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Abstract: Evoked and spontaneous K-complexes are thought to be involved in sleep protection, but
their role as biomarkers is still under debate. K-complexes have two major functions: first, they
suppress cortical arousal in response to stimuli that the sleeping brain evaluates to avoid signaling
danger; and second, they help strengthen memory. K-complexes also play an important role in
the analysis of sleep quality, in the detection of diseases associated with sleep disorders, and as
biomarkers for the detection of Alzheimer’s and Parkinson’s diseases. Detecting K-complexes is
relatively difficult, as reliable methods of identifying this complex cannot be found in the literature.
In this paper, we propose a new method for the automatic detection of K-complexes combining the
method of recursion and reallocation of the Cohen class and the deep neural networks, obtaining a
recursive strategy aimed at increasing the percentage of classification and reducing the computation
time required to detect K-complexes by applying the proposed methods.

Keywords: K-complexes; sleep disorders; Cohen class; sleep stage; classification; deep neural networks

1. Introduction

It is hard to explain the mechanism that triggers sleep. Science can only put forth
some hypotheses, but there is still no certainty. Sleep can only be studied in its external
manifestations, while the causes that generate it remain unknown. The mechanisms that
maintain the state of wakefulness and the transition from wakefulness to sleep sparked the
interest of scholars many centuries ago.

However, since the first theories were laid down by Alcmaeon of Croton and Aristotle,
there has not been much progress in this field. It is only in the past 80 years that a review
of old ideas about wakefulness and sleep has begun, largely due to the enhancement
of research tools that have allowed for the precise exploration of deep brain structure
and the recording of electrical brain activity down to the level of a single cell. Existing
theories on sleep and wakefulness feature great diversity but can be grouped into two
categories: humors-related, including particularly old and very old theories, and neural
theories, specific to the modern age and based on experimental investigations.

The study of electroencephalograms (EEG) began in the 1930s as the first attempt at
classifying human cerebral activities during sleep. Only after a long period of analytical
interpretation were efforts eventually directed towards the analysis of the transient phe-
nomena occurring during sleep. At present, the main objective lies in understanding the
mechanisms that generate sleep and the psychological role of electrical activity in the brain.

The applicability of the method proposed in this article focuses on the analysis, detec-
tion, and classification of the K-complex, which is a transient brain wave in the microstruc-
ture of the electroencephalogram (EEG) of sleep. Detection of the K-complex brain wave is
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difficult because during sleep other nonstationary phenomena occur, including an increase
in delta waves, which looks very similar to the K-complex. The K-complex investigation
method proposed in this article allows for an automated system to detect and classify—
with very good probability—the aperiodic K-complex that occurs in the second stage of
EEG sleep. According to the literature, the K-complex has an important role in the study of
sleep [1–4], the detection of diseases associated with sleep disorders [5–17], and recently
has been suggested as a biomarker for predicting the occurrence of Parkinson’s [18–27]
and Alzheimer’s diseases [28–37].

The results reported in a series of papers on the study of sleep electroencephalograms
justify the interest in using time–frequency-pooled analyses that can characterize the
transient phenomena that occur during the stages of sleep [38–42].

The two-dimensional representations in the time–frequency domain provide a power-
ful signal analysis tool that has the advantage of making it possible to highlight certain
“hidden” properties of the signals. As far as the system of analysis is concerned, the main
interest lies in analyzing signals at the lowest level, comparable to the noise made by the
EEG apparatus. This is why time–frequency analyses should be performed on signals
affected by noise, the signal/noise ratio being of particular importance for evaluating
the parameters of the analyzed signal. It is this method of representation and analysis
of transient signals that we have resorted to in order to develop a K-complex detector.
The proposed methodology for the synthesis of imposed structure detectors has wider
applicability, for example, in the processing of vocal signals.

Form recognition has become a growing field in both theory and application, being, on
the one hand, an advanced form of information processing, and on the other, a component
of artificial intelligence. Many mathematical methods have been proposed to solve the
problem of form recognition, and have been grouped into two categories—statistical–
decisional and syntactic–structural ones [43–50].

