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Abstract

Background

A decreased prostatic blood flow could be one of the risk factors for benign prostatic hyper-

plasia/benign prostatic enlargement. The spontaneously hypertensive rat (SHR) shows a

chronic prostatic ischemia and hyperplastic morphological abnormalities in the ventral pros-

tate. The effect of silodosin, a selective alpha1A-adrenoceptor antagonist, was investigated

in the SHR prostate as a prostatic hyperplasia model focusing on prostatic blood flow.

Methods

Twelve-week-old male SHRs were administered perorally with silodosin (100 μg/kg/day) or

vehicle once daily for 6 weeks. Wistar Kyoto (WKY) rats were used as normotensive con-

trols and were treated with the vehicle. The effect of silodosin on blood pressure and pros-

tatic blood flow were estimated and then the prostates were removed and weighed. The

tissue levels of malondialdehyde (MDA), interleukin-6 (IL-6), chemokine (C-X-C motif)

ligand 1/cytokine-induced neutrophil chemoattractant 1 (CXCL1/CINC1), tumor necrosis

factor-alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), basic fibroblast growth

factor (bFGF) and alpha-smooth muscle actin (α-SMA) were measured. The histological

evaluation was also performed by hematoxylin and eosin staining.

Results

There was a significant increase in blood pressure, prostate weight, prostate body weight

ratio (PBR), tissue levels of MDA, IL-6, CXCL1/CINC1, TNF-α, TGF-β1, bFGF and α-SMA in

the SHR compared to theWKY rat. The ventral prostate in the SHR showed the morphologi-

cal abnormalities compared to theWKY rat. Prostatic blood flow was decreased in the SHR.

However, treatment with silodosin significantly restored the decreased prostatic blood flow in

the SHR. Moreover, silodosin normalized tissue levels of MDA, IL-6, CXCL1/CINC1, TNF-α,
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TGF-β1, bFGF and α-SMA, and it ameliorated ventral prostatic hyperplasia in the SHR

excluding blood pressure. Silodosin decreased PBR but not prostate weight in the SHR.

Conclusions

Silodosin can inhibit the progression of prostatic hyperplasia through a recovery of prostatic

blood flow.

Introduction
Benign prostatic hyperplasia (BPH) is one of the most common diseases among elderly men.
Epidemiological data show that approximately 50% of patients develop lower urinary tract
symptoms (LUTS) due to BPH/benign prostatic enlargement (BPE) [1]. BPH/BPE consist of
overgrowth of epithelial and stromal cells within the transitional zone and periurethral area
[2]. Although aging and androgens are two established risk factors for the development of
BPH/BPE, serum androgen levels are generally decreased in elderly males and are not corre-
lated with prostate volume [2]. There is some evidence that vascular risk factors may be associ-
ated with progression of BPH/BPE [3,4]. Clinical data showed that BPH and hypertension
occur with increasing prevalence with older age, and are more likely to be pathophysiologically
relevant [5,6]. De Nuzio et al. suggested that BPH related LUTS are caused by multiple factors
including pelvic atherosclerosis followed by chronic ischemia of prostate, and chronic inflam-
mation in the prostate [7]. Inflammation with cytokines and macrophage infiltration might
induce proliferation of prostatic tissue [3,8]. Recent basic and clinical research suggest that
prostatic inflammation could be one of the central mechanisms in the development of BPH/
BPE [9,10]. In addition, chronic histological inflammation was found in more than 90% of
specimens obtained from transurethral resection of the prostate [11].

