD11b+Ly6ClowLy6G+ No effect of inhibiting T cells proliferation and IFN-γ

secretion in vitro

(29)

BALB/c mice Synovial fluid G-MDSCs Ly6GhighLy6Cint/low Inhibits DC maturation and specific T cells proliferation (35)

PGIA model

RA, Rheumatoid Arthritis; CIA, Collagen-induced arthritis; PGIA, Proteoglycan-induced mouse arthritis model; G-MDSCs, granulocytic myeloid-derived suppressor cells; M-MDSCs,

monocytic myeloid-derived suppressor cells; DC, dendritic cells.

IL-10 secreted by CD4+ T cells, which suggests that MDSCs
play an important role in the regulation of CIA by inhibiting
the proinflammatory response of CD4+ T cells (37). Crook et al.
(33) found that in autoimmune arthritis, M-MDSCs inhibit the
proliferation of autologous CD4+ T cells in the CIA model in a
manner dependent on iNOS and IFN-γ. Egelston et al. (35) found
that the synovial fluid of proteoglycan-induced arthritis (PGIA)
mice contains a large number of MDSCs, which can inhibit T
cell proliferation effectively through iNOS and ROS. Park et al.
(34) found that MDSCs derived from CIA mice reduced IL-
17 production and increased FOXP3 expression in CD4+ T
cells in vitro. In RA-associated interstitial lung disease (RA-ILD),
Sendo et al. (38) found that CD11b+Ly6Chigh cells (M-MDSCs)

isolated from the lungs could develop the CD11b+Gr-1dim

phenotype when cultured withGM-CSF and IL-4-producing cells
and the CD11b+Gr-1dim cells could inhibit T cell proliferation.
In addition, lung MDSCs inhibit the proliferation of CD4+ T
cells in an MDSC density-dependent manner and inhibit the
differentiation of CD4+ T cells into Th17 cells (39).

Obviously, in RA patients, MDSCs can inhibit infiltrating T
cells in the joints. In autoimmune arthritis mice, MDSCs mainly
inhibit CD4+ T cells through iNOS, ROS, and IFN-γ. MDSCs can
inhibit CD4+ T cell proliferation, differentiation into Th17 cells,
and secretion of proinflammatory factors such as IFN-γ, IL-2,
IL-6, IL-17, and TNF-α and promote the production of the anti-
inflammatory factor IL-10. The production of IL-10 increases
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FOXP3 expression in vitro. These results suggest that MDSCs
play a crucial role in the immune regulation occurring during RA.

Regulatory Effect of MDSCs on Th1 Cells
Th1 cells play an important role in the development of RA (40).
Th1 cells and the signature cytokine IFN-γ play important roles
in RA inflammation, and one of the methods to treat RA is to
inhibit the Th1 response (41).

Studies have found that peripheral blood MDSCs in RA
patients are positively correlated with disease activity and that
the proportion of MDSCs is negatively correlated with the
proportion of Th1 cells, which suggests that in the peripheral
blood of RA patients, MDSCs and Th1 cells may be mutually
antagonistic and participate in the development of RA together
(27, 28). Park et al. (34) injected MDSCs into CIA mice in vivo
and found that the number of Th1 cells in the spleen of the
mice decreased, suggesting that MDSCs have an inhibitory effect
on Th1 cells. Wang et al. (25) found that adoptive transfer of
G-MDSCs into CIA mice reduces joint inflammation and the
frequency of Th1 cells in the draining lymph node, suggesting
that G-MDSCs have an inhibitory effect on Th1 cells in CIA that
reduces joint inflammation.

All these studies have shown that MDSCs are negatively
associated with Th1 cells in the peripheral blood of RA patients
and the spleen of CIA mice. Further studies are required to fully
understand the role of MDSCs in the regulation of Th1 cells
during the pathological development of RA.

Regulatory Effect of MDSCs on Th17 Cells
Th17 cells are a subset of inflammatory CD4+ T cells that mainly
secrete IL-17. Studies have found that Th17 cells are associated
with many autoimmune diseases, including RA, psoriasis, and
multiple sclerosis (42). Studies have also found that blocking the
function of Th17 cells may inhibit the development of RA. As a
class of immunosuppressive cells, MDSCs play an essential role
in the development of RA, and recent studies have found that in
RA, MDSCs have a regulatory effect on Th17 cells.

