
Methodologies for assessing auditory structure 
and function
Effects of musical training on brain attributes have been largely 
studied using non-invasive imaging methods, primarily elec-
troencephalography (EEG), magnetoencephalography (MEG), 
magnetic resonance imaging (MRI), and functional MRI (fMRI). 
However, the electrophysiological approaches (EEG and MEG) will 
be emphasized in this review.

Electroencephalography and MEG detect the brain’s electrical 
and magnetic activity, respectively, at the scalp with a millisecond 
resolution. The amplitude of the event-related potential (ERP 
as in EEG) or field (ERF as in MEG) or of the auditory-evoked 
potential/field (AEP/AEF) indicates the size of the activated neural 
population and/or the trial-to-trial phase synchrony of neural fir-
ing when evoked by sensory stimuli (e.g., sound). The latency of 
the ERP/ERF reflects the timing of neural activation. Combined 
with the topography of the neural response (i.e., its position on 
the scalp), these ERP/ERF signatures provide specifics on the 
function and origin of activity (Pantev et al., 2001; Musacchia 
et al., 2008). MRI and fMRI, in contrast, probe the entire brain 
as opposed to scalp activity. MRI provides fine details of brain 
structure due to differences in magnetic properties of brain tissues 
(i.e., white matter versus gray matter). fMRI reveals the hemo-
dynamic response associated with neural activity, and the foci of 
this activity are then superimposed on MRI images to determine 
the precise neuroanatomical structure(s) generating the neural 
activity. Thus, both MRI and fMRI reveal spatially well-defined 
neuroanatomical and functional loci undergoing structural and 
functional changes, for example due to musical training (Ohnishi 
et al., 2001; Hyde et al., 2009).

The brain is astoundingly neuroplastic, and studying neurophysi-
ological alterations due to musical training is an increasingly popular 
method to assess the precise mechanisms underlying neuroplasticity. 
Furthermore, it is particularly interesting to understand how neu-
roplastic changes due to musical training may affect other auditory 
functions, namely speech perception. It has been repeatedly shown 
that musical training modifies the auditory neural circuitry in a way 
that allows for enhanced musical skills (e.g., processing musical timbre, 
pitch contour, and rhythm). However, the extent to which enhanced 
auditory representations and processing due to musical training trans-
fers to other auditory functions, especially speech perception, is an issue 
of exciting debate and a rich topic to explore. In order for enhanced 
auditory skills due to musical training to transfer to speech perception, 
musical training must target the neural mechanisms that underlie 
speech perception and modify them in a way to enhance their function.

From a psychoacoustics perspective, music and speech process-
ing share several mechanisms. To extract meaning from a piece of 
music or ongoing speech, the auditory system must encode pitch or 
voice cues (to identify a musical note or speaker) as well as rhythm 
(the unfolding of words and chords over time in a discourse or sym-
phony), and segregate a voice in the midst of background noise or a 
musical instrument within a symphony orchestra. Thus, the neural 
mechanisms involved in processing music should overlap with and 
influence speech mechanisms (and vice versa). Furthermore, musical 
training should recruit resources associated with speech processing, 
thereby enhancing the neural mechanisms underlying speech percep-
tion (and vice versa). This article reviews neurophysiological evidence 
supporting an influence of musical training on speech perception at 
the sensory level, and discusses whether such transfer could facilitate 
speech perception in individuals with hearing loss (HL).
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Prerequisites for functional transfer following 
acoustical training
Acoustical features of speech and music are represented by a hier-
archical auditory network. Low-level regions [i.e., brain stem and 
primary auditory cortex (A1)] encode simple acoustical features, 
such as sound onset and pitch. More complex features, such as 
spectrotemporal combinations that represent speech or musical 
timbre, recruit higher-level processes in non-primary auditory cor-
tex (NPAC). Studies have provided evidence for neural networks, 
at the level of the auditory cortex and beyond, that are relatively 
specialized for processing either music or speech (Peretz et al., 1994; 
Tervaniemi et al., 1999, 2006; Zatorre et al., 2002; Rogalsky et al., 
2011). However, functional and structural overlap for speech and 
music processing along the sensory (Wong et al., 2007; Sammler 
et al., 2009; Rogalsky et al., 2011) and cognitive (Sammler et al., 
2009; Schulze et al., 2011) levels exist. A prerequisite for the transfer 
of auditory function to speech perception following musical train-
ing is the fostering of greater overlap between the neural mecha-
nisms associated with speech and music perception. To put this 
into perspective consider the following example: since a sound’s 
temporal information, which is fundamental to speech percep-
tion, is favorably processed in the left auditory cortex (Zatorre 
and Belin, 2001; Zatorre et al., 2002), musicians may be inclined to 
regularly use left-hemisphere resources to assess temporal relation-
ships between musical segments (Bever and Chiarello, 2009). This 
in turn may induce neuroplastic modifications in the left auditory 
cortex that would support greater temporal processing for speech 
stimuli in musicians than in non-musicians.