The theory of detection aims at making an optimal decision, chosen from a finite
number of possible alternatives, with the purpose of obtaining a random sample. In
particular, when detecting a disturbed noise signal, the decisions taken into consideration
envisage the validation of one of the following hypotheses: “observation x(t) consists of
noise” or “signal s(t) is present in observation x(t)”. The criterion that sets the objectives
of the detection structure in optimal terms may then, for example, be to minimize the
average cost of a decision or even increase the probability of detecting signal s(t) under
the condition of an imposed false alarm probability. For these two criteria, one has to
demonstrate that the optimal value is achieved by choosing the plausibility ratio for the
Λ detection statistics. Comparing it to a λ0 threshold then generates the decision: signal
s(t) is assumed to be present in observation x(t) if Λ is superior to λ0 and absent otherwise.
One refers to it in this case as frame detection, especially since no constraint acts upon
the structure of detection statistics, the latter relying only on the choice of a rule and the
knowledge/implementation of plausibility laws [51]. At the same time, in a large number
of situations, the information provided by the statistical properties of the sample for each
hypothesis is not available, which makes the previous study impossible. Under these
circumstances, a possible but suboptimal case consists of defining in advance the nature of
the detection statistics, then optimizing the characteristic parameters according to a given
criterion. For this reason, this study is known as imposed structure detection [52].

Under these circumstances, the problems encountered during the development of a
detection rule are generally related to the difficulty of answering the following questions:

• How to choose the pattern/model of detection?
• What are the optimal criteria for determining the characteristic parameters of this

model? What optimization procedure is being adopted?

In this article, we propose a new approach to the analysis, recognition, and classi-
fication of K-complexes based on the application of recursion properties to Cohen class
distributions modified by the reallocation method, developing a recursive strategy to
capitalize the reallocation algorithm for time–frequency representations. We also demon-
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strate the advantage of the size of the time support of the parameterization function for
Cohen class distributions, but especially for the Wigner–Ville distribution, proposing an
algorithm for using recursion in the reallocation process of the Wigner–Ville distribution
spectrogram. Next, we established the necessary and sufficient conditions allowed by the
analysis windows and the parameterization function, so that the Cohen class distributions
could be used after the introduction of recursion and we extended these conditions for
the distributions modified by the reallocation method. We used the results obtained from
the Wigner–Ville distribution to train a convolutional neural network (deep learning),
which we trained with the Calibrated Stochastic Gradient Descend (CSGD) optimization
algorithm because it updates the parameters for each training stage. SGD also eliminates
the redundant calculations that occur for large datasets and EEG records, by performing
frequent updates. Another advantage of SGD is the speed of calculations. The test results
showed a detection percentage of 98.30%.

The rest of the paper is structured as follows: it presents the model of analysis and
detection of K-complexes in Section 2.1, the EEG microstructure of sleep in Section 2.2, a
comparative analysis of Cohen class energy distributions in Section 2.3, the new algorithm
for recursiveness and reallocation in the Sections 2.4 and 2.5, and the results obtained by
the new method proposed together with the deep neural network used in Section 3.

2. Materials and Methods
2.1. Proposed Methods

Once the signals have been acquired, according to the traditional method of acquiring
EEG signals during sleep, they are processed according to the sequence of steps illustrated
in Figure 1.
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Figure 1. The architecture of the proposed method for the detection of K-complex brain waves.

First, the EEG signals must be filtered. This step is imperative because the acquired
data overlap a parasitic signal of 50 Hz coming from the power supply network that can
affect the useful signal, making the classification almost impossible. To eliminate the area
of network noise, an Infinite Impulse Response (IIR) notch filter, implemented in MATLAB,
was used. The alternative to the IIR filter is the Finite Impulse Response (FIR) filter. The
differences include:

• IIR has a faster response time than FIR [53];
• IIR phases out different components frequently; it is different from FIR, which gener-

ates a constant phase shift (IIR has a nonlinear phase and FIR has a linear phase) [53];
• FIR is always stable, while IIR is sometimes unstable [53].

Since the information of interest (through which the class will be made) is not in
the phase component but in the frequency component, we chose for this first stage of
processing the IIR filter. After segmentation, the Wigner–Ville algorithm from the Cohen
class is applied, for which we introduce a new method of recursiveness and reallocation
of the spectrum so as to extract the fundamental parameters that characterize the K-
complexes. After extracting the characteristics, we use a deep neural network for the
automatic detection and classification of K-complexes.
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2.2. Microstructure of Sleep EEG

According to this classification, the four stages of sleep, represented in Figure 2, are as
follows [49]:

• Stage 1: In this stage, we have smooth sleep: we easily pass from the waking state
to the sleep state and can be awakened by even the slightest noise. Our eyes move
very slowly and muscle activity slows down. We also experience sudden, involuntary
muscle contractions called myoclonus, often preceded by a feeling of falling into
emptiness. People awakened from this stage often remember fragmented visual images.

• Stage 2: When we enter the second stage of sleep, eye movements stop, the heart
begins to beat slower, the muscles relax, and the body temperature drops. Also, brain
waves (fluctuations in electrical activity, which can be measured by electrodes) become
slower and a series of occasional fast waves called sleep spindles appear. Basically,
the body prepares for deep sleep.