Guo et al. found that the frequency of MDSCs in the
synovial tissue of RA patients was positively associated with
the level of IL-17A. Additionally, the MDSCs of RA patients
and CIA mice could both promote the differentiation of human
Th17 cells in vitro, and MDSCs could promote Th17/IL-17
responses. The increase in Th17 cells infiltration that occurs
during the progression of CIA affected the accumulation of
MDSCs, and the removal of MDSCs reduced the frequency
of Th17 cells in the spleen of CIA mice, which suggests that
MDSCs are positively correlated with Th17 cells and that MDSCs
have certain proinflammatory effects. In addition, M-MDSCs
were more effective than G-MDSCs in promoting Th17 cell
differentiation (29). Zhang et al. found that the numbers of
CD14+HLA-DR−/low cells in the peripheral blood of RA patients
were significantly higher than those in healthy controls and
that the expansion of CD14+HLA-DR−/low cells was closely
associated with Th17 cells and Disease Activity Score-28 (DAS28)
results. In CIA mice, the depletion of MDSCs in vivo led to the
inhibition of T cell proliferation and reductions in IL-17A and
IL-1β production, while adoptive transfer of MDSCs could lead

to increased disease severity in mice, including joint swelling,
cell infiltration, bone erosion, and cartilage destruction, and
significantly increased serum IL-17A and IL-1β levels, which
suggests that MDSCs play important roles in the development of
RA and CIA (30). Studies have found that MDSCs are the main
source of IL-1β, that MDSCs in CIA mice can express high levels
of IL-1β and that MDSCs promote the differentiation of Th17
cells and CD4+ T cells via the IL-1β signaling pathway, which
suggests that MDSCs in CIA mice can promote the Th17 cell
response through high expression of IL-1β (29, 30, 43). Cheng
et al. found that the proportion of CD11b+Gr1+ MDSCs in
their CIA group was positively correlated with the proportion
of Th17 cells. After coculturing MDSCs and CD4+ T cells,
the proinflammatory factor IL-1β was highly expressed, while
after blocking IL-1β, Th17 cell numbers, and IL-17A, STAT3,
and RORγt mRNA expression levels were significantly reduced,
which suggests that MDSCs, as a potential source of IL-1β, have
a proinflammatory effect, mediating CD4+ T cell differentiation
into Th17 cells (44). Jiao et al. (31) found that in the peripheral
blood of RA patients, Th17 cells were negatively correlated with
MDSCs. Li et al. (45) noted that G-MDSCs could suppress the
production of Th17 cells by secreting exosomes to ameliorate the
pathology of CIA mice. Studies have found that adoptive transfer
of MDSCs is beneficial in autoimmune arthritis and can reduce
the number of Th17 cells in the draining lymph nodes and joint
tissues, thereby reducing joint inflammation (25, 37, 46).

The above research shows that MDSC numbers are increased
in the peripheral blood of RA patients, which promotes increases
in the levels Th17 cells, IL-17A, and IL-1β. MDSCs can
enhance the response of Th17 cells by secreting IL-1β, which
suggests that MDSCs are mainly responsible for promoting the
inflammatory effect. However, another study found that MDSCs
were negatively correlated with Th17 cells in the peripheral
blood of RA patients, suggesting that MDSCs can reduce the
number of Th17 cells to relieve joint inflammation. MDSCs can
promote Th17 cell responses in RA, mainly by secreting IL-1β,
but MDSCs can also have an inhibitory effect on Th17 cells; the
specific mechanism is not clear. Therefore, further research on
the regulatory effect of MDSCs on Th17 cells in RA could clarify
the role of MDSCs in RA.

Regulatory Effect of MDSCs on Treg Cells
In RA, Treg cells can be recruited to inflamed joints to exert a
local inhibitory effect, which leads to increased levels of Treg cells
in the joint synovial fluid and decreased levels in the peripheral
blood (47). Some studies have found that MDSCs can participate
in the development of RA by regulating Treg cells.

Park et al. showed that the number of Tregs in the spleen
of mice treated with MDSCs increased and that the injection of
G-MDSCs into CIA mice could promote Treg cell proliferation
and weaken the joint inflammation in the mice. Treg cells were
expanded in vitro in the presence of an anti-IL-10 antibody, and
this antibody blocked the expansion effect of MDSCs on Treg
cells, suggesting that without IL-10, MDSCs cannot inhibit joint
inflammation. This may suggest that IL-10 plays an important
role in the enhancement of Treg responses by MDSCs (34).
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The above research suggests that G-MDSCs can promote the
proliferation of Treg cells in CIAmice and that via IL-10, MDSCs
can promote the proliferation of Treg cells in vitro. Further
studies on the interaction among MDSCs, IL-10, and Treg cells
in RA may help better clarify the role of MDSCs in RA.