From an electrophysiological perspective (EEG/MEG), musi-
cal training or training in the speech domain, such as learning to 
discriminate slight differences in the fundamental frequency (f

0
) 

of vowels (Reinke et al., 2003) or voice onset time (VOT; Tremblay 
et al., 2001), has been linked to neuroplastic modifications of the 
same neural components associated with processing acoustical fea-
tures common to music and speech. Thus, both forms of training 
may lead to an increase in overlap of the neural mechanisms that 
underlie speech and music processing, and thus a transfer of audi-
tory function between the two domains may be possible. A caveat of 
this assumption is that even if training in speech or music leads to 
modification of the same neural component(s) measured in EEG/
MEG, one cannot necessarily assume that the observed neuroplastic 
changes occurred in overlapping neural populations. The use of 
fMRI or source localization techniques in EEG/MEG (Freeman and 
Nicholson, 1975; Scherg, 1990; Hamalainen and Ilmoniemi, 1994; 
Tervaniemi et al., 1999) would elucidate the extent of such neural 
overlap. However, if training in one domain (e.g., music) influences 
the same neural processes in the other domain (e.g., speech), emerg-
ing as a neuroplastic change in the same EEG/MEG components, 
then an overlap in processing and thus a transfer of function can 
be inferred. In this review, I will first present evidence demonstrat-
ing that musical training and training in the speech domain may 
target the same neurophysiological components along the auditory 
pathway. Next, I will show evidence of musical training-related 
modulations of these same components during speech processing 
(i.e., transfer of auditory function). Finally, I will discuss how musi-
cal training might enhance speech perception in adverse acoustical 
environments and in individuals with HL.

Musical training and training in the sPeech doMain 
target shared neural MechanisMs
Brain steM
Training in both musical and speech domains affect brain stem 
processing, as evidenced by training-related changes in the EEG 
frequency following response (FFR). The FFR reflects the resonance 
(amplitude and phase-alignment) of brain stem neuronal firing 
with a sound’s f

0
. Therefore, a more robust FFR following training 

in music and speech is indicative of an enhanced representation of 
f

0
 at the brain stem (Musacchia et al., 2007; Krishnan et al., 2009). 

Indeed, the FFR is more robust in musicians for music sounds than 
in non-musicians (Musacchia et al., 2007). Likewise, in the realm 
of speech learning, the FFR is enhanced in English speakers for 
Mandarin tones, following training on tonal speech (Song et al., 
2008). Taken together, tonal training, either in music or speech, 
elicits neuroplastic modifications in the brain stem FFR, which 
implies that an inter-domain functional transfer at the brain stem 
level is probable.

PriMary auditory cortex (a1)
While training in both speech and musical domains target the 
FFR, there is less evidence for such functional overlap at the level 
of A1, as indexed by the middle latency response (MLR). The 
MLR, which is measured in EEG and MEG, is believed to reflect 
thalamo-cortical input to and processing in A1 (Hall, 2006). 
The MLR consists of Na/Pa/Nb/P1 components (see Figure 1; 
Note that the P1 is also referred to as the P50) and typically 
occurs between 19 and 50 ms following sound onset. Larger MLR 
components were shown to index enhanced pitch and rhythm 
encoding in musicians relative to non-musicians for pure tones 
and music sounds (N19m–P30m – magnetic counterparts of the 
electrical Na–Pa: Schneider et al., 2002; P1: Shahin et al., 2004; 
Neuhaus and Knösche, 2008). Furthermore, a training-related 
increase in P1 amplitude may reflect the acoustical feature bind-
ing mechanisms that integrate rhythmic and pitch patterns into 

FiGurE 1 | Auditory-evoked potentials (AEPs). AEP waveform for piano 
tone at the frontal channel Fz for 34 participants (averaged over musicians and 
non-musicians). The Na–Pa–Nb–P1 complex represents the middle latency 
response (MLR) originating in primary auditory cortex (A1). The N1 and P2 
components represent activity originating in the surrounding belt areas of A1. 
Based on data from Shahin et al. (2003).
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was  significantly larger than the P2 for the pure tone in musicians 
(p < 0.02, LSD test) but this difference was not evident in non-
musicians. Pure and Piano 0 tones differed only in the shape of their 
temporal envelopes, with Piano 0’s envelope matching the temporal 
envelope of the piano C4 note, thus implicating the P2 in coding 
the temporal onset of the learned sound. Finally, although the P2 
amplitude for the pure tone tended to be larger in musicians than in 
non-musicians in this study (p < 0.07 LSD test), the same contrast 
was highly significant when professional musicians were used in 
a prior study (Figure 3). P2 enhancement for pure tones in musi-
cians represents enhanced pitch encoding, even in a non-timbre 
context, and hence may index basic transfer of auditory function 
due to musical training. In sum, the P2 is associated with coding 
the temporal (temporal onset) and spectral (harmonics) features of 

a coherent melody (Neuhaus and Knösche, 2008). However, a 
recent study challenged the relation between the P1 and musical 
expertise, such that the P1 was smaller in amplitude and delayed 
in musicians than in non-musicians for harmonic tones (Nikjeh 
et al., 2009).