The spontaneously hypertensive rat (SHR) is commonly used as a genetically hypertensive
rat model of BPH/BPE [12]. The SHR exhibits decreased prostatic blood flow and develops
hyperplastic morphological abnormalities in the ventral prostate as early as 15 weeks [13,14].
However, our previous data showed that there was no statistical difference in dihydrotestoster-
one (androgen hormone) levels in the prostate between the SHR and the WKY rat, which is
used as a normotensive control model [15]. These reports indicate that the ventral prostate of
the SHR can be a good model for human BPH/BPE. Our previous report showed chronic treat-
ment with nicorandil, a vasodilator, significantly increased prostatic blood flow and inhibited
the progression of ventral prostatic hyperplasia in the SHR [15]. A recent study showed that
chronic pelvic ischemia induced distinct functional and morphological changes in the rat ven-
tral prostate. Pretreatment with tadalafil, a phosphodiesterase type 5 inhibitor, has been shown
to decrease collagen deposition in the ventral prostate caused by arterial endothelial injury
[16]. Thus, blood flow in the prostate plays an important role in prostatic hyperplasia
development.

Alpha (α)1-adrenoceptor antagonists are the most frequently used drugs for treatment of
BPH related LUTS. It is widely known that α1-adrenoceptor antagonists relax prostate smooth
muscle and decrease urethral resistance, thereby alleviating LUTS [17]. Pinggera et al. demon-
strated that α1-adrenoceptor antagonists ameliorated chronic ischemia of the lower urinary
tract in patients with LUTS [18]. Doxazosin, an α1-adrenoceptor antagonist, restored prostatic
blood flow in the SHR [14]. Additionally, chronic treatment with terazosin, an α1-adrenocep-
tor antagonist, inhibited hyperplastic changes in the SHR prostate [19]. Thus, we investigated
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whether silodosin, a selective α1A-adrenoceptor antagonist, could ameliorate blood flow,
inflammation and hyperplasia in the SHR ventral prostate.

Material and Methods

Animal preparation
The layout of the experiments were approved by the Institutional Animal Care and Use com-
mittee of Kochi University (Permit Number: H-113), which were in accordance with the guide-
lines for proper conduct of animal experiments from the Science Council of Japan. The
protocol was approved by the committee on Ethics of Animal Experiments of the Kochi Uni-
versity (Permit Number: H-113). All studies involving animals were reported in accordance
with ARRIVE guidelines [20]. In this study, we used 12 weeks old male SHRs and WKY rats.
The animals were purchased from SLC Japan (Hamamatsu, Japan). All animals were kept
under identical conditions of temperature and humidity, and had access to food and drinking
water ad libitum. When the animals (n = 24) reached 12 weeks of age, they were randomly
divided into three groups (n = 8/group): an age-matched WKY rat group treated with vehicle
(0.5% methylcellulose in distilled water) perorally (p.o.) (WKY), SHRs treated with vehicle p.o.
(SHR), and SHRs treated with silodosin at a daily dose of 100 μg/kg, p.o. (SHR+Sil100). Taking
into consideration that the US Food and Drug Administration suggested an oral dose of silodo-
sin to be taken at 8 mg once daily, we adopted the dosage of 100 μg/kg, which was administered
(p.o.) once daily for 6 weeks in accordance with our previous experiments [21]. Also, our pre-
liminary data showed no significant differences in prostatic blood flow or basic fibroblast
growth factor (bFGF) in the prostate between the SHRs treated with two different doses of silo-
dosin (i.e. 100 or 300 μg/kg p.o.) once daily for six weeks. Thus, in subsequent experiments we
decided to use only a dose of 100 μg/kg p.o.. After 6 weeks of treatment, when the animals
reached 18 weeks of age, blood pressure and heart rate were measured with the tail cuff
method, which included warming the whole animal body in the absence of anesthesia (BP-
98A-L, Softron, Tokyo, Japan) [15]. Subsequently, prostatic blood flow was measured under
intraperitoneally (i.p.) administered sodium pentobarbital anesthesia (50 mg/kg) as described
below; afterwards, the rats were sacrificed with an overdose of sodium pentobarbital (60 mg/kg
i.p.). The isolated prostates were frozen at -80°C until measurements of tissue were performed.
The remaining parts of ventral and dorsolateral prostate were placed in 10% neutral buffered
formalin for histopathological evaluation [15].

