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Abstract

The Wingate Anaerobic Test (WAnT) is a short-term maximal intensity cycle ergometer test,

which provides anaerobic mechanical power output variables. Despite the physiological sig-

nificance of the variables extracted from the WAnT, the test is very intense, and generally

applies for athletes. Our goal, in this paper, was to develop a new approach to predict the

anaerobic mechanical power outputs using maximal incremental cardiopulmonary exercise

stress test (CPET). We hypothesized that maximal incremental exercise stress test hold hid-

den information about the anaerobic components, which can be directly translated into

mechanical power outputs. We therefore designed a computational model that included aer-

obic variables (features), and used a new computational \ predictive algorithm, which

enabled the prediction of the anaerobic mechanical power outputs. We analyzed the chosen

predicted features using clustering on a network. For peak power (PP) and mean power

(MP) outputs, the equations included six features and four features, respectively. The com-

bination of these features produced a prediction model of r = 0.94 and r = 0.9, respectively,

on the validation set between the real and predicted PP/MP values (P< 0.001). The newly

predictive model allows the accurate prediction of the anaerobic mechanical power outputs

at high accuracy. The assessment of additional tests is desired for the development of a

robust application for athletes, older individuals, and/or non-healthy populations.

Introduction

Contributions of energetic systems from aerobic metabolic pathways during exercise testing

can be directly assessed using peak VO2 measurements [1, 2], as well as using indirect estima-

tion of maximal VO2 from several metabolic equations [3, 4]. On the other hand, a direct
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measurement of the anaerobic capacity is considered more challenging [5] and therefore,

among different available tests that measure anaerobic capacity [6–10], Medbo et al. [11] have

suggested an indirect approach to measure the anaerobic capacity using the maximal accumu-

lated oxygen deficiency (MAOD) method. The MAOD is based on estimating VO2 demand at

supramaximal speeds by applying extrapolation, which is based on calculating the linear rela-

tionship between submaximal VO2 and running speed. However, the outcome of this method

reflects oxygen deficiency as measured by blood lactate accumulation and does not reflect the

“true mechanical power outputs” produced by the active muscles during high intensity, aero-

bic-type, maximal exercise stress test.

Despite the fact that the MAOD is a widely accepted tool and has been well investigated [12–

14], there have been other concerns regarding this method that is being used to construct the best

linear relationship, which is also time–consuming [11, 15, 16, 17]. Bangsbo [18] claimed that the

MAOD method underestimates the VO2 demand and the accumulated O2 deficit during supra-

maximal exercise; Fletcher at al. [19] pointed out that the potential changes in substrate utiliza-

tion during submaximal exercise are not considered in the prediction. Additional studies have

tried to compare the MAOD with the WAnT outputs, yet correlations have been low and conclu-

sions regarding the relationship between the variables have not been fully determined [20, 21].

During maximal incremental exercise stress test, the effort produced below the point of

blood lactate accumulation (OBLA) is considered aerobic and low in terms of mechanical

power output. However, above OBLA anaerobic metabolism becomes dominate and allows

the generation of higher mechanical power output [22–24]. We hypothesized that maximal

incremental cardiopulmonary exercise stress test (CPET) holds information of anaerobic com-

ponents, which can be directly translated into mechanical power outputs (in addition to the

contribution of aerobic metabolic pathways). Therefore, our goal was to predict the anaerobic

mechanical power outputs from maximal incremental CPET indices using highly accurate

machine-learning tools.

Prediction models have been widely used, for example, Bradshaw et al. [25] used regression

analysis for the prediction of cardiorespiratory fitness level based on non-exercise data. Lutti-

kholt et al. [26] used the critical power profile to develop a model to predict the peak power

(PP) output from the outputs of various graded-exercise-stress test protocols. Their model

included 11 males, and the differences between the actual and predicted PP outputs were sta-

tistically insignificant (P> 0.05).