In the realm of speech perception and training in the speech 
domain, the functional role of the MLR is less clear. Since we 
are more exposed to voiced than unvoiced speech in naturalis-
tic situations and musical training affects the MLR, one would 
expect that voiced stimuli would elicit larger MLR amplitude than 
unvoiced stimuli, which lack pitch information. However, Hertrich 
et al. (2000) showed that the M50 (the magnetic counterpart of 
the  electrical P1) was reduced for periodic (voiced) compared to 
aperiodic (unvoiced) speech-like stimuli. Instead, the M100 (the 
magnetic counterpart of the electrical N1), which has sources 
in NPAC, was larger for periodic than non-periodic speech-like 
stimuli (Hertrich et al., 2000). This suggests that experience-based 
enhancements in pitch processing of speech may commence at a 
higher cortical level than that of music. Likewise, discrimination 
training on VOT in young adults resulted in smaller P1 amplitudes 
but larger N1 and P2 AEPs (Tremblay and Kraus, 2002). Taken 
together, these results imply that higher cortical regions (i.e., NPAC) 
favor the processing of more spectrotemporally complex signals, 
such as speech, consistent with animal (Rauschecker et al., 1995), 
and human fMRI (Rauschecker et al., 1995; Patterson et al., 2002) 
results. Thus, whereas enhanced MLR may reflect neuroplastic 
modifications in temporal (i.e., rhythm) and spectral (i.e., pitch) 
processing following musical training, analogous MLR effects in 
the speech domain do not seem to be related to expertise. Instead, 
expertise-related effects in the speech domain appear to emerge 
later, in the N1 (∼100 ms) and P2 (∼180 ms; Figure 1) AEPs/AEFs.

non-PriMary auditory cortex
Because of the complex spectrotemporal structure of music and 
speech sounds, their processing may be favored in NPAC. Thus, 
the possibility of inter-domain functional transfer is more likely to 
occur in later auditory processing stages (i.e., N1 and P2) instead 
of the MLR.

The N1 and P2 are thought to originate in the region surround-
ing A1 (Shahin et al., 2003; Bosnyak et al., 2004), including belt and 
parabelt regions of the superior temporal gyrus (Hackett et al., 
2001). These regions are collectively referred to here as NPAC. While 
the N1 and P2 code for low-level acoustical features such as sound 
onset and pitch, they also represent higher-level sound features 
brought about by the spectrotemporal complexity of speech and 
music. Figure 2 shows the P2 AEP as a function of sound complex-
ity. Musicians and non-musicians were presented with four tones 
varying in spectral complexity. Three of the tones were piano tones 
(C4 note) which contained the fundamental (f

0
) and 8 (Piano 8), 

2 (Piano 2), or no (Piano 0) harmonics, and a pure tone (Pure) 
which had the same f

0
 but not envelope of the piano tone. Notice 

that as more harmonics were added to the piano tone (Figure 2A), 
P2 increased in amplitude [Figure 2C; 2 (group) × 4 (tone) ANOVA; 
group main effect F

(1,14)
 = 14, p < 0.005; tone main effect F

(3,42)
 = 35, 

p < 0.0001, interaction F
(3,42)

 = 6, p < 0.001], especially in musi-
cians [post hoc Fisher’s least significant difference (LSD) test 
p < 0.05]. Also, the P2 amplitude in response to the Piano 0 tone 

FiGurE 2 | P2 indexes spectral complexity and is enhanced in musicians. 
(A) Temporal (top) and spectral (bottom) profiles of Pure, Piano 0, Piano 2, and 
Piano 8 tones. The pure tone had only the fundamental frequency (f0, C4 
notation), and Piano 0, Piano 2, and Piano 8 have the f0, f0+ first 2 harmonics, 
and f0+ first 8 harmonics, respectively. Piano 0, Piano 2, and Piano 8 have the 
temporal envelope of the Piano C4 notation. (B) Root mean square (RMS) of 
auditory-evoked potential (AEP) waveforms for all channels (32; averaging 
across all stimuli) for musicians and non-musicians. (C) P2 RMS peak values 
for musicians and non-musicians for all stimuli. Based on data from Shahin 
et al. (2005). The error bars depict 1 SE.
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in these AEP amplitudes may reflect increased neural effort associ-
ated with binding spectrotemporal features into a coherent melody. 
Feature binding may be facilitated by selective attention (Treisman 
and Gelade, 1980) via modulation of early auditory cortical activity. 
However, increased spectrotemporal acuity observed in musicians 
(as discussed previously) must be a precursor of enhanced feature 
binding, whether automatic or under attentive conditions. In short, 
interdependence of pitch and rhythmic processing and thus bind-
ing of these acoustical features may be fostered by musical training 
at the level of A1 and NPAC (P1, N1, and P2 AEPs). A remaining 
question is whether enhancements in feature binding mechanisms 
due to musical training are specific to the learned auditory objects 
(Pantev et al., 2001) or are also transferable to speech perception.

neuroPhysiological evidence for the influence of 
Musical training on sPeech PercePtion
The previous section highlighted neurophysiological evidence sup-
porting targeted modification of the same neural components (FFR 
and P2) by musical training and training in the speech domain. 
These findings do not provide evidence for inter-modal functional 
transfer, but rather offer a starting point in formulating hypoth-
eses regarding the likelihood of such transfer. In this section, I will 
present findings showing that musical training can impact speech 
perception (i.e., inter-modal functional transfer), through neu-
roplastic changes in the same components that were modified by 
training in either the music or speech modality (previous section).

Musical training’s influence on Pitch and rhythM encoding 
in sPeech PercePtion
Superior pitch and rhythm encoding for speech in musicians, 
compared to non-musicians, is reflected at the brain stem and 
auditory cortex.

Brain stem
At the brain stem level, the FFR was shown to be more robust in 
musicians than in non-musicians for both music and speech (/da/) 
stimuli (Musacchia et al., 2007, 2008). Furthermore, enhanced pitch 
tracking (FFR) for Mandarin speech at the brain stem was seen 
in English-speaking (unfamiliar with tonal languages) musicians 
compared to non-musicians during passive listening to Mandarin 
words (Wong et al., 2007). The aforementioned neurophysiological 
evidence was consistent with better pitch discrimination abilities 
in musicians compared to non-musicians (Musacchia et al., 2007, 
2008; Wong et al., 2007). More precise pitch encoding of speech 
sounds in musicians at the brain stem and under passive listening 
conditions (Wong et al., 2007) suggests that functional transfer 
of auditory mechanisms to speech perception following musical 
training can occur even at a relatively low level of the auditory 
pathway. However, corticofugal feedback from the cortex can-
not be discounted, especially in attentive conditions (Musacchia 
et al., 2008).