• Stage 3: Stage 3 of sleep is characterized by extremely slow brain waves and the lack
of any eye movement or muscle spasms, which promotes deep sleep. Once we reach
this stage, it is very difficult to wake up. People awakened during deep sleep do not
immediately adapt to reality and, for a few minutes, are dizzy and disoriented.

• Stage 4: In this stage, the heart rate, breathing, and eye movements become faster and
faster. The brain becomes more active, processing the things we learned during the
day to help us form memories. Usually, during REM (Rapid Eye Movement) sleep,
people dream; that is why those who are awakened at this stage often tell bizarre and
illogical stories of what they experienced.
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Sleep is of two types, each with its own characteristics:

(1) REM (rapid eye movement);
(2) non-REM, with four depth stages, 1, 2, 3, and 4.

When we fall asleep, we enter a state of non-REM sleep, in different stages; then we go
into a state of REM sleep (rapid eye movement) characterized by rapid and simultaneous
movements of both eyes, hence the name. Research studies show that the two types of
sleep alternate with each other and take place in the form of cycles. The duration of these
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cycles is about 70–100 min (the first non-REM–REM cycle), the next cycles being longer,
90–120 min. Also, the passage through all stages of non-REM sleep is not observed. In
the last period of sleep, morning sleep, the duration of REM sleep increases. It is not
known exactly why these phases of sleep alternate. What is known is that there is a higher
proportion of non-REM sleep (about 80%) compared to REM sleep (about 20–25%) [54].

The K-complex, together with the sleep cycles, is one of the main “markers” of sleep
onset as it appears in stage 2.

The K-complex can have different morphologies, which can appear every fourth
second, as follows: isolated K-complex, without spindle; K-complex and spindle insulated;
K-complex pair; and K-complex with negatively flattened component. A K-complex is an
EEG waveform that occurs in stage 2 of REM sleep. It is “the biggest event in a healthy
person,” being more common in the first sleep cycles. The K-complexes have two pro-
posed functions: first, to suppress cortical arousal in response to stimuli that the sleeping
brain does not evaluate to signal a danger, and second, to support sleep-based memory
consolidation. The K-complex consists of a short peak of high negative voltage, usually
greater than 100 µV, followed by a slower positive complex around 350–550 ms and 900 ms
at the final negative peak. The K-complexes occur approximately every 1.0 to 1.7 min
and are often followed by bursts of sleep spindles. These occur spontaneously, but also
in response to external stimuli, such as sounds, touching the skin, and internal stimuli,
such as inspiratory interruptions. They are generated in diffuse cortical locations, although
they tend to predominate over the frontal parts of the brain. Both the K-complex and the
activity of delta waves in stage 2 sleep create a slow wave of 0.8 Hz and delta oscillations
(1.6–4.0 Hz). However, their topographic distribution is different and the delta power of
the K-complexes is higher. They are created by the diffuse appearance in the cortical areas
of the external dendritic currents in the middle (III) and (I) starts of the cerebral cortex. This
is accompanied by a decrease in the broadband power of the EEG, including the activity of
gamma waves. This produces “down-states” of neural silence in which the activity of the
neural network is reduced.

The K-complex, sleep spindle and delta wave are shown in Figures 3 and 4.
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2.3. Comparative Analysis of Cohen Class Energy Distributions

As this is a comparative study that resorts to time–frequency representations, a linear
frequency modulated pulse was used, of unit amplitude, and the frequency, rated/normed
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at sampling frequency, was increased linearly from 0.1 to 0.3. The signal length corresponds
to 512 samples [55]. Table 1 presents the Cohen-class frequency–time representations and
associated core functions.

Table 1. Cohen class frequency–time representations and associated core functions.
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Figure 5 (left) shows the smoothed-out Wigner–Ville pseudodistribution applied for
the test signal. The dimensions of the smoothing windows for the simultaneous analysis
in the time and frequency axes are 64 points and the Fourier transform is calculated at
512 points. It is noted that this “knife blade” representation preserves the temporal and
frequency support and provides a precise picture of how the signal energy is distributed
along the time–frequency plane. Figure 5 (right) shows the time–frequency plane viewed
from above at an angle of 90◦. It may be seen how thin the “energy blade” of the test signal
is and how sharply it comes into prominence against the remaining background. It has
been found that this has reduced the representation’s resolution in both time and frequency.
Another effect of dimming the windows and the FFT dimension has been an increase in the
amplitude of the secondary lobes. The advantages of using small-scale analytical windows
include better preservation of the time and frequency supports, as well as a reduction in
the calculation time. Even under these conditions, one may determine on whose signal
type basis such representation was made in case the latter is not known a priori. Good
enough estimates may also be made of the parameters of the signal that originated the
transformation. The analysis window was in both cases of the Hamming type.
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Figure 5. The pseudo-Wigner–Ville representation of the test signal.