The objective of our study was therefore to present a new model allowing the prediction of

the anaerobic mechanical power outputs from a CPET results. The Wingate Anaerobic Test

(WAnT), which has been established as an effective and accepted test to measure the anaerobic

mechanical power outputs [27] was chosen for use as the gold standard in the current study.

Prediction of the anaerobic mechanical power output will provide a simpler method to esti-

mate anaerobic mechanical power outputs using a single exercise stress test (maximal VO2 test).

This will allow exercise physiologist, coaches, etc. to understand the contribution of the anaero-

bic components within aerobic exercise stress test. These data may be specially relevant for ath-

letes who include anaerobic exercise in their routine. More specifically, knowing the mechanical

power outputs would add valuable information for their training program, for example, tracking

peak power can give an indication if the training program matched their goal.

Materials and methods

General description

A high-level predicted model was designed to predict the anaerobic mechanical power outputs

based on aerobic and anaerobic exercise test results. The following steps were implemented:
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(1) collecting data from both maximal incremental CPET results and WAnT results (Fig 1A).

(2) Extracting features of CPET result S1 Table), (Fig 1B). (3) Developing a new computational

model from maximal incremental CPET results to facilitate the prediction of the anaerobic

mechanical power outputs (peak power, PP; mean power, MP; fatigue, %) (Fig 1C). This

computational process was performed successfully in previous studies [28–31]. (4) Using the

outputs of the model (linear regression mathematical equations) and apply it on the validation

sets (Fig 1D and 1E). (5) Using network analysis to interpret the results of the predicted model

(Fig 1F). A detailed illustration of the flow of the study is shown in Fig 1.

Data collection

The study was approved by the local IRB Committee at Hillel Yaffe Medical Center, approval

number 0035-14-HYMC. Normal, healthy male and female, athletes and non-athletes signed

an informed consent form and thereafter performed both the WAnT and the CPET tests. They

either studied at the Zinman College for Physical Education or have been tested at the Depart-

ment of Research and Sports Medicine, Wingate Institute, Israel.

Wingate test and CPET

The WAnT was used to measure the anaerobic mechanical power outputs; PP and MP [32].

All participants (n = 88) were instructed to perform a warm up on a cycle ergometer for 3 min-

utes at moderate intensity. Following the warm-up period, the cycle ergometer was pro-

grammed for a 30-s test duration against resistance equals to 0.075 of the body weight [27].

The participants then completed an “all-out” 30-s effort with verbal encouragement. PP, MP,

and fatigue index were calculated and then displayed on the ergometer screen at the end of the

test. PP was described as the maximal mechanical power output attained during the first few

seconds from the beginning of the test, and MP was described as the average power over the

entire 30 s of the test. The fatigue was calculated as the percent difference between maximal

Fig 1. Schematic flow of the research.

https://doi.org/10.1371/journal.pone.0212199.g001
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mechanical power output and minimal mechanical power output achieved during the test

[33].

Approximately two weeks after performing the WAnT, each participant underwent a run-

ning maximal incremental CPET. Information regarding the test has been provided to each

subject prior to the test. The Quark CPET (COSMED, Rome, Italy) was used, and calibration

was performed using the ERGO-RMR and TURBINE software at the beginning of each day of

the trial. The machine was recalibrated if needed. The test started with a short warm-up period

of 2–3 minutes at low walking speeds. The protocol included increasing the speed gradually by

1 [kilometer/hour] every minute, and when the respiratory quotient reached 1, the slope was

increased by 2%. The test ended when the subject’s reached his/her maximum heart rate, as

measured by a Polar watch or ECG. Ventilatory and metabolic variables such as VO2, VCO2,

and VE were recorded breath-by-breath during the entire test until the subjects reached maxi-

mal effort.