Regulatory Effect of MDSCs on B Cells
B cells play amajor role in the pathogenesis of RA, which not only
promotes the production of autoantibodies but also regulates
the function of T cells and DCs and promotes the development
of ectopic lymphoid neoplasia and release of inflammatory
mediators (48). At present, B cell-targeted therapy is effective in
early and late established RA (49). Some studies have found that
MDSCs have a regulatory effect on B cells in RA.

Crook et al. (33) showed that M-MDSCs in CIA mouse bone
marrow could inhibit the proliferation and activation of B cells
and produce specific antibodies through nitric oxide (NO) and
prostaglandin E2 (PGE2) to suppress the immune response.
Another analysis of the peripheral blood of RA patients found
that MDSC numbers were significantly increased in RA patients
with high disease activity and these MDSCs promoted B cells
proliferation in vitro (32).

MDSCs can inhibit B cells via NO and PGE2 in the CIA
model and promote B cell expansion in the peripheral blood of
RA patients. The difference in effect may be due to the different
sources of MDSCs, but further research is still needed. Overall,
MDSCs may participate in the development of RA through B cell
regulation, but the specific regulation of B cells by MDSCs still
needs to be further explored.

Regulatory Effect of MDSCs on
Macrophages
One of the typical symptoms of RA is inflammation caused
by the accumulation of fibroblasts, lymphocytes, neutrophils,
and monocytes/macrophages. Among these cells, activated
macrophages are the main source of proinflammatory cytokines
and chemokines, including TNF-α, IL-6, CXCL4, and CXCL7.
Activated macrophages can activate endothelial cells and induce
inflammation in the synovium and the production of OCs,
eventually leading to joint damage (50, 51). In the pathogenesis
of RA, macrophages play an important role. The increase in
the number of macrophages in the synovium is considered an
early biomarker of RA, and numerical changes can be used to
distinguish effective treatment, ineffective treatment, and placebo
treatment (52). Some studies have found that in the process of
RA, MDSCs can regulate macrophages.

To evaluate the effect of MDSCs on macrophages in vivo,
Zhang et al. (46) examined the frequency of macrophages in
the draining lymph nodes and joint tissues of CIA mice treated
with a phosphate-buffered saline (PBS) solution and MDSCs
and found that the numbers of CD11b+CD68+ macrophages in
the CIA mice treated with MDSCs were significantly reduced
in the draining lymph nodes and joint tissues, suggesting
that adoptive transfer of MDSCs can reduce the degrees
of arthritis and histological damage in the CIA model by
suppressing macrophages.

Macrophages play a key role in the pathological development
of RA, and the regulatory mechanism by which MDSCs affect
macrophages is currently uncertain. Therefore, further research
on the MDSC-mediated regulatory mechanism modulating
macrophages in RA may provide new ideas to clarify the specific
roles of MDSCs in RA and the treatment of RA.

Regulatory Effect of MDSCs on DCs
DCs are important innate immune cells and professional antigen-
presenting cells. They play a vital role in the initiation of
immunity. Some studies have found that DCs play an important
role in the pathological process of RA (53). Studies have found
that MDSCs have a regulatory effect on DCs.

To study the possible effects of synovial fluid (SF) cells
on DC maturation, Egelston et al. observed MHC-II and
CD86 expression by DCs cultured alone or in the presence of
SF cells (90% Gr-1+CD11b+ myeloid cells with a neutrophil
morphology). The levels of MHC-II and CD86 in the DCs were
significantly reduced by coculture with SF cells compared to
culturing without SF cells after 24 h. This may suggest that Gr-
1+CD11b+ SF cells significantly reduce the expression levels of
MHC-II and CD86, both of which play key roles in antigen
presentation by DCs, while the results for Gr-1+CD11b+ cells
also indicate that the SF cells of PGIA mice have characteristics
of MDSCs, suggesting that MDSCs inhibit the maturation and
activation of DCs in vitro (35).

