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Acute Kidney Injury in Trauma 
Patients Admitted to Critical Care: 
Development and Validation of a 
Diagnostic Prediction Model
Ryan W. Haines   1,2, Shih-Pin Lin3,4, Russell Hewson1,2, Christopher J. Kirwan1,2,6,  
Hew D. Torrance   1,2,5, Michael J. O’Dwyer1,2, Anita West5, Karim Brohi   5, Rupert M. Pearse1,2, 
Parjam Zolfaghari1,2 & John R. Prowle   1,2,6

Acute Kidney Injury (AKI) complicating major trauma is associated with increased mortality and 
morbidity. Traumatic AKI has specific risk factors and predictable time-course facilitating diagnostic 
modelling. In a single centre, retrospective observational study we developed risk prediction models 
for AKI after trauma based on data around intensive care admission. Models predicting AKI were 
developed using data from 830 patients, using data reduction followed by logistic regression, and 
were independently validated in a further 564 patients. AKI occurred in 163/830 (19.6%) with 42 (5.1%) 
receiving renal replacement therapy (RRT). First serum creatinine and phosphate, units of blood 
transfused in first 24 h, age and Charlson score discriminated need for RRT and AKI early after trauma. 
For RRT c-statistics were good to excellent: development: 0.92 (0.88–0.96), validation: 0.91 (0.86–0.97). 
Modelling AKI stage 2–3, c-statistics were also good, development: 0.81 (0.75–0.88) and validation: 
0.83 (0.74–0.92). The model predicting AKI stage 1–3 performed moderately, development: c-statistic 
0.77 (0.72–0.81), validation: 0.70 (0.64–0.77). Despite good discrimination of need for RRT, positive 
predictive values (PPV) at the optimal cut-off were only 23.0% (13.7–42.7) in development. However, 
PPV for the alternative endpoint of RRT and/or death improved to 41.2% (34.8–48.1) highlighting death 
as a clinically relevant endpoint to RRT.

Acute Kidney Injury (AKI) is a common complication of severe trauma that is independently associated with 
increased morbidity and mortality in patients admitted to the intensive care unit (ICU)1,2. As increasing numbers 
of trauma patients are surviving their initial life threatening illness, earlier diagnosis and treatment of complica-
tions such as AKI are important areas for intervention, aiming to improve short and long-term outcomes3,4. The 
current management of AKI in the general critical care population is early identification of AKI, limiting ongo-
ing or recurrent renal injury and providing supportive management of advanced renal dysfunction5. However, 
traditional markers of AKI, urine output and serum creatinine, are late and non-specific biomarkers of renal 
dysfunction, which may preclude early preventative intervention. Consequently, there is considerable interest in 
strategies that target interventions in patients with evolving AKI identified using novel methodologies including 
risk prediction models and/or AKI-specific biomarkers6–8.

Major trauma patients are exposed to a multitude of risk factors for AKI, including systemic inflammation, 
hypovolemic shock, massive transfusion, rhabdomyolysis, abdominal compartment syndrome and major sur-
gery9,10. As in trauma presentation is usually early, rapid predictive modelling for development of AKI or need 
for renal support might enable interventions to improve outcomes such as the early commencement of RRT. 

1Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London, E1 1BB, UK. 
2William Harvey Research Institute, Queen Mary University of London, London, UK. 3Department of Anesthesiology, 
Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan. 4Division 
of Biostatistics, Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National 
Taiwan University, Taipei, Taiwan. 5Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, 
London, UK. 6Department of Renal Medicine and Transplantation, The Royal London Hospital, Barts Health NHS 
Trust, Whitechapel Road, London, E1 1BB, UK. Ryan W. Haines and Shih-Pin Lin contributed equally to this work. 
Correspondence and requests for materials should be addressed to J.R.P. (email: j.prowle@qmul.ac.uk)

Received: 24 October 2017

Accepted: 7 February 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-4864-2825
http://orcid.org/0000-0002-3854-1748
http://orcid.org/0000-0003-0643-8866
http://orcid.org/0000-0002-5002-2721
mailto:j.prowle@qmul.ac.uk


www.nature.com/scientificreports/

2SCIENTIfIC REPOrTs |  (2018) 8:3665  | DOI:10.1038/s41598-018-21929-2

Previously described demographic risk-factors for AKI in trauma populations, include older age, greater comor-
bid disease and diabetes1,2,11,12. However, most previous studies have not integrated early biochemical and clinical 
data in attempting to predict AKI outcomes after major trauma.