Algorithm to predict the anaerobic mechanical power output

We developed a greedy heuristic algorithm to study the ability of aerobic features to predict

the anaerobic mechanical power outputs. This algorithm uses a locally optimal choice of fea-

tures at each iteration, and is described below:

Feature generation. The features represent the aerobic variables that are measured

directly during the CPET, as well as additional parameters that can be extracted and calculated

from the measured parameters. The features were classified into two different sets: (1) features

that are being measured directly, such as duration of the test [s], minute ventilation [l/min],

oxygen consumption [ml/min], etc., and (2) features that are calculated and derived from the

directly measured parameters, such as VE/VO2, VE/VCO2, slope of the VCO2 versus VE

graph, VE at the ventilatory anaerobic threshold (VAT, which was determine via the V slope

method), etc.

Overall, there were 12 directly measurable features and 39 calculated features (S1 Table),

taken from the entire duration of maximal incremental CPET. These features were extracted

under the assumption of their impact on the mechanical power outputs and as such, for exam-

ple, the features related to the VAT, depends on numerous physiological parameters, such as

VO2max and VE max, which can potentially contribute to the anaerobic power outputs pre-

diction [34].

In order to understand the ability to predict the mechanical power outputs from early stages

of maximal incremental CPET, further features were generated which represent the first to

four minutes of the maximal incremental CPET. Such features included, for example, the slope

of VO2 versus time (up to the first minute) and the VE calculated for each minute.

We then divide the features into 2 subgroups: (1) features taken from the entire duration of

maximal incremental CPET, and (2) features from the early stages of maximal incremental

CPET. Features related to the subjects such as body weight, height, and body mass index were

not included in our predicting model.

Description of the feature selection procedure. The flow chart of the feature selection

procedure is shown in Fig 2. First, we created a feature matrix that included all features. All

features were standardized so that at each column the mean and standard deviation (SD) were

0 and 1, respectively. The features were divided into three random groups: 40% of the data

were assigned to the train subset, 30% of the data were assigned to the test subset (both of these

data sets represent the calibration set), while 30% of the data were used for the validation set.

The algorithm automatically selected the ‘best’ feature (i.e. the feature that demonstrates the

smallest distance between the predicted to the observed values of the anaerobic mechanical
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power output; see below) at each iteration and added it to the vector of selected features. In

order to ensure uniform selection of the range (from all exercise levels) for the train and test

subsets within the calibration set, VO2 max was divided into three groups, and at each iteration

two random subsets were selected from these groups. The following steps were then applied:

Using the train subset:

1. Selecting the i-th (i = numbers of features) feature from the aerobic features matrix.

2. Performing multiple linear regressions and using the coefficients obtained to calculate the

predicted anaerobic parameter (each at a time).

3. Checking and saving the prediction error, which is the distance between the predicted val-

ues obtained from the updated predictor to the observed value of the anaerobic parameter

(using the least squares method).

4. Performing steps 1–3 on all features, and adding the feature with the smallest distance

between the predicted values obtained from the updated predictor to the observed value of

the anaerobic parameter.

5. Adding another feature (i+1) and repeating steps 1–4.

6. Continuously adding features until the termination condition is encountered (see below).

Using the test subset:

1. The selected feature and chosen coefficients were used to calculate the predicted anaerobic

parameter (each at a time).

2. Calculating the Spearman correlation coefficient obtained from the predicted anaerobic

parameter compared with the real value.

3. The loop is terminated according to the percentage change in the adjusted R2. If the

adjusted R2 of the added predictor is 2% smaller than the R2 adjusted of the current predic-

tor, the algorithm stops adding features to the predictor.

The algorithm output is a linear regression mathematical equation that represents the best-

chosen features, together with the features’ coefficients, which is also referred as the predictor

(described by Palmer and O’Connell [28]):

Anaerobic mechanical power output ¼ aþ b � feature1þ g � feature2þ d � feature3 . . . ð1Þ

� The random division of the data may create different combinations of the chosen fea-

tures. Therefore, to ensure that the most common features were selected, the algorithm

was run 1000 times using the new data set each time.

� The equation extracted for each of the anaerobic mechanical power output parameter

was then applied to the validation set.

� The aforementioned procedure was performed 100 times, at which each time the data

was randomly divided into train, test and validation groups.

