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The increasing number of disease-modifying treatments available for multiple

sclerosis has broadened treatment options for patients, but also challenges

clinicians to select the best therapy for each individual at the appropriate stage

of the disease. Early prediction of treatment response still remains one of the

main difficulties in the management of multiple sclerosis patients. The concept

of ‘no evidence of disease activity’ (NEDA) has been proposed as a surrogate

for treatment response based on the absence of relapses, disability progression

and radiological activity. Although there are several apparently logical argu-

ments for the NEDA approach, there are also some major concerns that have

to be considered and that are not sufficiently addressed yet. Amongst others,

each parameter’s limitations are not eliminated solely by its use within a com-

posite score, and the contribution of each parameter to NEDA is not well bal-

anced, as the detection of, for example, a single new magnetic resonance

imaging lesion is considered as significant as the occurrence of a severely dis-

abling relapse. NEDA in its current form also neglects underlying pathophysi-

ology of the disease, has not been shown to fulfil formal criteria of a

surrogate marker and its prognostic value has not been sufficiently evidenced

yet. From a clinical point of view, ‘evidence of disease activity’ seems the

more relevant surrogate; however, its implications are even less clear than

those of NEDA. Here, existing literature on NEDA is critically reviewed and

improvements are discussed that value its potential use in clinical trials and,

even more importantly, treatment decision making in daily routine.

Introduction

Multiple sclerosis (MS) is an immune-mediated

chronic inflammatory demyelinating and neurodegen-

erative disorder of the central nervous system and the

most frequent cause of neurological disability in

young adults [1]. Several disease-modifying treatments

(DMTs) have been shown to ameliorate the relapsing

disease course; nevertheless MS remains a serious con-

dition as none of these treatments is able to halt the

disease as evidenced by ongoing – even though

reduced – clinical deterioration and para-clinical dis-

ease activity in treated patients [2–19].
A high degree of disease heterogeneity extending from

its clinical course [20], radiological features [21] to under-

lying pathology [22] might partially explain the limited

efficacy of different DMTs at a group level as well as

variable individual treatment response. This has gener-

ated the need for surrogate markers able to reliably eval-

uate the impact of therapeutic interventions [23].

Clinical parameters such as relapse rate and disability

progression were supplemented by various magnetic res-

onance imaging (MRI) parameters in earlier studies, and

a multitude of body fluid markers were investigated with

regard to their predictive capability. However, only a

few parameters have been introduced into clinical rou-

tine so far, all of them reflecting a certain aspect of MS

disease activity or response to treatment.
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With the emergence of more effective DMTs, the

treatment paradigm of MS has been shifting in recent

years from aiming at partial response to complete

remission [24,25]. To achieve complete remission in an

immune-mediated inflammatory disease is not a new

concept, as this is already an important goal, for

example, in the treatment of rheumatoid arthritis, and

combinations of clinical and laboratory assessments

became accepted as measures of treatment success

[26–29]. In relapsing MS, the concept of ‘no evidence

of disease activity’ (NEDA) – previously termed ‘dis-

ease activity free’ (DAF) – has been proposed based

on the absence of clinical deterioration and MRI

activity [24]. The combination of these parameters

enables a more comprehensive assessment of treat-

ment effects than by using just one singular parameter

[25,30–32]. Although it seems logical to use this com-

posite as a treatment goal in MS, there are some con-

cerns that are not sufficiently addressed in the current

debate.

Surrogate marker for treatment response in
MS

A surrogate is defined as ‘a biomarker intended to

substitute for a clinical end-point’ [33]. Different

parameters such as MRI metrics [34], body fluid

markers [35] or even clinical characteristics [36–39]
might be used as a surrogate in order to assess a pre-

specified clinical end-point. As clinical end-point, one

might use for example disability as assessed by the

Expanded Disability Status Scale (EDSS) [40], because

disability represents the sustained consequence of dis-

ease activity and failure of treatment response in MS.

One of the main requirements of a surrogate mar-

ker is its capacity to mediate, in the short term, the

effects seen on the clinical (true) outcome in the long

term [34]. A proper surrogate marker of treatment

response would also discriminate between the natural

history of the disease (i.e. disease activity) and a true

response to the treatment (i.e. the net effect of the

DMT in reducing disease activity) [41].