The test signal will be further analyzed using other Cohen class time–frequency
representations, such as the Born–Jordan distribution represented in Figure 6, for which
Hamming-type windows were used. Compared to the Wigner–Ville distribution, it is
similar in that it looks like a somewhat thicker “knife blade,” with a lower resolution,
but the secondary lobes are almost unnoticed when the window size H is equal to 64;
when the window size decreases to 32, the resolution decreases and the secondary lobes
become visible.
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Figure 6. Born–Jordan representation of the test signal.

Figure 7 contains the Choi–Williams distributions of the linear variable frequency
signal for a Hamming window sized 64. A first observation is related to the positive sign
of the distribution and its large amplitude. The resolution of the representation is almost
as good as the smooth Wigner–Ville pseudo distribution. Interestingly, the secondary lobes
have not become visible for any of the dimensions of the analysis window. Instead, some
disturbances perpendicular to the time axis and wide frequency support appeared at the
signal edge, which are more pronounced when the size of the smoothing window is small.
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The Zao–Mark–Atlas distribution of the test signal is shown in Figure 8. As a first con-
clusion, the amplitude of the representation is lower that that of the other representations
studied so far.
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Figure 8. Zao–Mark–Atlas representation of test signal.

The resolution is very good, compared to the other distributions.
The decrease in the size of the analytical window (to 32 vs. 64) led to the emergence

of the secondary lobes, as well as to disturbances in the signal edges. We left to last the
signal analysis made with the help of the spectrogram (Figure 9), which is also a Cohen
class distribution; it had the poorest performance but was the simplest of all. The window
used was rectangular, size 64.
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Figure 9. STFT spectrogram of the test signal.

From the analysis of a test signal based on time–frequency representations in the
Cohen class, one may draw some conclusions:

• of all the time–frequency distributions investigated, the spectrogram provides the
temporal resolution at the lowest frequency and the Zao–Mark–Atlas distribution
features the smallest amplitude;

• the Choi–Williams distribution is positive and has the largest amplitude;
• the Born–Jordan distribution features almost no secondary lobes;
• the choice of analytical windows (Blackman, Hanning, Hamming, Bartlett, or rect-

angular) influences the temporal and frequency resolutions as well as secondary
lobe levels.

In the wake of our investigations, some important aspects may be highlighted with
respect to the use of signal analysis based on time–frequency distributions in the Cohen
class, namely:

• the energy structure of the analyzed signals may be fairly accurately identified and
located in the time–frequency plane;

• when the type, duration, frequency, and timing of signals are not known in advance,
they may be estimated by using time–frequency distributions;

• one can thus foresee the possibility of implementing these analytical algorithms in the
systems for identifying the EEG transient signals;

• even in the case of signals covering the same spectral range, generated by different
sources, the time–frequency distributions allow each of them to be highlighted;

• one may set up databases that are useful for identifying EEG transient signals as their
“signature” can be individualized by using time–frequency representations.

For the analysis of EEG signals in order to detect and classify K-complexes, we will
use pseudo-Wigner–Ville reallocated distributions.

2.4. Recursive Implementation of Cohen Representations

Section 2.3 deals with practical problems that depend on the calculus of representa-
tions, a lesser subject if we consider that the development of rapid and elegant economic
algorithms has widened and continues to broaden the applicability domains of the time–
frequency analysis.

Two methods may be identified in this area: the first method envisages the limitation of
the large volume of calculations. For this purpose, some authors look for an optimal ordering
of operators [56–58]. Other authors, on the other hand, choose the symmetry properties of
the instant autocorrelation function and some parameterization functions [59,60]. Finally,
the distribution of the Cohen class may become the object of a division into a weighted
sum of spectrograms, from which only the most significant terms have been retained.

Except for this latter situation, which, at most, can only provide an approximation of
the representation, the above methods lead to a substantial reduction of the calculation time.
Because of this, some of them are systematically associated with recursive implementation
algorithms that are covered by the second method.

Recursiveness and reallocation method
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The improvement of the contrast function for time–frequency representations is an
important step for the analysis of nonstationary signals. That is why numerous solutions
have been proposed, including the reallocation method. In this section, we propose a
recursive strategy that aims at reducing the computation time required. Thus, we are
interested in introducing recursiveness into the spectrogram reallocation process, then to
the pseudo-Wigner–Wille distributions.

