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Abstract

Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent.
However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A
better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol
initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium
channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In
the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the
presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a
range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation.
Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful
control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via
Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles,
amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents
that exhibit differing modes of action as antifungal agents to combat drug resistant infections.
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Introduction

There is increasing interest in the use of plant-derived

antimicrobial compounds as both natural preservatives and in

the treatment of fungal infections. A driver for this interest is that

antifungal therapies are limited to a few classes of compounds

which are undermined by the emergence of resistance and

tolerance coupled with innate toxicity of these compounds to the

host organism [1].

Eugenol is the major constituent of essential oils from clove,

cinnamon and bay leaves and is a member of a wider group of

diverse amphipathic phenolic compounds which display antifungal

activity [2]. Despite the therapeutic potential of these compounds,

relatively little is known about their mode of action and the

mechanisms employed by fungi to resist their toxicity. Several

modes of action have been proposed including disruption of ion

homeostasis [3], nonspecific lesion of the plasma membrane

(resulting in leakage of cell contents; [4]), disruption of amino acid

metabolism [5] and generation of oxidative stress [6]. However,

the mechanism of killing remains to be fully elucidated and

consequently we know little of the defence mechanisms employed

by fungi to resist the toxic effects of eugenol (and related

amphipathic phenolic compounds). Such knowledge will be

essential in facilitating the application of these promising

therapeutic compounds.

Previous studies have shown that amiodarone and carvacrol,

two amphipathic phenolic compounds related to eugenol, induce

increases in cytosolic Ca2+ in Saccharomyces cerevisiae and that

their toxicity correlates with the amplitude and duration of

cytosolic Ca2+ elevation; consequently, it has been proposed that

the Ca2+ elevation represents a toxic shock responsible, at least in

part, for the antifungal activity of these compounds [7,8,3].

Recently however, Roberts et al. [9] have shown that although

eugenol also induces a cytosolic Ca2+ elevation in yeast the cch1D
mutant (which is deficient in a subunit of the yeast high affinity

plasma membrane Ca2+ channel) exhibits reduced Ca2+ influx in

response to eugenol but is hypersensitive to eugenol. This raises

the exciting possibility that the mechanisms by which yeast

respond to eugenol and the related compounds amiodarone and

carvacrol differ and that a Cch1p-mediated Ca2+ influx forms part

of a cell signalling response to enable yeast to survive eugenol

stress.

The present study investigates the role of Ca2+ in eugenol

toxicity in detail. We show that the eugenol-induced cytosolic Ca2+

elevation in yeast is unlikely to represent a toxic burst of Ca2+.

Importantly, Ca2+ influx appears to be limited to a signalling role

that is crucial for protecting yeast against eugenol stress.
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Materials and Methods

Strains, media and reagents
Single and double mid1D and cch1D mutants were derived from

the parental S. cerevisiae strain JK9-3da (Mata, leu2-3, 112D,

his4D, trp1D, ura 3-52D, rme1, HMLa) by replacing the MID1

and CCH1 genes by a KanMX cassette [10]. Yeast strains were

transformed with pEVP11/AEQ (a plasmid bearing apoaequorin

gene under constitutively expression and a LEU2 marker,

generously provided by Dr Patrick Masson, University of

Wisconsin-Madison, Wisconsin, US) as previously described

[11]. Unless otherwise stated, yeast strains were cultured at 30uC
in standard synthetic complete media minus the addition of

leucine (SCM-leu; Foremedium, UK). SCM-leu-Ca is synthetic

minimal glucose media [12] modified to contain no added calcium

by replacing the calcium pantothenate with sodium pantothenate

and omitting the addition of CaCl2 [10] and supplemented with

complete supplement mixture-leu (Foremedium, UK).