Auditory cortex
The aforementioned enhanced FFR effect reported by Musacchia 
et al. (2008) for the speech syllable/da/was accompanied by ear-
lier latencies and larger amplitudes of the components of the P1–
N1–P2–N2 complex, which have origins in A1 and NPAC. The P2 

music sounds, and these functions are refined by musical training. 
Like the P2, the N1 was also associated with increased number of 
harmonics and with coding the timbre in ERP/ERF studies (Pantev 
et al., 2001; Seither-Preisler et al., 2003; Meyer et al., 2006).

More pertinent to the current topic is the finding that acousti-
cal training in the speech domain has been shown to evoke larger 
P2s for the same acoustical features that led to P2 augmentation 
following musical training. Short-term training on vowel discrimi-
nation tasks based on slight f

0
 manipulations elicited a larger P2 

responses in the trained group compared to the untrained group 
(Reinke et al., 2003), in the same way that pure tones matched in 
f

0
 to music tones evoked a larger P2s in musicians than in non-

musicians (Shahin et al., 2003). Also, P2 enhancement was reported 
following VOT discrimination training (Tremblay et al., 2001, 2009; 
Tremblay and Kraus, 2002) in the same manner that musicians 
exhibited larger P2s to the temporal onset of learned music sounds 
(Figure 2). These increases in P2 amplitude observed following 
either musical training or training in the speech domain may index 
a greater overlap of neural populations, via increased neuronal 
recruitment associated with processing spectral or temporal fea-
tures of music and speech. In short, if musical training or training 
in the speech domain can foster neuroplastic changes observed in 
the same brain response (i.e., P2) associated with processing the 
same acoustical feature, enhanced speech processing due to musi-
cal training is likely.

It is worth noting that the N1’s and P2’s relationship to coding 
the spectrotemporal combination of acoustical features (timbre) 
may suggest a feature binding role for these AEP components. In 
support of this hypothesis, Neuhaus and Knösche (2008) showed 
the interdependency of the neuroplastic N1 and P2, as well as the 
earlier P1 component, on pitch and rhythm processing. They pre-
sented musicians and non-musicians with melodies, either ordered 
by pitch and duration, or randomized in pitch, duration, or both. 
They found a general effect in which the amplitudes of the P1, N1, 
and P2 AEPs were augmented as the level of disorder in pitch and/or 
duration increased in both musicians and non-musicians (Neuhaus 
and Knösche, 2008). Furthermore, in musicians but not in non-
musicians, the P1 and P2 amplitudes were influenced (augmented) 
by pitch randomization only when the duration was ordered, sug-
gesting that the integration of pitch and rhythm processing is fos-
tered by musical training. Thus, the results imply that an increase 

FiGurE 3 | P2 indexes pitch and is enhanced in musicians. Left, scalp 
current density topography for the P2 component occurring at about 185 ms. 
Right, amplitude of the P2 response is shown for pure tone in the musicians 
(n = 20) and non-musicians (n = 14). The error bars depict 1 SE. Based on data 
from Shahin et al. (2003).
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tests, and working memory tests to musicians and non-musicians. 
HINT tests speech perception in a background speech-shaped 
noise, while QuickSIN tests speech perceptual ability in a multi-
talker environment. Musicians outperformed non-musicians in 
all tasks. Furthermore, musicians’ performance on all tests, except 
for HINT, correlated with years of practice. These results suggest 
that enhanced working memory, selective attention, and frequency 
discrimination abilities as a function of musical expertise play a 
significant role when the target speech is embedded within a multi-
talker environment (QuickSIN) versus when background noise is 
environmental (HINT).

The aforementioned behavioral outcomes seen in musicians 
(Parbery-Clark et al., 2009b) were subsequently supported by elec-
trophysiological findings. Parbery-Clark et al. (2009a) showed that 
the brain stem response morphology was less influenced by back-
ground noise in musicians than in non-musicians. They examined 
the latency and amplitude of two auditory brain stem response 
(ABR) peaks representing the onset of the consonant–vowel pair/
da/and the formant transition (/d/to/a/) in musicians and non-
musicians and in quiet and multi-talker babble (Parbery-Clark 
et al., 2009a). When comparing results of noisy and quiet condi-
tions, the authors found that the latencies of the ABR peaks were 
less delayed and the amplitudes were more preserved in musicians 
than in non-musicians. The authors concluded that the degradative 
effects of noise on the neural processing of sounds can be limited 
with musical training.