(a) Pseudo-Wigner–Ville reallocated distributions (Recursiveness and reallocation operators)

In [55], the authors formulated the relationships of reallocation operators associated
with Cx Cohen class distributions as follows:

n̂[n, v; x] = n
CX [n, v; Tϕ)

CX [n, v; ϕ)
, (1)

v̂[n, v; x) = v + j
CX [n, v; Dφ)

CX [n, v; φ)
, (2)

where TφTR[m, l] = mφTR[m, l] and DφTR[m, l] are the partial derivative of ∂φTR(t, τ)/∂τ
evaluated in (m, l). By adopting the same method as for the reallocated spectrogram, it may
be shown that Cx[.;DΦ) and Cx[.;TΦ) may be evaluated recursively when Cx[.;Φ) verifies
the direct recursiveness relation (Equation (3)):

Cx[n, v; φ] = αcx[n− l, v; φ] + cα−MCx[n + m, v; ϕ]− cαM+1Cx[n−M− l, v; ϕ] (3)

To reduce the complexity of the various recursive relationships presented, we have
confined the present study only to the cases of pseudo-Wille distribution.

Theorem 1. Let Φ belong to the class of parameterization functions ξ(W̃X)with separable variables
that allow a direct recursive implementation of the pseudo-Wille–Ville distributions. The following
relationships determine the direct and indirect recursiveness of Wx[.;DΦ] and W̃x[.;TΦ]:

W̃X [n, v; Dφ) = αW̃X [n− 1, v; Dφ) +
l−1
∑

l=1−L
n[n, l)e−j4πvl

with
η[n, l] = DφTR[M, l]RX [n + M, l]− αDφTR[−M, l]RX [n−M− 1, l].

(4)

W̃X [n, v; Tφ) = α(W̃X [n− 1, v; Tφ)− W̃X [n− 1, v; φ) +
l−1
∑

l=1−L
ψ[m, l)e−j4πvl

with
ψ[n, l] = MφTR[M, l]RX [n + M, l]− α(M + 1)φTR[−M, l]RX [n−M− 1, l]

(5)

Equation (4) results if Φ belongs to ξ(W̃x); then DΦ also belongs to ξ(W̃x). Consequently, the
direct recursive relation

PWLX[n, v;φ] = αPWLX[N− 1, V;φ] +
+∞

∑
L=−∞

k[n, l]e−j4πvl (6)

remains valid for the distribution W̃x[.;DΦ).

A simple calculation allows us to verify Equation (5). Note that the association of
several recursive processes of the same type as Equations (4) and (5) also allows for the
extension of the recursive strategy that we have previously presented to the class of
parameterization functions ξext(W̃x). In this case, use is made of the linearity property of
the Fourier transform.

(b) Performances

The kernels of the separable variables g[l] h [m], written as gh, which we use to
demonstrate interest in the recursive strategy, verify the Hermitian symmetry property:
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g[l]h[m]∗ = g[l]h[−m] (7)

This results in:

(Dgh[l, m))∗ = Dgh[l,−m] si (Tgh[l, m])∗ = Tgh[l,−m], (8)

which allows us to rewrite the pseudo-Wigner–Ville distributions associated with nuclei
Tgh şi Dgh as follows:

W̃X [n, v; Tgh) = 2Re{Ξx[n, v; Tgh)} −
M

∑
m=−M

Tgh(0, m]Rx[n + m, 0] (9)

W̃X [n, v; Dgh) = 2Im{Ξx[n, v; Dgh)} −
M

∑
m=−M

Dgh[0, m]Rx(n + m, 0], (10)

where

Ξx[n, v; φ) =
l−1

∑
l=0

M

∑
m=−M

φ[l, m]Rx[n + m, l]e−j4πvl . (11)

The relationships retain the general characteristics found in Equations (4) and (5).
If the adopted strategy is classical or recursive, the use of Equations (9)–(11) allows for
a reduction in the time needed to calculate distributions [., Tgh] and [., Dgh] and thus
the reallocation operators. Finally, in order to compare the two methods under the most
favorable conditions, the calculations of algorithmic complexity mentioned were made
on the basis of these relationships. These results emphasize the fact that, for the recursive
algorithm, complexity is independent of the temporal support [−M, M] of the temporal
window h. This represents an advantage of the proposed method, as shown in Figure 10a.
In contrast, Figure 10b shows that the calculation time gain decreases when the window
width g increases for a given time window h.
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Figure 10. Estimation of time gain by using recursive calculation applied to the classical method
for evaluating the re-allocated pseudo-Wigner–Ville distribution. Different time windows h are
analyzed: rectangular (•), semi-sinusoidal (�), Hamming, and Hanning (�). (a) Temporal window h
of semilength l that is set at 64. (b) Frequency window g with semilength M set at 32.
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Finally, it is noted that the calculation time gain is not affected by the number of
samples W̃x[n,v;gh) reallocated at each moment n, and the calculation of the reallocation
algorithm function shown in Figure 11 requires a maximum of 3N additions and 2N
multiplications. This specification is valid for the reallocated spectrogram.
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2.5. Deep Neuronal Network

To see the separability of the classes, various architectures of deep neural networks
were used. As previously mentioned, the features provided as input data consist of the
correlations extracted with the Cohen class algorithm. Thus, the networks were tested with
a number of hidden layers ranging from 1 to 7. Also, the number of neurons on each layer
varied between 8 and 256 (more precisely, 8, 16, 32, 128, 256 neurons per layer were used).
The activations tested were sigmoid, tanh, and arctan. They have been used due to the fact
that they are known to have good results, especially for class problems [61,62], but also
estimation problems [63].