No evidence of disease activity – NEDA

Since the first clinical study using combined assess-

ments in MS [42], definitions of NEDA and its com-

ponent measures applied in clinical trials have varied

markedly. Generally, NEDA is defined by the absence

of relapses, disability progression and MRI activity

(thus termed NEDA-3). For this purpose, disability

progression was defined as increase in the EDSS score

usually confirmed after 3–6 months. Radiological

activity was defined as occurrence of contrast-

enhancing lesions (CELs) in T1-weighted or new/en-

larging hyperintense lesions on T2-weighted MRI

[24,25] (Table S1). Some authors suggested including

further parameters such as brain volume loss (BVL)

determined by MRI (NEDA-4) or, recently, neurofila-

ment levels in cerebrospinal fluid to better reflect a

complete view of MS disease activity [25,43].

To understand the capability of NEDA, one has to

look first at the limitations and drawbacks of the sin-

gle component measures, which – contrary to com-

mon opinion – are not automatically eliminated when

combined in a composite. Whilst the sensitivity to

detect MS disease activity is higher applying a com-

posite such as NEDA than single component mea-

sures by capturing different aspects of MS disease

activity (e.g. inflammatory activity and neurodegener-

ative damage), the intrinsic limitations of these mea-

sures still remain.

Relapses – the first domain of NEDA

The number of relapses and the annualized relapse

rate represent the oldest descriptors of MS disease

activity and are used as outcome measures both in

clinical trials and clinical routine [20,44]. The occur-

rence or non-occurrence of relapses carries significant

prognostic value for long-term accumulation of dis-

ability and risk for conversion to secondary progres-

sive MS as evidenced by large natural history studies

stemming from both the pre- and post-DMT era

[36–39,45–47]. These studies clearly demonstrate that

relapses have a prognostic impact especially if occur-

ring in the early disease phase [48].

However, the use of relapses as an outcome mea-

sure has major limitations. In general, relapses are rel-

atively rare events. In recent trials, untreated MS

patients showed an annual relapse rate of ~0.4
[5,11–13,16]. As a consequence, long observation peri-

ods (of at least 2 years) are needed to establish

whether a treatment is effective in reducing relapse

rate. Furthermore, the mere counting of relapses does

not account for differences in relapse severity and

extent of remission. Several studies reported an unfa-

vourable prognostic impact of a severe relapse with

incomplete remission compared to a mild relapse with

complete remission regarding the time to reach a cer-

tain disability level or the progressive disease phase.

Also, type of relapse symptoms as well as the presence

of monofocal or multifocal symptoms imply some

prognostic value [36–39,49–51]. Brainstem, cerebellar

or spinal cord syndrome is associated with poor

recovery from relapse [52] and multifocal symptoms

with shorter time to reach a certain level of disability

[39]. Finally, relapse rates differ significantly
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depending on whether relapses are defined as equiva-

lent to an increase in functional system or EDSS score

(confirmed by neurologist), or whether relapses are

just reported by the patient without the need of objec-

tive change in neurological function. This difference of

documentation may account for a more than 2-fold

higher relapse rate in the reported versus confirmed

relapse group [53].

Disability progression – the second domain of NEDA

Physical disability and its worsening over the disease

course can be measured by a large armamentarium of

scales and tools with the EDSS the most widely used

[40]. It has been consistently shown that the extent of

disability accumulation as measured by the EDSS 2

and 5 years after MS diagnosis is predictive for the

level of disability later [38,39,48]. Also, shorter time to

disability progression is associated with higher disabil-

ity in the long term [54] and sustainability of disability

accumulation is highly predictive for long-term out-

come not only at the group but also at an individual

level [42].

Assessment of disability by the EDSS has some

well-known limitations as it measures a mixture of

disability and impairment, is strongly driven by walk-

ing impairment and mostly disregards neuropsycho-

logical disability and upper-extremity function

[55–57]. MS patients with stable EDSS score might

show cognitive deterioration [58]. Worsening of upper-

extremity function as assessed by the nine-hole peg test

is observed in ~20% of higher disabled MS patients

with stable EDSS [57]. Furthermore, EDSS does not

reflect an increase of disability in a linear manner, as

greater rates of change are observed for lower EDSS

scores [59,60]. There are also certain constellations

where an acute relapse does not result in a change of

EDSS score [61], and long observation periods are usu-

ally needed to record disability progression.