We hypothesised that demographic, clinical, biochemical and physiological parameters around trauma-ICU 
admission might accurately predict the development of AKI and need for RRT in the ICU. To address this ques-
tion, we performed a retrospective cohort study of trauma ICU admissions with multivariable modelling for AKI 
outcomes utilising distinct development and validation patient cohorts.

Methods
We conducted a single centre, retrospective observational cohort study of trauma admissions to the Royal London 
Hospital Adult Critical Care Unit, a Level-1 trauma centre in central London. This study was approved by the 
Barts Health/Queen Mary University of London Joint Research Office as a retrospective review of data collected 
as part of usual patient care without requirement for research ethics committee review. We followed the TRIPOD 
statement guidelines for methodology and reporting of multivariable predictive modelling.

The development cohort comprised all admissions from February 1st, 2012 to October 31st, 2014 with the 
validation cohort admitted from November 1st, 2014 to May 1st, 2016. We considered all trauma admissions to 
the emergency department (ED) of the Royal London Hospital that were admitted either directly to the adult 
ICU or via the operating theatre. To examine a population at risk of new AKI diagnosis in hospital we excluded 
advanced renal dysfunction at hospital admission (first creatinine value >354 µmol/L or history of end stage renal 
disease) deaths within 24 h from ICU admission. As well as developing and validating predictive models for AKI 
outcomes, we examined the relationship between AKI of varying severity with survival and hospital length stay.

Clinical, laboratory and demographic data was collated from the following sources: The Royal London 
Hospital trauma admission database (Collector, Digital Innovation Inc, Forest Hill, MD, USA), the Adult Critical 
Care Unit intensive care national audit centre (ICNARC) database and Barts Health Cerner Millennium power-
Insight data warehouse (Cerner Inc, Kansas City, MI, USA) for pathology data. Data linkage was performed by 
members of the clinical research team and collated records were pseudo-anonymised prior to detailed analysis. 
The Royal London Hospital trauma database inclusion criteria are the same as those of the national Trauma Audit 
and Research Network that collects information on all presenting major trauma patients (those with a hospital 
length of stay of 72 hours or more, and/or requiring high dependency care, and/or where a death occurred in 
hospital)13. From this larger trauma dataset, we only included patients admitted to the ICU either directly from 
the ED or via the operating theatre.

The primary outcome was prediction of development of AKI requiring RRT. Secondary outcomes included; 
prediction of all AKI (stages 1–3) and moderate-severe AKI (AKI stages 2–3) and within all AKI groups the pre-
diction of AKI and/or death. AKI was diagnosed and staged using the serum creatinine (SCr) criteria of the 2012 
KDIGO AKI guidelines; namely, any increase in SCr ≥26.5 µmol/L within 48 hours or an increase in SCr ≥1.5 
times baseline SCr within 7 days14. AKI stage 2 was then defined as a ≥2 but <3 fold increase in SCr from peak to 
baseline and AKI stage 3 as a ≥3 fold increase in SCr, a rise of ≥26.5 µmol/L to ≥354 µmol/L or any AKI treated 
with RRT14. Due to the acute nature of trauma admissions baseline SCr was defined as the first documented SCr 
in hospital.

Statistical analysis.  Statistical analysis was performed in R v3.3.3 (R Foundation for Statistical Computing, 
Vienna, Austria) using RStudio v1.0.136 (RStudio Inc, Boston, MA, USA). Continuous data are presented median 
with interquartile range (IQR) or range with the Wilcoxon rank sum test, categorical data were compared using 
Fisher’s test. Cumulative incidence of the competing endpoints of death in hospital or hospital discharge alive 
were plotted for AKI/No AKI and more severe AKI (stage 2–3). The effect of AKI severity on hospital survival 
was modelled using logistic regression with adjustment for variables expected to be associated with risk of death: 
simplified acute physiology score-2 (SAPS-2) in the first 24 hours after ICU admission (excluding serum urea 
component), admission trauma new injury severity score (NISS), age and the presence of severe brain injury (an 
abbreviated injury score of >3 for the Abbreviated Injury Scale head component)15.