Results with activation functions that deny components’ negatives (e.g., ReLU, Leaky
ReLU) were not used in this paper because they provided random responses (an accuracy
of around 50%). One possible reason for this is the phenomenon called dying ReLU. It
refers to the fact that if too many weights take values below 0 the activation result will be 0,
so data discrimination becomes impossible.

The optimization technique used was Stochastic Gradient Descent (SGD). This al-
gorithm is used in the field of deep neural networks and generally provides satisfactory
results [64–67]. The proposed method is a simple one from GD (Gradient Descent) in
the sense that, instead of calculating the gradient for the whole lot at each iteration, the
gradient is calculated only for a randomly chosen value from the lot [68]. Therefore, the
learning process is stochastic and depends on these chosen values. In this way, it is desired
that Equation (12) (3.8) for GD behave relatively similarly to Equation (13) (3.9) for SGD,
having the advantage of a much smaller calculation volume:

wt+1 = wt − η
1
n ∑n

i=1∇wL(zi, wt) (12)

wt+1 = wt − η∇wL(zt, wt). (13)

In these formulas, z refers to the pair (x; y), meaning the input value (associated output
value), and zt is the pair chosen at time t.
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3. Results

Due to the relatively small size of the database, we used a batch size of value 1 (only
one example was evaluated for updating the parameters). In addition, to ensure that all
architectures were tested under the same conditions, the number of epochs was always
100. The tests were performed in two stages.

In the first stage, the database was divided into two: the training part with a size of
350 and the test part with a size of 39, equivalent to a division of 90% and 10%. During
training, the purpose of the network is to determine the weights that allocate the ideal
labels to the input values. The data that the network learns are called the training batch.
In order to test the possibility of generalizing the found function, some values are kept
separately (called the test batch) and passed through the network. If the results are good,
we can say that the network has learned and is able to classify the new data.

At this stage, different deep neural network architectures were tested. During the tests,
the hyperparameters of the system were modified. More precisely, we experimented with
various values for the number of neurons, the layer, and various activation functions—tanh,
arctan, and sigmoid. The three activation functions were chosen because they have an S
shape, which increases the separability of the input data.

The neural architecture tested for the tanh function had five layers and 16 neurons per
layer, and the best cost recorded on the test was 0.32 with an accuracy of 90.18%.

The results obtained for the tanh activation function are presented in Table 2.

Table 2. The results obtained for the tanh activation function.

Number of Neurons
Training Testing

Cost Accuracy Cost Accuracy

8 0.57 75.57 0.35 87.05
16 0.58 72.00 0.32 90.18
32 0.58 73.29 0.46 88.62
64 0.56 74.56 0.34 87.18
128 0.54 74.23 0.38 85.65
256 0.55 75.83 0.38 89.97

The next activation function tested was sigmoid, and the best cost on the test batch
was 0.35 at an accuracy of 94.65%. It has also been observed that, with the increase in the
number of hidden layers and even the number of neurons, the network begins to stop
learning and gives random results for training data. The results obtained for the sigmoid
activation function are presented in Table 3.

Table 3. The results obtained for the sigmoid activation function.

Number of Neurons
Training Testing

Cost Accuracy Cost Accuracy

8 0.52 72.87 0.35 94.65
16 0.52 74.00 0.38 84.65
32 0.58 72.89 0.41 84.62
64 0.53 74.00 0.38 93.23
128 0.58 64.25 0.38 82.35
256 1.55 52.63 0.75 90.17

Next, we tested the activation function arctan. This time the number of hidden layers
was 1–7, and the number of neurons was varied according to Table 4 In this case, the
minimum cost found on the test batch was 0.31 at an accuracy of 95.67% with seven hidden
layers and 16 neurons on each layer. The results obtained for the arctan activation function
are presented in Table 4.



Sensors 2021, 21, 7230 13 of 19

Table 4. The results obtained for the arctan activation function.