� The results are presented using Spearman correlation coefficients of the predicted anaero-

bic parameter versus the real value and the SD of the correlations.

� The mean and SD of the percent error between the predicted anaerobic parameters with

the real values are also reported.

Prediction of the Wingate anaerobic outputs from a maximal incremental exercise stress test
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Clustering analysis of the features based on a network representation

The network used in this study contains features that are related to the respiratory, cardiovas-

cular and metabolic systems. Accordingly, in order to characterize the structure of this net-

work, the modularity and community structure in networks as defined by Newman was used

[35]. That is, this was carried out in order to explore the connectivity between the aerobic fea-

tures, and to determine whether there are any natural divisions of aerobic features into groups

(for which these groups may be of any size). Q is the modularity and is equal to:

Q ¼
1

4m
P

ijðAij �
ki � kj

2m
ÞðSiSjþ 1Þ ð2Þ

Where Aij is defined as the number of edges between vertices i and j. If the edges are placed

at random, the expected number of edges between vertices i and j is equal to: kikj/2m

Fig 2. Flow diagram that describe the feature selection procedure.

https://doi.org/10.1371/journal.pone.0212199.g002
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Where ki and kj are the degrees of the vertices and m is the total number of edges in a net-

work. The aim is to maximize the modularity by choosing a correct division of the network,

which is manifested in the value of the index vector S.

In order to divide the networks into more than two groups, the network was initially split

into two groups, and these were then iteratively divided each into two, and so on.

4Q ¼ 1=2m
� 1

2

P
ij∊gBijðSiSjþ 1Þ �

P
ij∊gBij ð3Þ

The goal was to maximize4Q.

The network included the aerobic features, which were extracted from the CPET results

(VO2 max, VCO2 max, etc.). Overall, there were 51 features for which the Spearman correla-

tion coefficients were calculated. These were incorporated into a 51�51 matrix. Each aerobic

feature was represented by a node, and its Spearman correlation coefficients with any other

aerobic feature was represented by an edge (vertex). Fig 3 shows a representation of a network

that connects variables. The weight of the vertex is equal to the coefficient of the Spearman cor-

relation between the two relevant features.

The aforementioned algorithm was applied to the 30% of the most highly correlated fea-

tures within the aerobic matrix in order to identify any natural divisions of its vertices into

groups.

Statistical analysis

Anthropometric and exercise data are presented as mean ± SD. The model was applied to 100

randomly selected validation sets in order to determine the SD. The mean ± SD of the percent

error was also calculated. A p� 0.05 was considered statistically significant.

Results

Experimental data

General characteristics, as well as the aerobic and anaerobic outputs of the male and female

participants are presented in Table 1.

Model predictions

By applying the algorithm to features from all stages of the maximal incremental CPET, the

anaerobic PP [w] and MP [w] prediction equations derived from the validation sets are pre-

sented in Table 2. For PP [w], the equation includes six features and the combination of these

features produced a Spearman correlation coefficient of 0.94 and SD of 0.1, between the pre-

dicted and real PP [w] values of the validation sets. For the MP [w] predictions, four features

were automatically chosen and the combination of these features produced a Spearman corre-

lation coefficient of 0.9 and SD of 0.07 between the predicted and real MP[w] values of the vali-

dation set. The data of the selected features is found in S2 Table (and raw data of the features is

found in S3 Table).

Anaerobic power outputs had higher Spearman correlations coefficient with equation pre-

dictions than aerobic variables. For example, the highest Spearman correlation coefficient

between PP [w] and the maximal value of VE was 0.81, compared with the prediction Spear-

man correlation coefficient of 0.94 resultant from a combination of 6 features (Table 2).

Fig 4 shows dot plots and a bar diagram of the validation set, as derived from the equations

described in Table 2. The plots illustrate the known versus the predicted values of the PP [w]

(a) and MP [w] (Fig 4B). The bar diagrams illustrate the correlations between the predicted
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Fig 3. Representation of a network that connects all the aerobic features.

https://doi.org/10.1371/journal.pone.0212199.g003

Table 1. General characteristics as well as CPET aerobic and WAnT anaerobic outputs of the participants in the study.