New focal lesions on brain MRI – the third domain of

NEDA

The valuable contribution of MRI – visualizing the

typical inflammatory demyelinating lesions in the

white (and grey) matter – to diagnosis [44] and differ-

ential diagnosis [62] of MS is unquestionable. It is

widely agreed that MRI measures are more sensitive

indicators of MS disease activity than clinical mea-

sures, as the ability of MRI to visualize lesions is an

order of magnitude greater than the ability of clinical

observation to detect relapses or disability progression

– especially in the early disease phase. This phe-

nomenon, referred to as the clinico-radiological

paradox, has been consistently observed throughout a

multitude of MS clinical trials [63]. The higher sensi-

tivity of MRI to detect new lesions has led to revi-

sions of MS diagnostic criteria and is the basis for

earlier diagnosis by establishing dissemination in time

much more quickly than would be possible only by

‘waiting’ for occurrence of a further relapse [44,64].

Detection of new lesions on follow-up MRI scans

has also been suggested as a surrogate for treatment

effects [25], as DMTs significantly reduce the occur-

rence of new T2 lesions [2,5,7–12,14,15,17–19,65] and
as the number of new T2 lesions correlates with future

disability [66,67]. However, the burden and accumula-

tion of T2 lesions in MS patients correlate only

weakly with clinical measures of disability [65–67].
The studies indicating a stronger correlation included

patients with clinically isolated syndrome [68–70];
hence, the correlation between T2 lesions and future

disability was artificially strengthened by adding a

group of subjects without MS. In interferon-b trials, it

has been shown that MRI metrics mediate only about

50% of the treatment effect on relapses [71] and dis-

ability progression [67]. Furthermore, one has to con-

sider that there is a difference between the simple

correlation of T2 lesion load or new T2 lesions with

future disability and the ability to predict disability

progression by an increase in T2 lesions at a certain

time point using a pre-specified cut-off. Accordingly,

highly variable results have been reported on the rele-

vant number of new T2 lesions to predict disability

progression. Whereas the Rio score proposed >2 new/

enlarging T2-hyperintense lesions or T1-CELs deter-

mined after 1 year of treatment as relevant (and

weighted this number of new MRI lesions as signifi-

cant as the occurrence of relapse or disability progres-

sion) [30], the modified Rio score suggested >4–5
lesions to predict disability progression during follow-

up [31]. A Canadian group stated that treatment mod-

ification should be considered when one to three new

T2-hyperintense or T1-CELs occur within 1 year [32].

Whilst it is self-explanatory that occurrence of new

MRI lesions principally reflects MS disease activity, a

validated and reliable cut-off for prediction of long-

term disability progression being the basis for treat-

ment decision making has yet to be determined. Pre-

dictive capabilities of different scores are displayed in

Table 1. At this point, it has to be stated that evidence

on the predictive value of new MRI lesions is limited

mainly to MS patients treated with interferon-b.

Brain volume loss – the fourth domain of NEDA?

The occurrence of relapses and new focal MRI lesions

provides useful information about the inflammatory

© 2018 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.
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activity of MS, but does not adequately account for

neurodegenerative disease progression. Also, disability

assessment by the EDSS only partially reflects neu-

rodegenerative damage. Evidence for this is provided

from studies that observed cognitive deterioration

amongst patients achieving NEDA-3 [58].

The macroscopic correlate of neurodegeneration

is brain atrophy, which defines irreversible loss of

brain volume. It is the result of various destructive

pathological processes, including irreversible

demyelination, axonal and/or neuronal loss, and

astroglial scarring [72]. BVL occurs already in the

earliest stage of MS and may progress to brain atro-

phy throughout the disease course [73,74]. BVL cor-

relates with cognitive impairment [75] and disability

progression [76–79]. BVL determined by MRI has

been suggested to complement NEDA stratification

(termed NEDA-4).

There are some limitations of this MRI parameter.

The effect size of BVL is usually small, especially if

determined within a short time period (of 1–2 years).