Number of Neurons
Training Testing

Cost Accuracy Cost Accuracy

8 0.67 67.87 0.35 98.30
16 0.67 64.53 0.31 95.67
32 0.55 72.79 0.31 92.62
64 0.58 74.31 0.33 88.53
128 0.52 78.25 0.34 87.38
256 0.55 71.13 0.35 94.17

The best result was obtained using an architecture with six hidden states, eight
neurons on each hidden layer, and each layer (excluding the output layer, which had
softmax) having the arctan activation function. The accuracy of classes (in this case, on the
test group) was 98.30%.

In the second stage, optimization, validation, and increase of generalization capacity,
the database used in stage one was divided into 80% for training and 20% for testing
(another test was done for ordering the datasets into 80% for training, 10% for validation,
and 10% for testing) using the SGD optimization algorithm.

The algorithms presented in this article were developed in the LabVIEW 2020 SP1
programming environment with a 17-inch high-performance portable computing system
with an Intel processor, four cores @ 3.2 GHz, 16 GB DDR3 RAM @ 1600 MHz, 256 GB SSD,
1 TB HDD, and high-performance dedicated video card, optimized for computer graphics,
with K-complex detection being offline for optimized for computer graphics to train and
test the MLP-CNN neural network with Wigner–Ville. In the future, we hope to develop a
portable system for online analysis based on an FPGA architecture with an Intel Core i7
processor (3.1 GHz) or Coral Dev Board that can be used for a machine learning embedded
system; again, the software will be developed in the Pytorch framework.

The final part of a deep network is represented by one or more fully connected
multilayer perceptron (MLP) layers that perform the classification part, using as inputs
the outputs of the initial convolutional part (characteristics automatically extracted by it)
obtained for each applied signal network input.

The optimizer is the algorithm that decides in which direction and how strongly to
change the weights in the network. In order to adjust the parameters of a network (weights
and displacements), an optimizer must be used that decides the modification strategy
according to the gradients obtained with the help of the loss function. The algorithm used
is Calibrated Stochastic Gradient Descent (CSGD). The optimizer requires specifying the
size of the optimization step, also called the learning rate, which in our tests will be kept
constant at 10−5.

It is, practically speaking, an iterative optimization process that aims to reduce the
error (respectively the difference between the expected output and the one obtained in
that iteration), estimated using a cost (or loss) function. In this way, those inputs and
characteristics that are the most relevant for obtaining the desired output are enhanced.

This experiment resulted in a classification accuracy of 98.3%, recall of 0.96, and mi-
croaverage F1 score of 0.97. The confusion matrix is shown in Table 5 and the classification
report is given in Table 6.

Table 5. The confusion matrix from MLP-CNN with Wigner–Ville spectrogram classes.

Predicted Label

Background Noise Single EEG Signal Two EEG Signals

True Label
Background Noise 1.00 0.00 0.00
Single EEG Signal 0.00 0.96 0.06
Two EEG Signals 0.00 0.93 0.57
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Table 6. Classification report for MLP-CNN with Wigner–Ville spectrograms.

Classes Precision Recall F1 Score

Background Noise 1 1 1
Single EEG Signal 0.99 0.98 0.98
Two EEG Signals 0.98 0.97 0.97

Average/total 0.98 0.95 0.96

This was to be expected as the cost does not provide information on accuracy. The
latter is calculated according to the formula:

accuracy =
number o f cases classi f ied correctly

number o f total cases
(14)

and the cost function used is binary cross entropy and behaves according to the following law:

L = − 1
n ∑N

i=1 yilog(ŷ) + (1− yi)log(1− ŷ). (15)

In the field of neural networks, there are two phenomena that can occur during
training: underfitting and overfitting. The first refers to when learning is stopped too
quickly compared to the number of epochs. As can be seen from Figure 12, underfitting
occurs when the cost is still decreasing, both for the training group and for the test group,
but a minimum cost has not been reached. Therefore, the subtraining area is characterized
by low accuracy in the learning and testing groups. Overfitting is the extreme opposite
of underfitting. This time the network is left to learn for a large number of eras. In this
case, parameters were found that fit the drive data almost perfectly. The problem is that the
network did not learn a real connection between the signals, but only managed to map the
input data to the corresponding output values. In this case, the cost per test batch increases
because the network is not robust and does not manage new data well.
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Figure 12. Illustration of underfitting and overfitting.

Analyzing the results presented in this article, we can say that in no variant of the
tested architecture was there overfitting. However, the rule of saving the model was: keep
the one that has the lowest cost on the test lot. Thus, all results presented are not affected
by either underfitting or overfitting.

The computational time required to extract the characteristics of spectrograms using
MLP-CNN was 1.26 s. The total training time required for the EEG spectrograms was
13 min. The trained model classified K-complexes’ shape in 5 s for offline analysis and
classifications.