In predictive modelling for AKI and RRT we considered the following variables, chosen based on data avail-
ability, physiological plausibility and the existing literature: age, sex, NISS, ED systolic blood pressure, Charlson 
Comorbidity Index (based on ICD-10 coding from the current and any previous admissions using the mapping 
of Quan)16, units of packed red blood cells (PRBC) transfused in the first 24 h from hospital presentation and first 
blood results in hospital for the following assays: activated partial thromboplastin time (APTT) ratio, albumin, 
alanine aminotransferase (ALT), amylase, calcium, C-reactive protein (CRP), creatine kinase (CK), SCr, haemo-
globin, international normalised ratio (INR), arterial blood lactate, red cell distribution width, phosphate, platelet 
count, total bilirubin and white blood cell count. For model building missing values were handled by simul-
taneous transformation and single imputation17. To avoid over-fitting, we undertook stepwise data-reduction 
using hierarchical clustering principal component analysis to define a limited set of candidate variables for 
model-building. For clusters containing >1 variable the first principal component of the transformed variables 
within the cluster was then extracted and analysed together with age and single variable clusters in logistic regres-
sion for prediction of AKI outcomes. This was followed by backward variable selection based on minimisation of 
the AIC. The final models for prediction of any AKI, AKI stage 2–3 and need for RRT in ICU were then selected 
by a further process of backward elimination. Global goodness of fit was assessed by unweighted sum of squares 
test and by plotting of bootstrap calibration curves. The validation dataset was assessed against the development 
models with no additional variable selection or model fitting. Model performance was assessed by the c-statistic 
in the development and validation datasets as well as diagnostic discrimination at cut-off values defined by the 
Youden-Index. Finally, to explore differing cut-offs and the relative contribution of predictors in determining risk 
we examined the variables identified in logistic regression in classification and regression tree (CART) modelling.
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Results
After exclusions, we identified 830 patients in our development dataset (Fig. S1) of which 163 (19.6%) devel-
oped KDIGO-creatinine AKI stage 1–3 in the seven days after trauma (maximum stage 1–100, 2–13 and 3–50). 
Median time to maximum SCr was 1.6 days (IQR 0.8–2.6) and 2.7 days (2.3–3.7) for AKI stage 1 and AKI stage 
2–3 respectively. RRT, exclusively delivered as continuous RRT, was required for 42 (5.1%) patients and median 
time of commencing RRT was 1 day after ICU admission (IQR 1–3). Median age was 40 years, ISS 25 (17–33), 
NISS 35 (24–50); 156 patients died in hospital (18.8%) – Table 1. Patients with AKI had a significantly higher 
hospital mortality than those without AKI (53/163, 32.5% vs. 103/667, 15.4%) and longer length of stay (Fig. 1). 
AKI patients were significantly older, more likely to have sustained abdominal or pelvic injury and had higher 
ICU illness severity scores in the first 24 h (Table 1). After adjustment for age, NISS, SAPS-2 and presence of brain 
injury, moderate-severe AKI (stages 2–3) was associated with increased hospital mortality (OR 5.35 95% CI: 
2.73–10.47) while AKI stage 1 was non-significant (Fig. S2).