Timing of MRI scans with regard to the start of

DMT has also to be considered, as brain volume

excessively decreases within the first 6–12 months of

treatment, followed by a certain degree of stabilization

during later periods (so called pseudoatrophy) [78]. In

addition to disease-specific changes, standardization

of respective MRI techniques and read-outs [80] as

well as lifestyle-related factors (including alcohol con-

sumption or smoking), medication (e.g. lamotrigine,

diuretics) and concomitant pathophysiological condi-

tions (e.g. diabetes or vascular risk factors) have been

shown to impact brain volume [72,81,82]. Altogether,

clinical interpretation of BVL in patients with MS

might be difficult in the context of the above discussed

variables. The MAGNIMS consensus guidelines cur-

rently state that ‘the use of longitudinal brain volume

assessment as a marker of disease progression in indi-

vidual patients cannot be considered to be reliable at

present’ [72].

No evidence or evidence of disease activity
(NEDA vs. EDA)?

Determination of the prognostic impact of relapse(s),

disability progression, new MRI lesion(s) or BVL still

remains a considerable unresolved problem in the

management of MS patients, partially due to

the parameters’ limitations discussed above. With the

development of the composite NEDA, one’s focus

might shift on selection of patients who do not show

any disease activity. Indeed, a recent study showed

that NEDA-3 status allows better early prediction

(e.g. after 2 years) of long-term stability (i.e. EDSS

score change ≤0.5 after 7 years) than its individual

component measures (relapses, disability progression

or MRI activity), reaching a positive predictive value

of 78% [83]. Another study including interferon-b
treated MS patients even revealed a positive predictive

value of NEDA at year 1 of 86% to predict stable

disease [84]. However, patients without disease activ-

ity, i.e. fulfilling NEDA criteria, constitute a small

proportion, especially in the long term or if receiving

first-line DMT, and do not pose a challenge in clinical

routine, because in these patients no change of treat-

ment strategy is necessary.

Table 1 MRI criteria for treatment response prediction in interferon-b treated relapsing–remitting multiple sclerosis patients

Reference

Surrogate Clinical end-point Results

Criteria for treatment response Time point Definition Time point Sensitivity Specificity

R�ıo et al. (2008) [104] ≥3 new/enlarging T2 or

contrast-enhancing lesions

Year 1 Disability progression Year 3 71% 77%

R�ıo et al. (2009) [30] ≥3 new/enlarging T2 or contrast-

enhancing lesions plus ≥1
relapse or confirmed increase

≥1 point in EDSS

Year 1 Relapse and/or

disability progression

Year 3 Odds ratio 3.3–9.8 for

relapses

Odds ratio 6.5–7.1
for progression

Sormani et al. (2013) [31] ≥5 new T2 lesions and ≥1
relapse; or ≥2 relapses

Year 1 ≥1 relapse and/or

disability progression

Year 4 24% 97%

Prosperini et al. (2014) [105] ≥1 relapse plus ≥9 T2 lesions or

≥1 contrast-enhancing lesion

Year 1 Relapse and/or

disability progression

Year 4 34% 90%

≥1 relapse or ≥1 contrast-

enhancing lesion or ≥2 new T2

lesions

Year 1 Relapse and/or

disability progression

Year 4 68% 80%

≥1 contrast-enhancing lesion

or ≥2 new T2 lesions

Year 1 Relapse and/or

disability progression

Year 4 61% 83%

Odds ratios refer to the probability that patients meeting the criteria will demonstrate the outcome measure, relative to patients who do not

meet the criteria; Table adapted after Wattjes, M. P. et al. Nat Rev Neurol 2015; 11: 597–606. EDSS, Expanded Disability Status Scale.
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The remaining patients, i.e. those with evidence of

disease activity (EDA), would be especially in need of

a surrogate marker supporting treatment decision

making. Unfortunately, capability of ‘loss of NEDA-

3’ to predict long-term disability is quite low (up to

40%; Table 2) [83–85], i.e. loss of NEDA does not

automatically imply poor prognosis. There might be

several reasons for this. In the current version of

NEDA, clinical information of disability progression

and MRI disease activity are strongly reduced by

dichotomization. It seems obvious that there is a

prognostic difference between an EDSS increase of,

for example, 2 vs. 0.5 points. Similarly, in the case of

new MRI activity, the detection of for example one as

opposed to nine new T2 lesions implies a different MS

disease activity and higher risk for disease progression

at the individual level. Regarding BVL, prognostic

value is also probably not appropriately reflected if

dichotomized by the suggested annual threshold of

0.4% [85,86]. In a recent study, the predictive value of

NEDA-3 was even lost if BVL was added [85]. Fur-

thermore, the different component measures building

NEDA are not well balanced amongst each other, e.g.

the detection of a single new MRI lesion is considered

as significant as the occurrence of a severe disabling

relapse. Besides the different impact in terms of sever-

ity, the probability of worsening in one of the three

component measures is different with MRI being the

most sensitive and EDSS the least sensitive [83,86]

(Table S1).