Measurement of prostatic blood flow
Prostatic blood flow was measured using the hydrogen clearance method [15]. The hydrogen
electrode (80 μm diameter, UHE-201C; Unique Medical Co., Tokyo, Japan) was inserted into
the ventral prostate. A rod-type Ag/AgCl reference electrode (UHE-001; Unique Medical Co.)
was inserted between the skin and musculature region in the abdomen.

Measurement of oxidative stress in the prostate
The levels of malondialdehyde (MDA), a widely used marker of lipid peroxidation, in prostatic
tissue homogenates were identified using a commercially available kit (NWLSSTMMalondial-
dehyde Assay; Northwest Life Science Specialties LLC., Vancouver, WA). The MDA concentra-
tions were normalized by the protein content.
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Measurements of inflammatory cytokines in the prostate
Commercially available kits were used to identify homogenates levels of interleukin-6 (IL-6)
(Quantikine ELISA Rat IL-6 Immunoassay, R6000B; R&D Systems Inc, MN), chemokine
(C-X-C motif) ligand 1/cytokine-induced neutrophil chemoattractant 1 (CXCL1/CINC1) (Rat
CXCL1/CINC1 Quantikine ELISA; R&D Systems Inc.) and tumor necrosis factor-α (TNF-α)
(Rat TNF-α ELISA kit; RayBiotech, Inc, GA). Obtained markers were normalized by the pro-
tein content. CXCL1/CINC1 is the rat homologue to human IL-8.

Transforming growth factor beta 1 (TGF-β1) and bFGF measurements in
the prostate
For the measurement of TGF-β1 and bFGF, we used commercially available kits (Quantikine
ELISA mouse/rat/porcine/canine TGF-β1 immunoassay MB100B; R&D Systems Inc.) (Quanti-
kine ELISA mouse/rat FGF basic immunoassay MFB00; R&D Systems Inc). The concentra-
tions of TGF-β1 and bFGF were normalized by the protein content.

Protein assay in the prostatic homogenates
Protein concentration was determined using a commercially available kit (Protein Assay Rapid
Kit; Wako Pure Chemical, Osaka, Japan). Bovine serum albumin was used as the standard.

Western blot analysis of alpha-smooth muscle actin (α-SMA)
Western blot analysis was performed according to previous methods [15]. Protein samples
(50 μg) were subjected to SDS-polyacrylamide gel electrophoresis on 12% gradient gels, and
the separated proteins were transferred to polyvinylidene difluoride membranes. The mem-
brane was blocked with 5% nonfat milk in Tris-Buffered Saline containing 0.1% Tween 20
(TBS-T), and then incubated overnight on a shaker at 4°C with antibodies for α-SMA (1:400),
and anti-β-actin (1:1,000) in 5% nonfat milk in TBS-T. After washing with TBS-T (10 min×3
times), the membrane was incubated for 1 hour at room temperature on a shaker with a
1:3,000 dilution of horseradish peroxidase-conjugated rabbit antibody in 5% nonfat milk in
TBS-T. After washing with TBS-T (10 min×3 times), the detection was performed using an
enhanced chemiluminescence reagent (Millipore Corporation, Billerica, MA). The intensity of
target bands was quantified by densitometry using Malti Gauge software (FUJIFILM, Tokyo,
Japan). A rabbit polyclonal anti-α-SMA (ab5694, Abcam, Tokyo, Japan) and a rabbit poly-
clonal anti-β-actin (54590, AnaSpec, Inc., San Jose, CA) were used as primary antibodies. β-
Actin was used as a control for normalization of α-SMA.