Variable selection and modelling is detailed in the supplementary appendix and summarised in Fig. 2. In 
brief, for prediction of RRT five clusters were identified; of these, only age and the first principal component of 
one cluster were significantly associated with RRT. A model was then developed by backward selection from the 
individual predictor variables within this cluster (ED systolic blood pressure, ED lactate, PRBC’s transfused in the 
first 24 h, and first ALT, CK, SCr, and phosphate) together with age. First SCr, first serum phosphate and number 
of PRBC’s were retained in the final model (Table 2, Fig. S3a). Modelling the development of moderate-severe 
(stage 2–3) AKI and any AKI (stage 1–3) was performed and the same predictors were included in the final mod-
els, except the omission of creatinine from the model for AKI stage 2–3 and the inclusion of Charlson comor-
bidity index in the model for any AKI. The model predicting need for RRT performed excellently with c-statistic 
of 0.92 (95% CI 0.88–0.96) – Fig. 3A 18. However, performance was progressively worse for models predicting 
moderate-severe (stage 2–3) AKI and for any AKI with c-statistics of 0.81 (0.75–0.88) and 0.77 (0.72–0.81), 
respectively (Table 2, Fig. 3B and C).

For validation, we identified 564 patients with incidence of AKI (17.4%), use of RRT (4.4%), hospital mortality 
(18.3%) and distribution of predictor variables comparable to our development dataset (Table S1). Performance of 
the models for RRT and AKI 2–3 prediction was similar in the validation cohort with c-statistics 0.91 (0.86–0.97) 
and 0.83 (0.74–0.92), respectively; however, the model for any AKI performed worse in the validation cohort 
(c-statistic 0.70, 0.64–0.77) – Table 2, Fig. 3A,B,C.

Despite apparently excellent discrimination of RRT, positive predictive value (PPV) at an optimal cut-off was 
23.0% (13.7–42.7) in development and 20.7% (12.9–39.6) in validation although negative predictive value (NPV) 
was >99% (Table S2). However, a number of ‘false positive’ cases died, PPV for the alternative endpoint of RRT 
and/or death at the same cut-offs were 41.2% (34.8–48.1) and 50.5% (42.9–59.2) in development and validation, 
respectively (Table S2). Similar results were seen for prediction of AKI 2–3 and any AKI (Table S2).

CART analysis based on the variables identified in logistic regression demonstrated that large volume blood 
transfusion (≥14–16 units) was the most important determinant of risk for AKI and suggested simple cut-offs to 
identify groups at both high and low risk (Figs S13–S15). Overall CART models defined groups with higher PPV 
for AKI and the composite of death and/or, at the expense of somewhat lower sensitivity (Table S3).

Discussion
Main findings.  From extensive demographic, biochemical and physiological data available close to ICU 
admission we identified, first serum phosphate, transfusion requirement in the first 24 h, age and first SCr as inde-
pendent predictors of RRT, AKI stages 2–3, and any AKI within 7 days of major trauma requiring ICU admission. 
We demonstrated good to excellent discrimination of need for RRT in both development and validation cohorts 
and good discrimination of a wider group of patients with moderate-severe AKI (stage 2–3). Despite the high 
AUC values, PPVs for RRT or moderate-severe AKI were low at around 20%, this may reflect the relative infre-
quency of these endpoints so that even after significant enrichment incidence is low. In keeping with this, despite 
worse AUC the PPV for the any AKI outcome at the optimal cut-off was higher (Table S2). In addition, death may 
be an important and clinically relevant competing endpoint for development of AKI and need for RRT, and many 
“false positive” patients categorised as at risk of AKI stage 2–3 or RRT who did not achieve these endpoints in fact 
died with PPVs for a composite endpoint of death or AKI approaching 50% (Table S2). This suggests that patients 
identified by this model are a very high-risk population where the investigation of AKI-targeted therapy such as 
the early administration of RRT or adherence to “KDIGO bundles” is justified.

To our best knowledge this is the first prognostic model, specific to major trauma patients, to discriminate 
the need for RRT and development of AKI stage 2–3. Importantly, stage 2–3 AKI was associated with increased 
length of stay and independently predicted hospital mortality after adjustment for age and both trauma and 
critical illness severity. Improving early prediction of acute RRT and AKI stage 2–3 is likely to be necessary for 
effective evaluation of targeted interventions to reduce AKI-associated morbidity and mortality8,19–21.