The SF cells of arthritic joints in PGIA mice appear to have
characteristics of MDSCs and can inhibit DCs by reducing the
expression of MHC-II and CD86. Further investigations on the
immunomodulatory effects of MDSCs on DCs may provide new
ideas related to the immunomodulatory functions of MDSCs
in RA.

Regulatory Effect of MDSCs on OCs
Bone erosion is a sign of severe RA. Studies have found that OCs
play a major role in bone resorption. Increased OC numbers or
activity often leads to cartilage and bone destruction (54), and
cytokines such as IL-1α, IL-1β, IL-6, IL-11, TNF-α, and M-CSF
can provide signals for OC differentiation and bone resorption
(55). Some studies have found that MDSCs are one of the types
of OC precursor cells.

Sawant et al. cocultured MDSCs isolated from the bone
marrow of breast cancer bone metastatic tumor-bearing mice
with M-CSF and RANKL and stained the cells with TRAP to
observe the expression of F4-80 during OC differentiation. They
found that MDSCs are a new group of true OC progenitor cells
and that MDSCs differentiate into OCs in a manner dependent
on NO and have bone destruction function both in vivo and in
vitro, suggesting that targeting MDSCs in breast cancer patients
may reduce primary tumor growth and bone metastasis growth
(56). Su et al. (57) found that in periodontitis, Porphyromonas
gingivalis can induce the expansion of three subpopulations of
MDSCs (Ly6G++Ly6C+, Ly6G+Ly6C++, and Ly6G+Ly6C+),
and the CD11b+Ly6G+Ly6C++ subpopulation can differentiate
into OCs and exert inhibitory effects on T cells, which suggests
that MDSCs not only have an immunosuppressive effect but also
promote OC development.
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FIGURE 1 | Immuregulatory effect of MDSCs on immune cells. IL-1α, interleukin-1α; NF-κB, nuclear transcription factor kappa B; iNOS, inducible nitric oxide

synthase; IFN-γ, interferon-γ; ROS, reactive oxygen species; NO, nitric oxide; PGE2, Prostaglandin E2; IL-1β, Interleukin-1β; IL-10, Interleukin-10; IL-2, Interleukin-2;

IL-6, Interleukin-6; IL-17, Interleukin-17; TNF-α, Tumor Necrosis Factor-α.

Recent studies have found that MDSCs, as precursor cells of

OCs, play an important role in the development of autoimmune

arthritis. Zhang et al. found that compared with that in the

bone marrow of normal mice, the number of MDSCs in the

bone marrow of CIA mice was significantly increased and that
the CIA MDSCs were more likely to differentiate into OCs and

contribute to bone resorption, thereby causing bone destruction.

When MDSCs were cocultured with M-CSF and RANKL, they

differentiated into OCs, while differentiation was inhibited when

they were cocultured with an inhibitor of NF-κB. These results
suggest that NF-κB plays an important role in the differentiation
of MDSCs into OCs and that IL-1α activates the NF-κB pathway.
Furthermore, when OC differentiation medium is supplemented
with IL-1α (10 ng/ml), the differentiation of MDSCs into OCs is
enhanced, suggesting that IL-1α can activate the NF-κB pathway
to promote OC differentiation (58).

It is clear that MDSCs can differentiate into OCs in tumors
and inflammatory diseases and have bone destruction functions
in vivo. In CIA mice, MDSCs are one of the types of OC

precursor cells. In the context of culture with M-CSF and
RANKL, IL-1α can activate the NF-κB pathway to promote
MDSC differentiation into OCs, resulting in an increased degree
of bone destruction. Whether bone destruction is related to the
number of circulating MDSCs and whether MDSCs can be used
as a biomarker to evaluate the aggressiveness of RA still need
further study.

CONCLUSION

Similar reviews have also studied the roles of MDSCs in
autoimmune arthritis. Li et al. (45) reviewed the effects and
actions of MDSC subpopulations during the development
of autoimmune arthritis and reported that both MDSC
subpopulations play important roles in regulating the
proliferation, response, and differentiation of CD4+ T cells
during the progression of autoimmune arthritis. Rajabinejad
et al. (59) described the functions of MDSCs and the relationship
between MDSCs and inflammation in RA, concluding that
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there are two different hypotheses related to MDSC function in
RA: MDSCs can exert a proinflammatory effect by increasing
the number of Th17 cells, but MDSCs can also increase the
population of Tregs to produce an anti-inflammatory effect. In
our review, we have integrated the literature on the regulatory
effects of MDSCs on immune cells in the field of RA, describing
the functions of MDSCs in arthritis model mice and RA patients
and focusing on the effects of MDSCs on various types of cells.
We report that the proinflammatory and anti-inflammatory
functions of MDSCs are not only mediated by increasing the
number of Th17 cells and the number of Tregs, respectively.