It is not clear whether musical training can enhance other forms 
of auditory scene analysis. For example, does musical training boost 
one’s ability to perceive degraded speech, as in phonemic restora-
tion (PR)? In PR, a word with a missing segment can be perceived 
as continuous, provided that the missing segment is masked by 
another sound, such as a cough or white noise (Warren, 1970). The 
ability to restore speech in PR requires a dynamic mechanism in 
which the missing spectrotemporal structure is interpolated (also 
known as perceptual “filling-in”) from the masking entity. In addi-
tion, A1’s usual sensitivity to the onsets/offsets of missing segments 
(Riecke et al., 2009; Shahin et al., 2009) is suppressed, resulting in 
the illusory perception of continuous speech. This filling-in process 
relies on higher-level mechanisms, such as Gestalt processing and 
access to prior knowledge (e.g., template matching in memory; 
Shahin et al., 2009). The question then becomes, how would musical 
training affect PR? Musicians may be expected to perform worse 
(i.e., fail to fill-in the degraded speech signal) than non-musicians 
on a PR task, given their enhanced concurrent sound segregation 
abilities (Zendel and Alain, 2009) and stronger sensitivity to acous-
tical onsets (Musacchia et al., 2008) and offsets of missing segments. 
However, since PR strongly relies on top-down influences, it can 
be argued that musical training may benefit PR.

Two analogies to PR include restoration of the missing funda-
mental (f

0
) and of the missing beat in a metric structure (Bendor 

and Wang, 2005; Snyder and Large, 2005). Representations of an 
omitted f

0
 in the auditory cortex (Bendor and Wang, 2005) are 

preserved due to interpolation from the remaining harmonic struc-
ture of the sound. Yet this skill (restoration of f

0
) has been shown 

to be more robust in musicians than in non-musicians (Preisler, 
1993; Seither-Preisler et al., 2007). However, restoration of a miss-
ing beat within a metric structure is more closely related to PR, 

enhancement in musicians compared to non-musicians is note-
worthy. Musacchia et al.’s (2008) results are consistent with the 
neurophysiological consideration that if musical training and train-
ing in the speech domain impact a shared neural system  similarly 
– as observed via P2 enhancement following musical (Pantev et al., 
1998; Shahin et al., 2003) and vowel and VOT discrimination train-
ing (Tremblay and Kraus, 2002; Reinke et al., 2003) – then func-
tional transfer to speech perception following musical training 
can be inferred. A more recent study showed a similar P2 effect 
that implicated rhythm processing as the mechanism affected by 
functional transfer following musical training. Specifically, Marie 
et al. (2010) demonstrated that the neuroplastic P2, previously 
shown to reflect temporal acuity (Tremblay et al., 2001; Figure 2), 
is associated with the musicians’ greater ability to encode metric 
structure in speech. Marie et al. (2010) varied syllabic length of 
the last word in a collection of sentences and measured ERPs while 
musicians and non-musicians judged whether the last word in a 
sentence was well-pronounced. They found that compared to non-
musicians, musicians exhibited larger P2 amplitudes, coupled with 
greater accuracy, for metrically incongruous than for congruous 
words (Marie et al., 2010). While this P2 enhancement is consistent 
with a transfer effect associated with coding the temporal acuity 
of speech, it may also be partly attributed to increased perceptual 
effort to integrate the sequential pattern into a coherent segment 
(Neuhaus and Knösche, 2008). In sum, these studies demonstrate 
that P2 enhancement, an index of musical training (Shahin et al., 
2003), for coding the metric structure in speech coincides with 
enhanced temporal (Tremblay et al., 2001; Marie et al., 2010) acuity 
in speech processing. Thus, a transfer effect for spectrotemporal 
features, and possibly the neural mechanisms involved in binding 
them, can be facilitated by musical training.

In sum, there is preliminary neurophysiological evidence, 
exhibited in several obligatory auditory components (e.g., FFR, 
P2), supporting a functional transfer to speech perceptual mecha-
nisms following musical training. Moving forward, it is important 
to weigh the implications of such neurophysiological transfer to 
speech perception in naturalistic acoustical environments and in 
individuals with HL.

Musical training’s influence on sPeech PercePtion in adverse 
acoustical environMents
One important aspect of speech processing related to everyday 
auditory experience, especially for populations with HL, is the abil-
ity to comprehend speech in acoustically adverse environments. For 
example, in a cocktail party, a listener must segregate her friend’s 
voice from a concurrent multi-talker background to understand his 
story. Musicians are better at concurrent sound segregation (Zendel 
and Alain, 2009), which entails enhanced pitch discrimination abil-
ity (Tervaniemi et al., 2005), working memory function (Chan et al., 
1998), and selective attention (Strait et al., 2010). Thus, musically 
trained individuals should demonstrate improved perception of 
speech in everyday noisy environments. Indeed, when contrasting 
speech comprehension abilities of musicians and non-musicians 
with comparable hearing status, musicians perform better in 
noisy backgrounds (Parbery-Clark et al., 2009b). Parbery-Clark 
et al. (2009b) administered the hearing-in-noise test (HINT), the 
quick speech-in-noise (QuickSIN) test, frequency discrimination 
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overall amplitude (i.e., temporal envelope) of the sound is preserved 
to a good degree. It is not surprising that CI users rely on temporal 
information (rhythm) to a greater extent than a sound’s spectral 
information (pitch; Gfeller and Lansing, 1991). Musical pitch per-
ception in CI users has been shown to be highly correlated with 
lexical pitch perception, suggesting shared neural mechanisms for 
processing pitch in music and speech in CI users (Wang et al., 2011). 
Given that musical training refines one’s ability to resolve fine pitch 
differences in normal-hearing individuals, it would be plausible that 
CI users who receive musical training may show improvements in 
pitch interval perception compared to non-musically trained CI 
individuals. Indeed, a recent study revealed that musically trained 
children with congenital/prelingual deafness fitted with CIs exhibit 
better pitch identification than non-trained children (Chen et al., 
2011). Furthermore, pitch identification accuracy in the trained 
children was correlated with the duration of musical training. 
However, the musical training-related functional transfer to speech 
perception seen in normal-hearing individuals (discussed above) 
has not been demonstrated in CI users. A recent longitudinal study 
using behavioral measures found that while musically trained (over 
a 2-year period) CI children performed better on pitch discrimina-
tion tasks than children who did not receive music lessons, the two 
groups performed equally on speech discrimination tasks (Yucel 
et al., 2009). Additional studies using electrophysiological measures 
may be necessary, as changes due to musical training, especially 
over short time periods, may emerge more quickly in subcortical 
and cortical assessments, preceding observed behavioral improve-
ments. This can be examined using pitch-sensitive auditory-evoked 
components (P2 AEP, Reinke et al., 2003) to assess pitch perception 
fidelity in speech and speech in noise following musical training 
in individuals with CIs. Longer-term musical training should also 
be considered in HL populations.