Requirements for standardization

Definitions of NEDA and its component measures

used in clinical trials have varied substantially

(Table S1). Profound evaluation of NEDA or EDA is

impossible without harmonization of definitions of

relapse, disability progression and MRI activity.

Whilst the core definition of relapse, i.e. symptoms

typical of an acute inflammatory demyelinating event

in the central nervous system (CNS), with duration

≥24 h, in the absence of fever or infection, has been

used relatively uniformly as specified in the MS diag-

nostic criteria [44], there are differences in terms of

relapse confirmation. Some studies included relapses

reported by the patient, whereas others required an

objective change in neurological function. As a recent

study showed a more than 2-fold differing relapse rate

depending on whether relapses were confirmed or

reported [53], this issue is of high relevance and

impacts on the rate of NEDA.

For definition of disability progression, some stud-

ies considered an increase of ≥1 step in the EDSS

scale as deterioration, whereas others took baseline

EDSS score into account, i.e. considering an

increase ranging between 0.5 and 1.5 as significant

depending on the previously determined EDSS score.

Sustainability of disability progression was also used

inconsistently in different studies, i.e. the time period

after EDSS progression requested for confirmation

varied between 3 and 12 months. It is obvious that

a uniform and unequivocal definition for disability

progression is required before its use within a com-

posite.

Regarding MRI metrics, image acquisition tech-

niques (e.g. pulse sequence or spatial resolution) as

well as image analyses require standardization. In

particular, the reliable determination of new/enlarg-

ing T2 lesions and BVL requires high-quality imag-

ing and an experienced neuro-radiologist, a

circumstance that is not achievable in every region

of the world. Detection of new/enlarging T2 lesions

can be hindered by multiple factors, including a high

load of T2 lesions, inadequate repositioning of serial

scans and inter-observer variability [87]. Moreover,

there are no standardized protocols for T2 lesion

counting, which can be performed manually or

(semi-)automatically. The value of CELs in addition

to T2 lesion load is also not fully elucidated.

Whereas older studies performing weekly MRI

reported an increase in sensitivity for detection of

new MRI lesions when contrast-enhanced T1-

weighted imaging was done in addition to T2-

weighted imaging [88–90], a recent study using a

large population of patients from the FREEDOMS

trials indicated that T2 lesion changes almost invari-

ably coincided with CELs [86]. MRI frequency is

another issue of utmost importance, especially if the

occurrence of CELs is counted, as they only appear

for a certain time period (up to several weeks) [91].

Infrequent assessments may be biased by chance

pick-up or underreporting of lesion load changes.

The consequences are clear: the more frequently

assessments are performed, the less favourable

NEDA outcome is recorded. Thus, time points of

assessments have to be standardized. With regard to

brain atrophy assessment, differences in the quality

and capabilities of MRI hardware as well as in soft-

ware packages used for analysis or processing can

generate notable variability [72,92].

No evidence of disease activity as an
additional outcome measure versus

predictive surrogate marker for treatment
response

The majority of studies on NEDA have simply per-

formed post hoc analyses each combining the
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percentage of patients remaining free of relapses, free

of disability progression and free of MRI activity. In

this context, NEDA is solely an additional outcome

measure for disease activity at the end of an observa-

tion period. These studies were not designed to inves-

tigate whether the proportion of patients achieving

NEDA was higher in any treatment arm (e.g. active

treatment versus placebo; Table S1).

Only a few studies investigated the predictive value

of NEDA for future disability [83–85]. Whilst in some

studies early loss of NEDA status (after 1–2 years)

was associated with higher risk of disability in the

middle to long term (7–12 years), these findings were

not confirmed in a recent large prospective cohort

study [93].