Histological examinations
After fixation, the tissues were embedded in paraffin, and five-micron-thick tissue sections
were cut from the paraffin blocks. All of the prostate specimens were stained using hematoxylin
and eosin (HE). Each section was viewed under a light microscope at a magnification of ×40–
400 and morphological changes were evaluated by two blinded investigators (S.S. and H.Y.).
ImageJ 1.48 software (NIH, Bethesda, MD) was used to calculate the HE stained gland area in
the rat ventral prostate. The stained area in the gland indicated the degree of proliferation of
epithelial components. Under blind conditions, we randomly counted 10 glands in each section
and then quantified the glandular epithelial area as stained area per glandular area under
100-fold magnification. The mean percent area density was also evaluated for each group.
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Data analysis
Quantitative data are presented as means ± SEM and were compared among multiple experi-
mental groups using analysis of variance and Fisher’s multiple comparison tests. P-values less
than 0.05 were considered statistically significant.

Drugs and chemicals
Silodosin was supplied by the Daiichi-Sankyo Pharmaceutical Co. Ltd (Tokyo, Japan). All
other chemicals were commercially available and of reagent grade quality.

Results

General features of the animals
After six weeks of silodosin or vehicle treatment, body weights in the SHR and SHR+Sil100
groups were significantly lower compared to the WKY group (Table 1). The prostate weight
and the prostate body weight ratio (PBR) in the SHR and SHR+Sil100 groups were significantly
higher than those in the WKY group. Treatment with silodosin significantly decreased PBR,
but not prostate weight in the SHR. Heart rate was significantly lower in the SHR group com-
pared to the WKY group. Heart rate in the SHR+Sil100 group was not significantly different
from either the WKY group or the SHR group. The SHR+Sil100 group demonstrated signifi-
cantly higher mean blood pressure compared to the WKY group, while there were no signifi-
cant differences when compared to the SHR group (Table 1).

Prostatic blood flow
Prostatic blood flow in the SHR group was significantly lower compared to the WKY group.
Treatment with silodosin significantly increased prostatic blood flow compared to the SHR
group (Fig 1).

MDA concentrations in the ventral prostate
Oxidative stress levels were significantly increased in the SHR ventral prostates compared to
the WKY group, as evaluated by MDA concentrations in the prostate tissues. Treatment with
silodosin significantly decreased MDA concentrations compared to the SHR group. There
were no statistically significant differences in MDA concentrations between the WKY and SHR
+Sil100 groups (Fig 2).

IL-6, CXCL1/CINC1 and TNF-α levels in the ventral prostate
Our results revealed a significant increase in IL-6, CXCL1/CINC1 and TNF-α levels in the ven-
tral prostate of the SHR group compared to the WKY group. Treatment with silodosin signifi-
cantly decreased levels of IL-6, CXCL1/CINC1 and TNF-α in the SHR ventral prostate
compared to the vehicle control SHR ventral prostate. There were no statistically significant
differences between the WKY group and the SHR+Sil100 group with respect to IL-6, CXCL1/
CINC1 and TNF-α levels (Fig 3).

TGF-β1, bFGF and α-SMA levels in the ventral prostate
There was a significant increase in TGF-β1, bFGF and α-SMA levels in the SHR group com-
pared to the WKY group. Treatment with silodosin significantly decreased TGF-β1 and bFGF
levels, and α-SMA protein expression compared to the SHR group. Also, there were no
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statistically significant differences between the WKY group and the SHR+Sil100 group with
respect to TGF-β1, bFGF and α-SMA levels (Fig 4).

Histological evaluation of the prostatic tissues
In contrast to histological sections in the WKY group, ventral prostate in the SHR group
showed morphological abnormalities, characterized by increased branching of epithelial cells.
Treatment with silodosin decreased these morphological alterations observed in the SHR

Table 1. The General Features.