Another practical approach to explore involves assessing the 
effects of musical training on audio–visual (AV) speech process-
ing in HL populations. Some individuals with HL enhance their 
perception of spoken language by relying on visual cues (e.g., lip-
reading). In a behavioral study, Kaiser et al. (2003) contrasted the 
ability to identify spoken words in healthy-hearing individuals and 
in individuals with CIs. They found that all subjects performed 
better in the AV task, followed by the auditory-only and finally 
the visual-only task. Also, the healthy-hearing participants outper-
formed the CI users on the auditory-only condition, while both 
groups performed at roughly the same level on the AV condition 
(Kaiser et al., 2003). Furthermore, healthy-hearing musicians and 
non-musicians seem to process AV speech differently. Recent find-
ings in normal-hearing populations have shown that pitch encod-
ing at the brain stem and auditory cortex is enhanced in musicians 
compared to non-musicians for AV speech (Musacchia et al., 2007, 
2008). FFR responses and wave d (∼18 ms) of the ABR were larger 
for musicians than for non-musicians for speech stimuli presented 
in an AV context, and FFR enhancement correlated with years of 
musical training (Musacchia et al., 2007). Also, the cortical P1–N1–
P2–N2 complex was larger in musicians than in non-musicians 
for the  consonant–vowel/da/presented in an AV context. Note that 
enhancements of all the components within the P1–N1–P2–N2 
complex have been previously shown to represent manifestations of 
musical training (Pantev et al., 1998; Schneider et al., 2002; Shahin 

since like PR it involves filling-in in the temporal domain (Snyder 
and Large, 2005). Snyder and Large (2005) showed that when a 
tone was omitted from a rhythmic train of tones, auditory gamma 
band activity continued through the gap as if the missing tone was 
physically present, thus preserving the cortical representations of 
the rhythmic tone pattern. This temporal filling-in is likely related 
to enhanced Gestalt integration, expectancy, and template match-
ing in long-term memory, which are all processes important in 
PR and are enhanced in musicians compared to non-musicians 
(Besson and Faita, 1995; Fujioka et al., 2005; Lenz et al., 2008; 
Shahin et al., 2008). An experiment assessing the sensitivity of A1 
to the onsets and offsets of missing speech segments in musically 
trained and non-trained individuals should determine how musi-
cal training influences PR. Reduced sensitivity of A1 (i.e., reduced 
MLR amplitudes) in musicians than in non-musicians to onsets/
offsets of missing segments would support the premise that musical 
training enhances PR, thereby providing convincing evidence of 
the transfer of auditory function to speech perception following 
musical training.

iMPact of Musical training on sPeech PercePtion in 
individuals with hearing loss
As stated earlier, making sense of degraded speech in noisy envi-
ronments is one of the most critical challenges for individuals with 
HL. Although individuals with HL (e.g., presbycusis) can typically 
understand speech in quiet settings (e.g., a one-on-one conversa-
tion with little or no background noise), degraded speech or the 
addition of background noise has a disastrous effect on their speech 
comprehension. The etiology of HL varies considerably among 
individuals. In general, HL in the aging population (presbycusis) 
is characterized by difficulty hearing high-frequency sounds, while 
individuals with cochlear implants (CIs) must make sense of CI 
signals that are severely limited in spectral details. If musical train-
ing modifies the neural circuitry of speech processing, then how 
would such modification affect speech perception experience in 
individuals with HL?

Loss of sensitivity to high-frequency sounds in the aging popula-
tion leads to a reduced ability to perceive certain sounds, such as the 
phonemes s, sh, and ch. For example, assuming intact low-frequency 
perception, the sentence Trisha cherishes her friend’s memories may 
sound as Tri**a **eri**e* her friend’* memorie*, where the aster-
isks indicate unintelligible sounds. Thus, similar to PR, individuals 
with HL must temporally fill-in representations of degraded speech. 
If musical training enhances PR mechanisms as discussed above, 
then musical training could serve as a possible prevention/interven-
tion strategy in individuals with presbycusis. Neurophysiologically, 
this can be assessed by examining A1 sensitivity to onsets/offsets 
of degraded fricatives (e.g., s, sh) in musician and non-musician 
groups of older individuals with similar HL etiology.