Comparison with existing literature.  In the development cohort, we reported an incidence of AKI of 
19.6% in a predominantly male (81.4%) population with a median age of 42 (IQR 24–50), limited comorbidity 
(Charlson comorbidity index of 0 in 76.5%) and who experienced major trauma (median injury severity score 
25, IQR 17–33). The incidence of AKI in previous trauma-ICU studies ranges between 6 to 37%1,2,12,22,23, reflect-
ing differing patient populations and ICU admission criteria. The incidence of RRT in our development and 
validation cohorts was 5.1% and 4.4% respectively, similar to the 4–7% incidence reported by other investiga-
tors2,11,22–25. In our study, stage 2–3 AKI was associated with increased mortality and increased length of hospital 
stay. In comparable studies of critically ill trauma patients, mortality ranged from 9.2 to 36%1,2,22,23. In a similar 
size cohort Biharoc23 demonstrated an independent association of maximal RIFLE-Risk AKI after trauma and 
mortality which was not evident in our study. This may have been due to the inclusion of less severe AKI defined 
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All No AKI AKI p-value
Missing 
values (n)

n (%) 830 (100) 667 (80.4) 163 (19.6)

Sex = male (%) 676 (81.4) 539 (80.8) 137 (84.0) 0.4

Age (median [IQR]) 42 [27, 57] 40 [27, 54] 50 [31.50, 66] <0.001

Ethnicity (%)

White 620 (74.6) 508 (76.2) 112 (68.7)

Black 85 (10.2) 63 (9.4) 22 (13.5)

Asian 103 (12.4) 80 (12.0) 23 (14.1)

Mixed race/other 21 (2.5) 15 (2.2) 6 (3.7)

Unknown 1 (0.1) 1 (0.1) 0 (0.0)

Charlson Comorbidty Index (%) <0.001

0 635 (76.5) 540 (81.0) 95 (58.3)

1–2 159 (19.2) 106 (15.9) 53 (32.5)

≥3 36 (4.3) 21 (3.1) 15 (9.2)

SAPS-2 (median [IQR]) 35 [28, 43] 35 [27, 41] 41.50 [33, 49.25] <0.001 20

APACHE II (median [IQR]) 12 [8, 16] 11 [8, 15] 15 [12, 19] <0.001 19

NISS (median [IQR]) 34 [24, 50] 34 [22, 50] 34 [25, 50] 0.655 11

ISS (median [IQR]) 25 [17, 33] 25 [17, 33] 25 [19, 34] 0.098 11

Site of Injury

Brain (%) 406 (48.9) 354 (53.1) 52 (31.9) <0.001

Chest (%) 200 (24.1) 158 (23.7) 42 (25.8) 0.65

Abdomen (%) 84 (10.1) 52 (7.8) 32 (19.6) <0.001

Pelvis (%) 78 (9.4) 48 (7.2) 30 (18.4) <0.001

Limbs (%) 68 (8.2) 52 (7.8) 16 (9.8) 0.498

Spine (%) 105 (12.7) 89 (13.3) 16 (9.8) 0.279

Face and Neck (%) 67 (8.1) 58 (8.7) 9 (5.5) 0.237

Other (%) 88 (10.6) 68 (10.2) 20 (12.3) 0.537

Isolated Brain injury (%) 266 (32.0) 238 (35.7) 28 (17.2) <0.001

White blood count - ×109 cells/L (median [IQR]) 12.5 [8.9, 16.7] 12.60 [9.20, 16.70] 12.0 [8.12, 17.17] 0.176 26

Haemoglobin - g/dl (median [IQR]) 12.50 [10.60, 14.07] 12.60 [10.90, 
14.10]

11.90 [9.75, 
13.95] 0.014 24

Platelet count - ×109 cells/L (median [IQR]) 184 [133, 237] 188 [138, 240] 164 [112, 219] 0.002 25

Red blood cell distribution width - % (median [IQR]) 13.7 [13.0, 14.5] 13.5 [13.0, 14.3] 14.20 [13.5, 15.3] <0.001 25

Packed red blood cells - units (median [range]) 0 [0–42] 0 [0–36] 0 [0–42] <0.001 0