Groups

Factors WKY SHR SHR+Sil100

Body Weight (g) 402 ± 5 326 ± 16† 336 ± 12†

Prostate Weight (mg) 630 ± 35 926 ± 31† 863 ± 54†

PBR (×10−3) 1.57 ± 0.09 2.86 ± 0.07† 2.56 ± 0.11†#

Heart Rate (bpm) 338.0 ± 9.6 302.4 ± 3.9† 324.0 ± 9.8

Mean Blood Pressure (mmHg) 106.5 ± 1.1 166.0 ± 5.9† 154.7 ± 4.5†

PBR: Prostate body weight ratio (prostate weight/body weight); WKY: 18-week-old WKY rats treated with vehicle, p.o.; SHR: 18-week-old SHRs treated

with the vehicle, p.o.; SHR+Sil100: 18-week-old SHRs treated with silodosin at a daily dose of 100 μg/kg, p.o.

Data are shown as mean ± SEM of eight separate determinations in each group.
†: Significantly different from the WKY group (P < 0.05);
#: Significantly different from the SHR group (P < 0.05).

doi:10.1371/journal.pone.0133798.t001

Fig 1. Blood flow in the ventral prostate. The effect of silodosin on blood flow in the ventral prostate of the
18-week-old Wistar-Kyoto rat group (WKY), the 18-week-old SHR group (SHR) and the 18-week-old SHRs
treated with silodosin at a daily dose of 100 μg/kg, p.o. (SHR+Sil100). Data are shown as mean ± SEM of
eight separate determinations in each group. †: Significantly different with theWKY group; #: Significantly
different with the SHR group (P < 0.05 is a level of significance).

doi:10.1371/journal.pone.0133798.g001
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group (Fig 5). For calculations using ImageJ, glandular epithelial area (stained area/glandular
area) in the SHR group and the SHR+Sil100 group were significantly higher compared to the
WKY group, indicating hyperplasia of the prostate. As well, the glandular epithelial area in the
SHR+Sil100 group was significantly lower compared to the SHR group (Fig 5).

Discussion
The present study showed that chronic treatment with silodosin significantly ameliorated
decreased prostatic blood flow, and increased oxidative stress, inflammatory cytokines, growth
factors and morphological abnormalities in the SHR ventral prostate. On the other hand, silo-
dosin failed to decrease blood pressure in the SHR. The management of prostatic blood flow
recovery is a very important factor to ameliorate prostatic hyperplasia [15,16,22]. Pinggera
et al. demonstrated that chronic ischemia of the prostate and bladder could be associated with
LUTS [18]. Silodosin has a very higher selectivity for the α1A subtype than for α1B and α1D-
adrenoceptor subtypes compared to other α1-adrenoceptor antagonists, while minimizing the
undesirable effects on blood pressure [23]. Some reports demonstrated that chronic treatment
with a selective α1A-adrenoceptor antagonist silodosin increased bladder blood flow in the
SHR and in a rat model of chronic bladder ischemia induced by atherosclerosis. Also, the treat-
ment subsequently improved bladder dysfunction [21,24]. α1A-Adrenoceptors are abundant in
smooth muscle of the prostate [23]. Molecular analysis in human has shown 70% of the α1-
adrenoceptor mRNA in the prostate was compromised of the α1A subtype [25]. The mecha-
nism for improvement of blood flow to the prostate with silodosin could be due to the blockade
of α1A subtype in the smooth muscle or microvessels (vascular smooth muscle) supplying
blood flow to the prostate.

Fig 2. MDA levels in the ventral prostate. The effect of silodosin on MDA levels in the ventral prostate of
the 18-week-oldWistar-Kyoto rat group (WKY), the 18-week-old SHR group (SHR) and the 18-week-old
SHRs treated with silodosin at a daily dose of 100 μg/kg, p.o. (SHR+Sil100). Data are shown as mean ± SEM
of eight separate determinations in each group. †: Significantly different with theWKY group; #: Significantly
different with the SHR group (P < 0.05 is a level of significance).