Variable Mean± SD Mean± SD

Female (N = 36) Male (N = 52)

Age 25 ± 4 28 ± 6

Body Height (cm) 164.3 ± 6.4 176.6 ± 6.8

Body Mass (kg) 60.7 ± 8.7 75.8 ± 10.2

Body Mass Index 22.5 ± 2.8 24.3 ± 2.7

Maximal Oxygen Consumption (ml/min) 2585.9 ± 382.7 4169.2 ± 605.8

Maximal Minute Ventilation (l/min) 87.2 ± 14.5 146.5 ± 20.6

Maximal Heart rate (beats/min) 183 ± 7.8 186 ± 7.3

Peak Power (w) 450.8 ± 84.7 767.1 ± 127.8

Mean Power (w) 333.3 ± 62 573 ± 101.5

Fatigue Index (%) 49.5 ± 15.1 50.1 ± 9.3

https://doi.org/10.1371/journal.pone.0212199.t001
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values of the PP[w] (a) and MP [w] (b), while adding an additional feature each iteration.

More specifically, for PP the additional features increase and decrease the prediction, up until

reaching the sixth feature, at which the prediction reaches 0.94 (p–value = 2.7�e-06). For MP,

the additional feature at each iteration increase the prediction, at which the fourth feature pro-

duce prediction of 0.9 (p-value = 2.7�e-06).

By looking at the anaerobic PP and MP normalized by body weight [w/kg], and by applying

the algorithm, the prediction of mechanical power outputs derived from the validation set are

presented in Fig 5. The combination of features produced a Spearman correlation coefficient

of 0.84 and 0.8, between the predicted and real PP [w/kg] and MP [w/kg] values of the valida-

tion set, respectively.

Model predictions based on the first few minutes

The model generated based on features from the first to fourth minutes exhibited lower predic-

tion of the anaerobic mechanical outputs compared with the model generated based on fea-

tures from the entire duration of the test. Specifically, the Spearman correlation coefficient

between the prediction and measurements for the first few minutes-based model was ~

r = 0.77 (p-value = 8.1�e-05) compared with r = 0.94 (p-value = 2.1�e-06) for the whole set-

based model for PP and ~ r = 0.78 (p-value = 2.1�e-05) compared with r = 0.9 (p-value = 2.7�e-

06) for the whole set-based model for MP.

The clustering/network

In order to analyze the chosen features from the predictive model, a network analysis was per-

formed to identify clusters of features with similar statistical power.

Table 3 shows the outputs of the 3 groups from the clustering network algorithm. Each

group describes a cluster of features that has greater strength of relationship than with the fea-

tures from the other groups. Group 1 includes two subgroups: the directed measurable param-

eters such as maximal VE, and calculated features related to the intensity of the subjects such

as maximal duration of the test, maximal slope, etc. Group 2 represents features related to the

VAT, as well as to the parameters related to the VCO2 versus VO2 graph, such as the slope up

to the VAT. Group 3 includes features related to the VAT, as well as relative features related to

the duration of the test.

Discussion

The present study demonstrates a new predictive model for the assessment of anaerobic

mechanical power outputs (as an outcome obtained from the WAnT) using maximal incre-

mental CPET results. This research is a proof of concept, with aim of suggesting a method to

perform only aerobic exercise stress test and to use aerobic features, from a single test, to iden-

tify the anaerobic mechanical power outputs. Our study demonstrates an array of multiple

Table 2. Multiple linear regression equations, together with the Spearman correlation coefficient and P-value, of the predicted equations for the validation group,

for the peak power (PP) and mean power (MP).