Conclusions and perspectives

The increasing number of DMTs available for MS

has broadened treatment options for patients, but also

challenges clinicians to select the best therapy for each

individual at the appropriate stage of disease. Whilst

it is widely agreed to initiate early and effective treat-

ment in order to improve long-term outcome [94–99],
some of the more efficacious DMTs pose considerable

risks such as progressive multifocal leukoencephalopa-

thy or secondary autoimmunity [100,101]. The optimal

time point to switch from a first-line to an escalation

treatment considering the patient’s individual

risk�benefit balance is still an unresolved issue. Most

product labels still require clinical disease activity such

as occurrence of relapse(s) (partially reflecting inclu-

sion criteria of pivotal trials). In the last decade, there

was and still is great research interest in identification

of surrogate markers allowing early determination of

failure or response to a certain DMT (e.g. Rio score)

and legitimating rational treatment switch.

‘No evidence of disease activity’ has been proposed

as a disease activity marker based on the absence of

relapses, disability progression and radiological activ-

ity. Some authors have even suggested NEDA as a

predictive marker for treatment response and long-

term disability. However, NEDA has some consider-

able, conceptual limitations. Whilst NEDA as a com-

posite score – in contrast to individual parameters �
captures different aspects of MS disease activity,

valuable clinical information is lost through

dichotomization. Another main drawback amongst

others is the imbalance between the different component

measures (Table 3).

‘No evidence of disease activity’ might be used as

an additional outcome parameter in clinical trials

besides the established primary end-points relapse rate

and EDSS progression and the various secondary

MRI end-points. As loss of NEDA is mainly driven

by MRI activity (Table S1) which is still not accepted

as a surrogate marker of CNS inflammatory activity

by regulatory authorities such as the European

Medicines Agency or the US Food and Drug Admin-

istration, it seems unlikely that the significance of

NEDA will increase and top those of clinical end-

points in the near future.

Evidence on NEDA to predict future disability and

treatment response, respectively, is insufficient and

contradictory [83–85,93]. NEDA has not been shown

to fulfil the criteria of a surrogate marker [102] and

has yet to be validated in prospective trials. Therefore,

NEDA is far from being implemented in clinical rou-

tine for treatment decision making. A special caveat

regards the use of NEDA for comparisons of different

treatments to choose which is best. Such drug market-

ing driven comparisons are currently scientifically dis-

honest. Furthermore, the majority of patients do not

reach NEDA-3 after 2 years. Inclusion of more

parameters into the composite leads to lower propor-

tions of patients fulfilling NEDA criteria (e.g. the pro-

portion of patients with NEDA-3 is relatively reduced

by ~40% upon addition of BVL) [85,86,103]. This

narrows the group of patients with no disease activity

indicating optimal treatment response, but does not

allow prediction of long-term outcome in the large

majority of patients.

In the process of developing a surrogate marker for

MS disease activity and treatment response, first the

real and independent value of each individual parame-

ter has to be clarified and weighted appropriately.

Then, the more promising approach requires a

Table 3 Strengths and limitations of NEDA

Limitations Strengths

Low predictive value of EDA

for future disability progression

High predictive value of NEDA

for no future disability

progression

Extent of disease activity is

disguised by dichotomization

(e.g. one versus nine new T2

lesions)

Aim to capture and combine

different assessments of MS

disease activity

Component measures not

balanced (e.g. one new T2

lesion versus severe relapse)

A composite score would

describe treatment outcomes

easier than its single parameters

Loss of NEDA is mainly driven

by MRI activity

Intrinsic limitations of

component measures still

present if combined

No standardized definition of

NEDA and its components

EDA, evidence of disease activity; MRI, magnetic resonance ima-

ging; MS, multiple sclerosis; NEDA, no evidence of disease activity.
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statistical model that includes this pre-defined bundle

of parameters and considers their different predictive

capabilities, returning a probability for disease pro-

gression within a specified time period instead of

returning only a 0 or 1 result.

Finally, despite the high and still evolving impor-

tance of MRI in MS, other measures such as body

fluid markers might be included in a composite

score. Body fluid markers allow insights into the

underlying pathological disease process. In contrast

to NEDA, which solely indicates disease activity,

body fluid markers can specifically indicate response

or failure to a certain DMT based on its mode of

action. The already established and potentially

evolving body fluid markers have recently been

reviewed elsewhere [41]. Also, patient-related out-

come measures might be considered in developing a

composite score to capture the quality of life of MS

patients whose improvement is obviously one of the

most important treatment goals.

In conclusion, there is still an urgent and unmet

need of a surrogate marker for prediction of disease

activity and response to DMT. Unquestionably,

‘absence of disease activity’ is the main goal for MS,

but NEDA in its current form does not come up to

the set requirements.
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