doi:10.1371/journal.pone.0133798.g002
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In the SHR, it is possible that ischemia or local hypoxia induces morphological structural
alteration contributing to pathogenesis of BPH. The SHR prostate exhibited a high density of
hypoxic cells that were localized in the epithelium when compared to the WKY rat [26]. Local
hypoxia induces mild levels of reactive oxygen species (ROS), which can promote neovasculari-
zation and fibroblast-to-myofibroblast transdifferentiation and growth factors release (IL-8,
TGF-β, FGF-7 and FGF-2) [3]. Under hypoxic conditions, growth factors stimulate not only
inflammatory cells, but also epithelial and stromal cells, leading to prostatic enlargement [3].
Moreover, ROS produced by inflammatory cells create a positive feedback loop, which can
amplify inflammation in human cells from BPH tissue [27]. Prostatic ischemia leads to genera-
tion of ROS and subsequent oxidative stress [15]. Oxidative stress has been considered to play
a role in the development of BPH [15]. The current study shows that SHR has a significant
increase in the concentration of MDA, an oxidative stress marker, in the prostate as compared
to the WKY rat prostate. Prostatic hyperplasia in the SHR could be related to oxidative stress

Fig 3. IL-6, CXCL1/CINC1 and TNF-α levels in the ventral prostate. Tissue levels of IL-6 (left upper panel), CXCL1/CINC1 (right upper panel), and TNF-α
(left lower panel) in the ventral prostate are shown. WKY: 18-week-old Wistar-Kyoto rat group; SHR: 18-week-old SHR group; SHR+Sil100: 18-week-old
SHRs treated with silodosin at a daily dose of 100 μg/kg, p.o.. Data are shown as mean ± SEM of eight separate determinations in each group. †:
Significantly different with the WKY group; #: Significantly different with the SHR group (P < 0.05 is a level of significance).

doi:10.1371/journal.pone.0133798.g003
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caused by lower prostatic blood flow. Treatment with silodosin significantly ameliorates
increased MDA concentrations in the SHR ventral prostate. A previous study showed that silo-
dosin could improve bladder blood flow, and ameliorated detrusor overactivity by reducing
ROS produced by ischemia/reperfusion in atherosclerosis induced chronic bladder model [24].
Those data suggested that silodosin reduced oxidative stress via the recovery of prostatic blood
flow in the SHR.

Inflammation of BPH is largely characterized by infiltration of activated lymphocytes and
macrophages in the prostate. Inflammatory cytokines secreted from inflammatory cells may
induce proliferation of both epithelial and stromal compartments, which results in prostate
volume enlargement and BPH [28]. IL-6 and IL-8 are recognized as potent growth factors for
prostatic epithelial and stromal cells [3]. TNF-α is a multifunctional cytokine that is thought to
induce inflammation [3]. The current study demonstrates that the SHR significantly increased

Fig 4. TGF-β1, bFGF and α-SMA levels in the ventral prostate. Tissue levels of TGF-β1 (left upper panel), bFGF (right upper panel), α-SMA (right lower
panel), and a representative blot of α-SMA in the ventral prostate (left lower panel) are shown. WKY: 18-week-old Wistar-Kyoto rat group; SHR: 18-week-old
SHR group; SHR+Sil100: 18-week-old SHRs treated with silodosin at a daily dose of 100 μg/kg, p.o.. Data are shown as mean ± SEM of eight separate
determinations in each group. †: Significantly different with theWKY group; #: Significantly different with the SHR group (P < 0.05 is a level of significance).

doi:10.1371/journal.pone.0133798.g004
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levels of IL-6, CXCL1/CINC1 and TNF-α in the prostate. Epidemiological studies also showed
an elevation of IL-6, IL-8 and TNF-α in men with BPH as compared to normal prostate with-
out BPH [9]. To our knowledge, this is the first study to report an increase in inflammatory
cytokines in the SHR prostate. Moreover, chronic treatment with silodosin decreased these
inflammatory cytokines in the SHR prostate. From our international literature searches, there
were no pharmacological or biochemical evidence that silodosin had an anti-oxidative or an
anti-inflammatory effect. A possible mechanism as to why silodosin ameliorated oxidative
stress and inflammation in the prostate of SHR may be due to the improvement in the prostatic
blood flow.