In the case of individuals with CIs, the problem is related to how 
musical training can improve perception of the spectrally degraded 
signal outputted by the CI. CIs convert a speech signal into a few 
(usually eight or more) channels that represent several frequency 
bands of noise. The signals outputted by CIs can be imitated closely, 
though not perfectly, by noise-vocoded speech. In vocoded speech, 
the spectral structure of speech is replaced by noise bands, resulting 
in a highly degraded spectral structure (i.e., pitch quality), but the 
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et al., 2008; Hyde et al., 2009; Moreno et al., 2009), with one study 
providing inconclusive results (Shahin et al., 2004). In Shahin et al. 
(2004), musically trained children showed larger AEP responses 
than non-musically trained children before and after commence-
ment of musical training. However, other studies showed enlarged 
late AEFs/AEPs (N250/N300) in children who took music lessons 
relative to non-trained children after 1 year (Fujioka et al., 2006), 
or to art-trained children after 6 months (Moreno et al., 2009) of 
training. In the study by Moreno et al. (2009), children were ran-
domly assigned to music or art lessons, further strengthening the 
argument that musical training rather than a genetic predisposition 
is the primary agent of neuroplastic changes seen in musicians.

Assessing transfer of auditory function following musical train-
ing may not be limited to evidence of neuroplastic modifications 
along the sensory pathway. Processing syntactic violations of musi-
cal or speech segments, organizing percepts in working memory, 
and selecting relevant percepts require the recruitment of higher-
level cognitive processes. Syntactic violation processing in music 
is linked to the early right anterior negativity (ERAN) localized to 
the left (Broca’s region) and right inferior frontal gyri (Maess et al., 
2001). Broca’s region is also associated with detecting linguistic 
syntactic violations (Friederici, 2002). The ERAN and ELAN (left-
hemisphere speech counterpart) were shown to be larger, and thus 
more developed, in musically trained children compared to non-
trained children following detection of syntactic irregularities in 
music and speech (Jentschke and Koelsch, 2009). Musically trained 
children also tended to perform better (with faster reaction time 
and increased accuracy) than untrained children. Hence, shared 
mechanisms, as well as a transfer effect, for syntactic violation pro-
cessing following musical training can be inferred.

It is worth noting that some higher-level auditory functions, 
such as those associated with the mismatch negativity (MMN), may 
be specialized for either music or speech processing (Tervaniemi 
et al., 2000; Tervaniemi and Huotilainen, 2003) and thus may be less 
susceptible, than FFR and P2 for example, to inter-domain transfer 
following musical training. The MMN (150–250 ms) is a pre-atten-
tive cognitive process, which has likely sources in A1 and NPAC, as 
well as inferior frontal cortex (Tervaniemi et al., 2001; Hall, 2006), 
used to assess the detection of deviancy in an otherwise predictable 
sequence of events encoded in sensory memory (Naatanen et al., 
2007). A larger MMN in musicians than in non-musicians may 
indicate stronger sensory representations and/or a better ability to 
predict the next sound in a patterned musical sequence (Koelsch 
et al., 1999; Fujioka et al., 2004). Currently, the evidence supporting 
functional overlap for deviant-detection processes associated with 
the MMN between speech and music domains and the influence of 
musical training on such overlap are inconclusive (Tervaniemi et al., 
1999; Lidji et al., 2009, 2010). A recent study compared the MMN 
response dynamics for pure tone, music, and speech stimuli in 
musicians and non-musicians and found that the MMN occurred 
earlier in musicians than in non-musicians for all types of stimuli 
(Nikjeh et al., 2009). This suggests that musical training may lead 
to faster pre-attentive deviant detection, even for speech stimuli. 
However, there were no group differences in MMN amplitude for 
any of the stimuli. This is consistent with Tervaniemi et al. (2009) 
who similarly failed to find amplitude differences in the MMN 
between musicians and non-musicians for speech stimuli with 

et al., 2003; Fujioka et al., 2006). These ABR and cortical enhance-
ments in musicians may reflect superior sensitivity to onsets of 
speech sounds when modulated by meaningful visual cues, as sug-
gested by Musacchia et al. (2007). Heightened neural sensitivity to 
sound onsets would improve the identification of word bounda-
ries, a crucial process for word segmentation and thus particularly 
useful for individuals with HL. Multisensory musical training in 
a HL population (i.e., watching the instructor’s hands during a 
piano lesson), may not only promote neuroplastic changes in the 
auditory cortex, but also enhance neurophysiological mechanisms 
underlying multisensory integration.

Finally, one could ask why musical training? For example, would 
CI users develop enhanced pitch identification skills following 
speech discrimination training (Reinke et al., 2003) in the same 
way following musical training (Chen et al., 2011)? One advantage 
is that musical training, or even passive listening to music, can 
provide an emotional experience (Jancke, 2008) unmatched by 
other acoustical training methods. In a targeted auditory training 
program, CI users might process sound features more efficiently 
when enjoying the task, for example, by selecting his/her preferred 
genre of music (Looi and She, 2010). Targeted auditory training 
programs have been shown to significantly improve CI users’ level 
of speech recognition (Fu and Galvin, 2008).

general discussion
Thus far, I have provided evidence supporting the idea that 
enhanced basic acoustic (e.g., frequency or rhythm) processing 
in the brain stem (FFR) and NPAC (P2 AEP) following musical 
training may be transferable to speech processing. After developing 
this concept, I then discussed the possibility of applying musical 
training to individuals with HL to improve their speech perception. 
These possibilities are exciting, but some limitations of the quali-
fications of the presented concepts and additional considerations 
must be discussed here.