APTT ratio (median [IQR]) 1.00 [0.90, 1.10] 1.00 [0.90, 1.10] 1.10 [0.90, 1.30] <0.001 28

International normalised ratio (median [IQR]) 1.10 [1.00, 1.20] 1.10 [1.00, 1.10] 1.10 [1.00, 1.20] <0.001 31

Creatinine serum - µmol/L (median [IQR]) 80 [65, 101] 78 [64, 95] 102 [74, 131] <0.001 7

Urea serum - mmol/L (median [IQR]) 4.8 [3.7, 6.3] 4.70 [3.6, 6.0] 5.7 [4.3, 7.6] <0.001 7

Phosphate - mmol/L (median [IQR]) 1.10 [0.87, 1.37] 1.07 [0.85, 1.31] 1.35 [1.00, 1.76] <0.001 17

Calcium - mmol/L (median [IQR]) 2.02 [1.90, 2.15] 2.03 [1.90, 2.15] 2.00 [1.87, 2.15] 0.305 16

Amylase - unit/L (median [IQR]) 75 [45, 129] 72 [45, 121] 82.50 [46, 180] 0.008 30

Albumin - g/L (median [IQR]) 37 [32, 42] 38 [33, 42] 35 [30, 40] <0.001 11

C-reactive protein serum - mg/L (median [IQR]) 8 [5, 39] 7 [5, 37] 14 [5, 60] 0.024 21

Alanine aminotransferase serum - unit/L (median [IQR]) 36 [22, 78] 34 [21, 72] 51 [27, 120] <0.001 12

Total bilirubin serum - µmol/L (median [IQR]) 10 [7, 18] 10 [7, 17] 12 [8, 24] 0.001 12

Creatine kinase serum - unit/L (median [IQR]) 770 [297, 1741] 708 [279, 1524] 1179 [424, 2790] <0.001 16

ED lactate - mmol/L (median [IQR]) 2.5 [1.7, 4.4] 2.5 [1.6, 3.8] 3.1 [2.0, 6.6] <0.001 177

ED systolic blood pressure - mmHg (median [IQR]) 124 [102, 145] 125 [104, 148] 120 [90, 140] 0.028 67

Radiological contrast in first 24 h (%) 613 (73.9) 494 (74.1) 119 (73.0) 0.86

Hospital length of stay - days (median [IQR]) 19 [8, 39] 18 [8, 38] 21 [8, 45] 0.317

ICU length of stay - days (median [IQR]) 5.2 [1.9, 11.4] 4.6 [1.8, 10.8] 7.2 [3.0, 14.5] <0.001

Hospital mortality (%) 156 (18.8) 103 (15.4) 53 (32.5) <0.001

Table 1.  Baseline characteristics, biochemical parameters and clinical outcome for patients divided into non-acute 
kidney injury and acute kidney injury groups. Sites of injury were defined as an abbreviated injury scale score of 
>2 in up to three body sites. Continuous parameters are presented as median [Inter quartile range] and categorical 
parameters are presented as n (%). AKI acute kidney injury, SAPS-2 simplified acute physiology score two, 
APACHE II acute physiology and chronic health evaluation II, NISS new injury severity score, ISS injury severity 
score, APTT activated partial thromboplastin time, ED emergency department, ICU intensive care unit.
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by a 26.5 µmol/L SCr when using the KDIGO criteria rather than RIFLE as well as differences in definition of 
baseline SCr20,23. There was a similar exposure to radiological contrast in the first 24 hours between the AKI and 
non-AKI groups, Table 1.