A variety of hormonal and paracrine factors (i.e. growth factors) stimulate prostatic growth
and development. TGF-β1 and bFGF play critical roles in the regulation of prostatic growth and
proliferation of stromal cells [29,30]. In the human prostate, TGF-β1 and bFGF are produced by
stromal smooth muscle cells and are also secreted by epithelial cells of glands [30]. In the current
study, silodosin significantly decreased levels of TGF-β1 and bFGF in the SHR ventral prostate
compared to the vehicle control SHR ventral prostate. The α-SMA is recognized as a marker for
prostatic fibroblast within prostatic stroma [16,31]. Previous reports demonstrated that α-SMA

Fig 5. Histological changes in the ventral prostate of the SHR animals. The ventral prostate in theWKY group (left upper panel), the SHR group (right
upper panel), and the SHR+Sil100 group (left lower panel) are shown. Glandular epithelial area (%) (HE stained area/ventral prostate glandular area×100)
are depicted in the right lower panel. WKY: 18-week-old Wistar-Kyoto rat group; SHR: 18-week-old SHR group; SHR+Sil100; 18-week-old SHRs treated with
silodosin at a daily dose of 100 μg/kg, p.o.. Original magnification: ×100. The scale bar is 200 μm. †: Significantly different with the WKY group; #:
Significantly different with the SHR group (P < 0.05 is a level of significance).

doi:10.1371/journal.pone.0133798.g005
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was abundant in stromal smooth muscle in BPH human prostate [32]. The current study
showed that chronic treatment with silodosin decreased protein levels of α-SMA in the SHR
ventral prostate compared to the vehicle control SHR ventral prostate. These data suggest that
silodosin could inhibit the extent of hyperplasia in stromal tissue in the SHR.

Involvement of α1-adrenoceptors in prostatic growth and hyperplasia has been repeatedly
suggested [32–34], even though the molecular mechanism is not well understood. Silodosin
could inhibit growth factors via an increase in prostatic blood flow, and decrease in oxidative
stress and inflammatory cytokines in the SHR ventral prostate. This study showed that epithe-
lial cells of the SHR ventral prostate were taller in shape compared to the WKY. We evaluated
the HE stained area in each ventral prostate gland to quantify the degree of proliferation of epi-
thelial components. Treatment with silodosin decreased glandular epithelial area in the SHR
compared to the vehicle control, suggesting that silodosin could inhibit the progression of pros-
tatic hyperplasia. Also, silodosin decreased PBR, but not prostate weight, in the SHR. One limi-
tation of this study is that the histological changes in the ventral prostate of 18-week-old SHRs
are characterized as mainly epithelial (glandular) hyperplasia, which is considerably different
from those of human BPH (fibromyo-glandular hyperplasia). While both epithelial and stro-
mal cells contribute to human BPH/BPE, stromal cells play a bigger role. The previous experi-
mental studies showed that treatment with other α1-adrenoceptor antagonists (i.e. terazosin
and doxazosin) caused stromal regression and reduced growth in patients with BPH [32–34].
Thus, chronic treatment with silodosin could inhibit prostatic stromal growth in animal mod-
els as well as human BPH. However, in clinical studies, treatment with some α1-adrenoceptor
antagonists (i.e. tamsulosin, alfuzosin and doxazosin) failed to reduce prostate volume,
although chronic treatment with terazosin, α1-adrenoceptor antagonist was reported to reduce
prostate volume [35–38]. Further evidence is needed to explain the discrepancy between the
experimental and clinical data.

Conclusions
Chronic treatment with silodosin has the potential to ameliorate prostatic blood flow, oxidative
stress, inflammatory responses and growth factors in the SHR ventral prostate. Silodosin can
inhibit the progression of prostatic hyperplasia through a recovery of prostatic blood flow.
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