MDSCs have both proinflammatory and anti-inflammatory
functions in RA and RA animal models. The proinflammatory
function is mainly supported by the following observations:
MDSCs can increase Th17 cell, B cell, and OC activity.
MDSCs can promote Th17 cell responses by secreting IL-1β. As
precursors of OCs, MDSCs can differentiate into OCs via NF-
κB pathway signaling activated by IL-1α. The anti-inflammatory
effect is mainly supported by the following observations: MDSCs
can inhibit CD4+ T cells, Th1 cells, Th17 cells, B cells,
macrophages, andDCs and promote Treg cell expansion.MDSCs
inhibit CD4+ T cells, which secrete proinflammatory factors such
as IFN-γ, IL-2, IL-6, IL-17, and TNF-α, by inhibiting iNOS, ROS,
and IFN-γ and promote the production of the anti-inflammatory
factor IL-10. MDSCs can suppress DCs by reducing MHC-II
and CD86 expression. MDSCs can expand Treg cells in vitro
through the action of IL-10. MDSCs can inhibit B cells through
NO and PGE2 (Figure 1).

However, there are no reports on the relationship between
MDSCs and NK cells in RA, and Nausch et al. (60) found that
in RMA-S tumor mice, M-MDSCs could express retinoic acid
early inducible-1 (RAE-1) ligand to interact with NKG2D ligands
on NK cells and activate NK cells to produce large amounts of
IFN-γ. This suggests that MDSCs have a regulatory effect on NK
cells and that studying the interaction between MDSCs and NK
cells may provide new ideas related to the mechanism involving
MDSCs in the pathological process of RA.

MDSCs are IMCs and have an inhibitory effect on the
antitumor immune response. MDSCs play a key role in
maintaining immunosuppression under chronic inflammatory
conditions, so inhibition of MDSC expansion and activation
by MDSC-targeted agents may increase the efficiency of the
immune system. At present, many drugs targeting MDSCs have
been applied for tumor treatment, and the immunosuppressive
effects of these drugs have also been shown to affect autoimmune
diseases (61). Nishimura et al. (62) found that the JAK
inhibitor tofacitinib could significantly promote the proliferation
of MDSCs in the bone marrow of SKG mice and improve
the arthritic process. In other autoimmune diseases, MDSCs
have been found to have a regulatory effect on immune

cells. Iwata et al. (63) found that in the MRL-Faslpr lupus
mouse model, CD11b+Gr-1low cells inhibited the proliferation
of CD4+ T cells through Arg-1, and the percentage of
CD11b+Gr-1low cells was increased in the spleen, kidneys,
and blood of 10-week-old lupus mice, suggesting that these
cells contribute to immune regulation. Knier et al. (64) found
that in experimental autoimmune encephalomyelitis, Ly6G+

neutrophils differentiated into MDSCs in the central nervous
system of wild-type mice in a STAT3-dependent manner,
controlling the accumulation and activation of B cells in
this compartment, and therapeutic interventions that modulate
the interaction of MDSCs with B cells might prevent the
continuation of the inflammatory response in the central nervous
system compartment in chronic autoimmune diseases (where
local aggregates of B cells are drivers of immunopathology) (64).

In conclusion, existing studies have suggested that MDSCs
play an important role in RA. The heterogeneity, plasticity,
and multiple phenotypes of MDSCs regulate T cells, B cells,
DCs, OCs, macrophages, and other cells through various
mechanisms to influence the immune response. However,
given the existing mechanisms, it is difficult to provide a
comprehensive hypothesis to explain the specific role of MDSCs.
The differentiation, expansion, and migration of MDSCs are
also constrained by many factors, so cell therapy also faces
many obstacles (17). Understanding the inherent multifunctional
nature of MDSCs and the ability to influence organ-specific
targets will help elucidate the mechanisms of autoimmune
diseases and possible new treatments (65). Therefore, further
study of the mechanism of action of MDSCs in RA may
provide new ideas for the diagnosis, treatment, and prognosis
of RA.
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