Category Multiply regression equation R2 and SD RMSE Mean ± SD

of % error

Peak Power (w) 638.4 + max VE � 170.3—max RF � 43.5—max VO2 � 77.5

+ max slope � max speed � 98.6 + slop VCO2 versus VE � 39.3 + VO2max/(max slope � max speed) � 53

0.94 (P = 2.1�e-

06),

SD = 0.1

96 19 ± 18

Mean Power

(w)

476.8 + max VE � 105.5 + slope 1st min of VO2 vs. time � 36.4—max VO2 � 33.8 + max slope � max speed �

27.6

0.9 (P = 2.7�e-06),

SD = 0.07

73 16 ± 14

https://doi.org/10.1371/journal.pone.0212199.t002
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aerobic features with constant weight that accurately predict the PP and MP mechanical power

outputs, as shown below:

PP w½ �prediction
¼ 638:4þ 170:3 �maxVE � 43:5 � Rf � 77:5 � VO2maxþ 98:6 �max slope �max speed

þ 39:3 � slope VCO2 vs:VEþ 53 �
VO2max

max slope �max speed
ð4Þ

MP½w�prediction
¼ 476:8þ 105:5 �maxVEþ 36:4 � slope1st min of VO2 vs:timeþ 33:8 � VO2 max
þ 27:6 �max slope �max speed ð5Þ

For PP prediction, the chosen features relate to the intensity of the exercise stress test

through features that include the maximal slope and the maximal treadmill speed, as well as

Fig 4. Plots illustrating the validation set for the predicted (x-axes) versus the known (y-axes) values for peak power (PP) (w) (a) and mean power (MP) (w) (b). The bar

diagram illustrates the Spearman correlation coefficient between the predicted values of the peak power (PP) (w) (c) and mean power (MP) (w) (d) while adding an

additional feature each iteration.

https://doi.org/10.1371/journal.pone.0212199.g004
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features that relate to the subject’s aerobic capacity, such as VO2max and maximal VE. The

rational behind the chosen features can be explained and here we chose to explain two features:

VO2max and the slope of the VE vs. VCO2 graph. During high-level exercise, higher VO2max

levels means that more adenosine triphosphate (ATP) energy can be produced. Beneke et al.

[36] estimated the fraction of the aerobic contribution of the WAnT to be approximately

18.6%, indicating a significant contribution of the oxidative systems in this short duration (30

sec) and intense exercise. Therefore, the higher the VO2max is, the more likely that the subject

engages in regular aerobic exercise, and the cardiovascular system therefore adapts to that

exercise. These adaptations then transfer into greater performance during high-intensity exer-

cise (such as the PP) [33–34], thus, VO2max serve as important features that contribute to the

prediction of PP. The slope of the VE vs. VCO2 graph, has been found to be significantly corre-

lated with decreased cardiac output, elevated pulmonary pressures and associated with

increased ventilation-perfusion mismatching [37], and therefore might serve as a feature indic-

ative of the subject’s ability to attain higher/lower PP values.

Fig 5. Plots illustrating the validation set for the predicted (x-axes) versus the known (y-axes) values for peak power (PP) (w/kg) (a) and mean power (MP) (w/kg) (b).

The bar diagram illustrates the Spearman correlation coefficient between the predicted values of the peak power (PP) (w/kg) (c) and mean power (MP) (w/kg) (d) while

adding an additional feature each iteration.

https://doi.org/10.1371/journal.pone.0212199.g005
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For MP predictions, the rational behind the chosen features can also be explained, as it

reflects the ability of the subjects to withstand the intense physical exercise during the 30 s

WAnT test. One example, is the slope of the 1st minute of the VO2 vs. time graph which repre-

sents the ‘O2 deficit’ proposed by Medbo et al. [11]. This O2 deficit, which is the difference

between the amount of energy that is required to perform a certain work rate (power output)

exercise and the amount of energy that is supplemented through oxidative metabolism, must

be supplied through anaerobic pathways to compensate this lack. Therefore, a reduced oxygen

deficit would improve exercise performance, as it reduces the usage of muscle anaerobic

metabolites such as phospho-creatine and glycogen [38], hence, this feature can indicate on

the ability of a subject to efficiently use the anaerobic pathways which is related to MP, and

therefore to the ability to predict it.