To compare the results obtained with the proposed method, we referred to the follow-
ing articles [69–73], which have as their theme the automatic detection of the K-complex.
The comparative results are presented in Table 7.
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Table 7. Comparison of methods used in the automatic detection of K-complexes.

Reference Year Method Used Detection Result

[69] 2015 Wavelet 81.57%
[70] 2019 Fractal Time–frequency 97.00%
[71] 2021 SVM 97.70%
[72] 2018 Deep Learning 94.00%
[73] 2020 Multitaper Method 93.70%

Proposed Method 2021 Time–Frequency and Deep Neural 98.30%

4. Discussion and Conclusions

The present study was spurred by the need to develop a definition of a methodol-
ogy for the synthesis of imposed structure detectors with applications in the detection
of K-complexes using time–frequency representation. Furthermore, before drawing any
conclusions, we must recall the main outcomes, from which we can highlight some future
research directions. Initially, we presented the notion of time–frequency representation,
insisting on the distribution of energy in the Cohen class. We have presented some practical
problems related to their use, such as the presence of interference terms that are harmful to
the interpretation of results.

Among other difficulties that may arise, we have been particularly interested in the
large amount of computing that occurs in the analysis of long signals. Thus, after empha-
sizing the potential of recursive algorithms for the rapid calculation of time–frequency
representations, we presented in a homogeneous and unified manner the direct and indirect
recursive properties of the Cohen class.

Furthermore, we expanded their distribution by the reallocation method. Then, we
made the first strategic choice in defining a methodology for the design of imposed structure
detectors using a deep neural network. The aim of the present study was to select the
best detection test for a given pattern, as far as the definition of an optimal criterion is
concerned. To determine the decision rule, our choice was a deep neural network with
arctan-type activation function, due to its consistency, which is a guarantee of performance.
The method allowed us to present an answer to this problem, leading to the analytical
determination of the best criterion, for which the detector for the obtained K-complexes
has a minimum probability of error. Finally, the time–frequency plan, which is an optimal
space for analyzing the configuration of some detectors, made it possible to verify the
method. An original presentation of the potential of the Cohen class in solving certain
detection problems with an imposed structure is provided, which gives the representation
a decisive role in the decision-making process. In the final stage, different deep neural
network architectures were tested. During the tests, the hyperparameters of the system
were modified. More precisely, we experimented with various values for the number of
neurons and layers, and various activation functions—tanh, arctan, and sigmoid. These
three activation functions were chosen because they have an S shape, which increases the
separability of the input data. The best result was obtained using an architecture with
six hidden states, eight neurons on each hidden layer, and with each layer (excluding the
output layer, which had softmax) having the arctan activation function. The accuracy of
classes (in this case, in the test group) was 98.30%.

The limitations of this study were: (a limitation of all sleep EEG studies) recorded
EEG signals represent the sum of the electrical activity in large areas of the brain, which
can lead to an inaccurate location; to improve the performance of the proposed method it
is useful to identify K-complexes from multi-electrode data; EEG recordings for somnology
are often not of a quality requiring the use of filters, which can introduce the smoothing of
the EEG signal, which is interpreted as uniformity of brain activity during sleep; in most
cases, public databases for brain activity during sleep are not annotated, which makes
it difficult to train the neural network; future studies with larger annotated sleep EEG
databases will be needed to assess and compare the robustness of our method at each stage
of sleep, as access to specialized somnology clinic databases is currently very limited due
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to GDPR legislation; one direction of increasing the performance of our method is the fine
adjustment of the analysis and recognition parameters from one subject to another, taking
into account the individual differences of the subjects and the properties of the K-complex.

Given both the theoretical and practical knowledge gained from the research presented
in this article, and the software developments made to validate the theoretical results, we
believe that they can be successfully addressed in the future: analysis and implementation
of theoretical research that can lead to a link between time–frequency analysis and the
SRM (Structural Risk Minimization) principle; optimizing the reconstruction property of
Wigner–Ville representations, starting from a partial, but not random, knowledge of it,
to remove the signals from the noise and the exact representation of the K-complex and
the sleep spindle, synthesizing a linear detector that operates only on independent linear
components and can fully process Wigner–Ville representations and the realization of a
portable hardware (e.g., a Coral Dev Board can be used for a machine learning embedded
system) and software system for the analysis, recognition, and classification of a K-complex
and sleep spindle in real time so that this system can be used in patients’ homes (home care).

Finally, the methodology presented in this paper has been validated for an application
with a certain degree of difficulty, namely, the detection of the K-complex in the sleep elec-
troencephalogram. The proposed solution is among the performance solutions described
in the literature. In addition, these results may be improved by correlating information
from multiple electroencephalogram records.
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