The development model harnessed a broad range of variables available around ICU admission including many 
associated with AKI in trauma and general ICU cohorts1,6,23,24,26–28. In this study, Phosphate and SCr (for RRT and 
any AKI only) remained included in the final predictive logistic models for AKI. Phosphate is released by injured 
cells and is excreted by the kidney and might thus represent a marker of cellular injury after major trauma that 
precedes renal and multi-organ dysfunction. McMahon et al. incorporated phosphate as a significant variable into 
a risk prediction tool assessing likely need for RRT in rhabdomyolysis of mixed aetiology29, but to our knowledge 
this is the first description in a solely trauma population. Other prediction models for AKI have incorporated 
initial SCr in the settings of rhabdomyolysis, cardiac surgery and a general critical care cohorts6,29,30. In our study, 
SCr in univariate analysis was not strongly associated with AKI (Table 2), but was retained in models for RRT 
and any AKI in combination with other variables. Patients requiring a high number of PRBCs were at highest 
risk of developing severe AKI, consistent with the findings of several other major trauma studies12,23,24. While 
this may represent an association between transfusion and more severe injury, haemodynamic compromise or 
increased transfusion associated potassium load, the dominant impact of blood transfusion over other measures 
of severity suggests additional transfusion specific risk factors including transfusion related immunosuppression 
with greater risk of infection31 and/or exposure to products of haemolysis, plasma free haem and iron32,33. In 
contrast to other studies34, we did not associate serum creatine kinase levels with AKI, this may reflect the more 
multifactorial aetiology of AKI in our population. In addition, peak creatine kinase occurs 24–48 h after trauma, 
potentially reducing its prognostic significance when assessed immediately at hospital admission. Compared 
to other AKI risk prediction studies in other groups of critically ill patients, our models performed well. The 
c-statistics/AUCs of our models predicting RRT and moderate to severe AKI are comparable to the performance 
of the best novel AKI biomarkers35. In the analogous context of cardiac surgery, use of AKI biomarkers with 
this performance has enabled early intervention through the utilisation of a “KDIGO bundle” which included; 

Figure 1.  Cumulative incidence of death or discharge alive for any acute kidney injury (A) and acute kidney 
injury stage 2–3 (B).
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optimisation of volume status and haemodynamics, avoidance of nephrotoxins and preventing hyperglycaemia 
to modify clinical outcomes36.

Study Implications.  While performance of logistic regression models for RRT and moderate to severe AKI 
was very good, accurate assessment of probability of AKI may not translate into accurate identification of indi-
vidual clinical diagnoses. As described previously, despite apparently well-performing models, PPVs for RRT and 
AKI stages 2–3 were only around 20% (Table S2) but improved considerably, approaching 50% for the composite 
endpoint of death or AKI. This suggests our models do discriminate a population at very high risk of adverse 
outcome but the overall low frequency of RRT use limited its performance to the extent that, while apparently 
highly predictive, one would not be confident in directing therapy on the basis of these predictions beyond a trial 
setting. Similar studies on AKI prediction report comparable PPVs in the range of 27 to 45%6,26,29. Furthermore, 
application of a single cut-off to logistic regression models that provide a continuous probability estimate may 
not represent the optimum way to discretely categorise risk. CART models are well suited to the development of 

Figure 2.  Process of variable selection and modelling for prediction of AKI outcomes.
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clinically interpretable models, but are vulnerable to over-fitting and may lack generalization17. In our complete 
dataset, CART models confirmed high volume transfusion as the most important predictor of AKI outcomes 
and better-categorised high-risk groups, suggesting that this approach could be useful in development of easily 
applicable predictive models from larger datasets (Table S3).

Strengths and weaknesses.  Our study has several strengths, we studied a large cohort of major trauma 
patients employing temporally separated development and validation datasets. We examined a wide range of var-
iables close to ICU admission, but used data-reduction techniques to avoid over-fitting in subsequent predictive 
modelling. The final variables included in our model are also routinely available across other ICUs increasing the 
ease of future external validation.

There are some limitations to this work. As a single centre study, site and nature of injuries, pre-hospital care 
and demographics may not be generalisable to other settings. Similarly, there is considerable variability between 
institutions and clinicians regarding the initiation of RRT which further emphasises the need for external vali-
dation of this work. As discussed previously, the infrequency of RRT as an endpoint resulted in the low PPVs of 
the model and likely impacted the model calibration, Fig. S7. AKI diagnoses were based on SCr and/or need for 
RRT, without urine output information which may have resulted in missed AKI diagnoses. In the absence of true 
baseline SCr in almost all trauma patients, we used the first recorded value in hospital as baseline for AKI assess-
ment – possibly leading to misclassification of AKI. However, estimates of baseline, as used by other investigators, 
is likely to under-estimate true baseline GFR in a younger trauma population37, while a raised SCr that only falls 
after admission is likely to be a transient form of AKI, which is not directly comparable to that related to a rising 
SCr in hospital. We were less successful in discriminating AKI stage 1–3 and this may reflect the multifactorial 