All the features are connected with each other as shown in Table 3. In each group there are

features that tend to change in a correlative manner among the analyzed subjects. This means

that we expect that features from the same cluster can be replaced other features from the same

cluster in our predictor and give relatively similar predictions (for example max VE has high

correlation of 0.88 with max VO2 and they both appear in the first group). This means that

there are more than one good predictors with similar performances and can help understand-

ing the physiological meaning of the predictors via looking at features that are correlative (sim-

ilar) with the predictor’s features.

This research has further demonstrated that features extracted from the entire test predict

the anaerobic mechanical power outputs better than features from only the early CPET stages.

Furthermore, predictions of PP and MP, when normalized to body weight, showed lower cor-

relations than the absolute values of PP and MP (r = 0.94 versus 0.84 and 0.91 versus 0.8,

Table 3. The clustering of features based on a network.

Group 1 Group 2 Group 3

max time time to reach VAT max VE/VO2

max VT time from the VAT to the end max VE/VCO2

max VE (PP,MP) relative time of VAT VO2-1 at VAT

max VO2 ratio of VAT (VO2) to the max time VCO2-1 at VAT

max VCO2 ratio of VAT to the max value of

RER(VO2)

slope VCO2 versus VE (PP)

max VO2 [ml/min/kg] (PP,MP) Slope A slope VO2 versus VE

max RR Slope B VO2 at 1st min

VO2-2 at VAT area A of graph VO2 as a function of

VCO2

VO2 at 2nd min

VCO2-2 at VAT Time at VAT VO2 at 3rd min

area B of graph VO2 as a function of

VCO2

RF at VAT predicted VO2 at VAT/the real VO2

at VAT

slope at 1st min increase VO2 (MP) VE at VAT max RF (PP)

slope at 2nd min increase VO2 VCO2 [ml/min] at VAT

slope at 3rd min increase VO2 VO2[ml/min/kg]

at VAT

max slope time max speed (PP,

MP)

RR at VAT

VEmax/slope�speed VSLOPE

VO2max/slope�speed (PP)

predicted VO2

max slope � max speed � max time

https://doi.org/10.1371/journal.pone.0212199.t003
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respectively), as shown in Figs 4 and 5. This study, however, excluded the prediction of fatigue

[%] since it was low and not significant (r = 0.4 p value > 0.05).

To summarize, the ability to predict the anaerobic mechanical power outputs will allow

exercise physiologist, coaches, etc. to understand the contribution of the anaerobic compo-

nents within a single aerobic exercise stress test. The WAnT results, which are the outputs of

the predictive algorithm, reflect the changes in the contribution of the anaerobic energy sys-

tems to the performed exercise [27, 39, 40]. This may be relevant, for instance, for athletes and

coaches that by knowing if the subject utilize glycogen or free fatty acid, can help specify the

exercise program. Another example of the usefulness of the model’s outputs is that knowing

the PP of a subject gives insight regarding the type of muscle fibers (fast/slow) that the subject

has, since high or low values of PP are observed in subjects who probably have high or low pro-

portions of fast twitch fibers, respectively [41]. This information will therefore help trainers to

provide better exercise recommendations.

When drawing conclusions from the results of our study, one must consider the study pop-

ulation, which included healthy males and females within age range of 20–40 years old. It is

desirable to develop a test applicable to older and/or non-healthy populations as well; future

research in this field is therefore required. Moreover, analysis on individuals undergoing

repeat tests should also be conducted in order to investigate changes that might occur over

training/time. Additional limitations of this study are originated in the nature of the algorithm,

according to which the chosen predictable features might change for different datasets. Fur-

thermore, changing the termination condition can affect the number of the chosen predictable

features.

Overall, we have presented a new concept that allows exercise specialists (physiologist and

others), when conducting maximal incremental CPET, to generate additional valuable infor-

mation regarding anaerobic mechanical power outputs which can affect exercise recommen-

dation outcomes.
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