The vast majority of studies associating neuroplasticity with 
musical training have used the musician’s brain as a model (Jancke, 
2002). A shortcoming of this approach is that distinguished brain 
attributes seen in musicians may be due to a genetic predisposi-
tion, rather than neuroplastic adaptation. Several lines of evidence 
indicate that this genetic hypothesis is not sufficient to explain these 
neuroplastic changes observed in musicians. First, enhanced brain 
responses in musicians are correlated with age of commencement of 
music lessons, reinforcing the view that musical training is indeed a 
factor in neuroplastic modifications (Pantev et al., 1998; Schneider 
et al., 2002; Wong et al., 2007; Lee et al., 2009). Second, short-term 
acoustical training has been shown to induce neuroplastic effects 
in the same neural responses that typically distinguish musicians 
from non-musicians (N1m: Pantev et al., 1998; P2: Shahin et al., 
2003). For example, participants showed increased N1m and 
P2 amplitudes after short-term frequency discrimination train-
ing (Menning et al., 2000; Bosnyak et al., 2004). Third, enhanced 
brain responses in musicians have also been found to be specific for 
the instrument of practice, implying a neuroplastic effect (Pantev 
et al., 2001; Neuhaus et al., 2006; Shahin et al., 2008). Finally, sev-
eral longitudinal studies comparing brain responses in children 
before and after musical training further underscore the role of 
musical training on brain plasticity (Fujioka et al., 2006; Shahin 
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top-down mechanisms that result from musical training may lead 
to superior concurrent sound segregation, which is an essential 
process during perception of speech in noisy environments, espe-
cially in individuals with HL.

conclusion
While evidence of neuroplastic adaptations due to musical train-
ing is accumulating, the extent to which these neurophysiologi-
cal changes transfer to speech perception remains inconclusive. 
Preliminary evidence suggests that musical training may influ-
ence a shared hierarchical auditory network underlying music 
and speech processing and thus can influence speech perception. 
Further studies are necessary to examine or clarify functional 
transfer due to musical training along different levels of the audi-
tory pathway (e.g., MLR, MMN) and whether potential transfer 
effects are solely due to the overlap in acoustical features or also to 
the overlap in mechanisms that binds them. A possible limitation 
of this research is that much of the supporting evidence has come 
from the study of neuroplasticity in musicians, where genetically 
or ontogenetically determined acoustical abilities could, in prin-
ciple, have influenced the decision to train musically. However, 
the dependence of enhanced brain responses in musicians on the 
duration of training and specific musical experience in addition to 
evidence provided by longitudinal studies, point to neuroplasticity 
as the crucial mechanism. Furthermore, future research addressing 
behavioral and neurophysiological influences of musical train-
ing on speech perception in adverse acoustical environments and 
in individuals with HL is necessary and timely. These topics go 
hand-in-hand, as speech in background noise creates a debilitat-
ing acoustical experience in individuals with HL. Initial evidence 
shows that musical training enhances pitch perception in indi-
viduals with HL. Moreover, musical training is correlated with 
enhanced behavioral and neurophysiological responses for speech 
in noise. These exciting preliminary findings provide a stepping 
stone toward future studies addressing the neurophysiological 
effects of musical training on speech perception in individuals 
with HL, which may influence our approach to devising targeted 
auditory training programs and thus prevention and intervention 
strategies for HL.
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deviants in either frequency or duration. However, the MMN was 
larger in musicians than in non-musicians when participants paid 
attention to the speech sounds (Tervaniemi et al., 2009). These two 
studies (Nikjeh et al., 2009; Tervaniemi et al., 2009) suggest that 
while the MMN mechanisms (at least when considering its ampli-
tude dynamics) may be specialized for music and speech processing, 
musical training can shape attentional processes (see paragraph 
below) that could facilitate functional inter-domain transfer for 
these same neural mechanisms.

One important consideration when assessing transfer effects 
involves how musical training shapes selective attention mecha-
nisms, a necessary process in noisy or crowded auditory scene situ-
ations (Parbery-Clark et al., 2009b; Kerlin et al., 2010). Enhanced 
selective attention abilities may: (1) impact how relevant and irrel-
evant signals are organized in working memory (Sreenivasan and 
Jha, 2007), and (2) act as an auditory gain function in which the 
relevant acoustical signal intensity is dialed up and the interfer-
ing noise/talker is dialed down (Kerlin et al., 2010). The acoustic 
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specificity to sound features in A1 (Polley et al., 2006; Engineer 
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in sounds showed modifications of the cortical map in A1 corre-
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attend to intensity cues showed modifications of the cortical map 
to the target intensity range only (Polley et al., 2006). Similarly, 
during musical training, trainees must focus on or direct attention 
to slight changes in pitch, intensity, and onsets/offsets of sounds, 
developing acoustical acuity in the temporal and spectral domains 
(Schneider et al., 2002; Marie et al., 2010). In turn, enhanced 
acoustical representations facilitate auditory object formation 
(acoustical feature binding) and thus allow for better selection 
and analysis of the acoustic scene (Shinn-Cunningham and Best, 
2008). In other words, musicians’ improved acuity to sound fea-
tures, resulting in more veridical auditory object representations, 
may also shape their selective attention mechanisms, and thus 
improve their auditory scene analysis skills. Indeed, Strait et al. 
(2010) revealed that musicians perform better (have faster reaction 
times) than non-musicians in tasks requiring focused attention in 
the auditory but not in the visual modality. Additionally, atten-
tive listening to music recruits general cognitive functions related 
to working memory, semantic processing, and target detection 
(Janata et al., 2002), which are all processes that influence audi-
tory scene analysis. In sum, enhanced selective attention and other 
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