Model for RRT* Model for AKI 2–3* Model for all AKI*
Odds Ratio
or c-Statistic
(95% CI) p-value

Odds Ratio
or c-Statistic
(95% CI) p-value

Odds Ratio
or c-Statistic
(95% CI) p-value

Age
(y)

1.031
(1.012–1.051) 0.0007 1.029

(1.014–1.044) 00001 1.020
(1.010–1.031) 0.0001

First Phosphate 
(mmol/L)

4.56
(2.48–8.40) <0.0001 4.18

(2.54–6.89) <0.0001 2.19
(1.46–3.29) 0.0002

First Creatinine
(μmol/L)

1.009
(1.003–1.015) 0.027 Not retained in model 1.008

(1.003–1.0125) 0.0017

PRBC’s in first 
24 h (Units)

1.121
(1.071–1.175) 0.0007 1.098

(1.054–1.143) <0.0001 1.085
(1.046–1.125) <0.0001

Charlson
Index 1–2
(Reference 0)

Not retained in model Not retained in model 2.36
(1.51–3.68) 0.0002

Charlson
Index ≥3
(Reference 0)

Not retained in model Not retained in model 2.92
(1.35–6.31) 0.0066

c-statistic
Development

0.92
(0.88–0.96) <0.0001 0.81

(0.75–0.88) <0.0001 0.77
(0.72–0.81) <0.0001

c-statistic
Validation

0.91
(0.86–0.97) <0.0001 0.83

(0.74–0.92) <0.0001 0.70
(0.64–0.77) <0.0001

Table 2.  Predictive models for AKI and RRT. RRT renal replacement therapy, AKI acute kidney injury, PRBC 
packed red blood cells. *Full specifications of model in supplementary material.

Figure 3.  Receiver operating characteristic curve for prediction of renal replacement therapy (A), acute kidney 
injury stage 2–3 (B) and all acute kidney injury (C). Corresponding calibration plots available in supplement, 
Fig. S3a,b,c.
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nature of AKI-risk in the trauma population including some risk-factors which only accrue after ICU admission. 
Major blood transfusion was very important in our models, this information was only available as total over the 
first 24 h after trauma not strictly at ICU admission. However, in our experience the vast-majority of these prod-
ucts are provided in the ED and the operating theatre prior to ICU. The Charlson comorbidity index was calcu-
lated from encounters at the Royal London Hospital only and therefore may have underestimated the presence of 
comorbidities. Despite this, the low level of comorbidity recorded is in keeping with the relatively young, trauma 
population. Finally, other potential AKI risk-factors could not be quantified, either because exposure was near 
universal (such as radiological contrast related to trauma-series CT scans), or were not measured in our popu-
lation (such as pre-ICU admission fluid balance, serum myoglobin, or novel AKI biomarkers). Our study thus 
represents only a pragmatic assessment of available clinical data in a real-world context and a benchmark to assess 
additional diagnostic techniques including novel biomarkers. Finally, other methods such as CART modelling 
may improve our discrimination of this high-risk group and provide easy to use decision rules, however they are 
prone to over-fitting and require larger datasets to explore fully.

Conclusions
The development of moderate-severe AKI and need for RRT can be predicted from demographic, clinical and 
biochemical data acquired routinely close to ICU admission. If generalized across other centres, such models 
could provide a tool to target existing and novel approaches for treatment or prevention of AKI immediately after 
trauma ICU admission. This will increase chances of clinical benefit, as well as the power and feasibility of clinical 
trials and provides greater confidence and equipoise to investigate novel AKI targeted therapies.

Data Sharing.  Access to fully anonymised datasets is available on request to the corresponding author, sub-
ject to submission of a proposal and data analysis plan.
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