vcx1D and pmc1D mutants were derived from the parental

strain S. cerevisiae strain BY4742 (Mata, his3D1, leu2D0, lys2D0,

ura3D) by gene replacement with a KanMX cassette (EURO-

SCARF) and cultured in YPD contained 1% yeast extract and 2%

peptone. All growth media contained 2% (w/v) glucose (and 2%

(w/v) agar for solid media), and where indicated, supplemented

with BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N9,N9-tetraa-

cetic acid), EGTA (ethylene glycol tetraacetic acid) or CaCl2 using

stock solutions of BAPTA (10 mM BAPTA, 10 mM HEPES, 2%

glucose, pH 7.5 with Tris base), EGTA (0.5 M EGTA, 10 mM

HEPES, 2% glucose, pH 7.0 with NaOH) or 2 M CaCl2. pH was

approximately 6.5 for YPD-based growth media and between 5.0

and 5.5 for SCM-based growth media. Eugenol, isoeugenol,

estragole, o-eugenol, acetyl eugenol and methyl eugenol (Sigma

Aldrich) were in liquid form and made to 100x stocks in ethanol

and stored at 4uC.

Luminometry
Cells expressing apoaequorin were grown overnight in SCM-leu

in a shaking (150 rpm) incubator to an optical density at 600 nm

(OD600) of 8 (approximately 16108 cells/ml). OD600 was

determined after 8x dilution of culture in water. To obtain cells

in mid-log growth phase, 0.5 ml of overnight cultures were

subcultured into 10 ml of fresh SCM-leu to give an OD600 of 0.8

and incubated shaking at 150 rpm for up to 3 hours until an

OD600 between 1.6 and 2.4 was reached. Cells were pelleted (at

room temperature using 200 g for 5 minutes) and resuspended in

fresh SCM-leu to an OD600 of 2.4. 4 ml of 0.5 mM coelentrazine

(Prolume, USA) in absolute methanol was added to 1 ml of cells

and incubated in the dark for 2 hours at 30 C shaking at 150 rpm.

Coelentrazine loaded cells were pelleted in a microcentrifuge

(5000 rpm for 20 seconds) and resuspended in fresh SCM-leu to

an OD600 of 8. Luminescence from 20 ml samples of mid-log

growth phase cells was recorded as previously reported [9].

Eugenol (and eugenol derivatives) were added to samples at

indicated concentrations (containing 1% ethanol) in either 200 ml

of Ca buffer (10 mM CaCl2, 10 mM HEPES, 2% glucose, pH 7.5

with Tris base), BAPTA buffer (10 mM BAPTA, 10 mM HEPES,

2% glucose, pH 7.5 with Tris base) or SCM-leu. Luminescence

(expressed in arbitrary units (AU) per 0.2 seconds) was measured

for up to 10 minutes after which cells were lysed with 1.6 M CaCl2
in 20% (v/v) ethanol to determine total (summed) luminescence.

Total luminescence was in much greater excess over luminescence

induced by eugenol (or eugenol derivatives) indicating that the

availability of aequorin-coelentrazine complex was sufficient for

the reporting induced Ca2+
cyt elevations.

Toxicity assays
Transient exposure to eugenol – dot drop assays. 1 ml of

overnight cultures of JK9-3da (and derived mutants) was added to

9 ml of fresh SCM-leu to an OD600 of 1.6 and incubated for

approximately 4 hours shaking at 150 rpm until an OD600

between 3 and 4 was reached and cells were in mid-logarithmic

growth phase. Culture was pelleted (200 g for 5 minutes) and

resuspended in 5 ml of 2% glucose, repelleted and resuspended in

1 ml of 2% glucose. 0.5 ml cell samples were pelleted in a

microcentrifuge (5000 rpm for 20 seconds) and resuspended in

0.5 ml of Ca buffer or BAPTA buffer and adjusted to an OD600

of 20. 100 ml of cells were pelleted and resuspended in 0.5 ml of

corresponding buffer containing eugenol and incubated at room

temperature for 10 minutes (unless otherwise stated). Following

incubation, cells were pelleted in a microcentrifuge and resus-

pended in 1 ml of SCM-leu, repelleted and resuspended in 100 ml

of SCM-leu. 10-fold serial dilution was performed in sterile water

and 5 ml of each dilution was placed onto SCM-leu containing 2%

agar. Images of plates were taken after two days growth.

Persistent exposure to eugenol - dot drop assays. JK9-

3da (and derived mutants) were cultured overnight in 10 ml SCM-

leu to an OD600 of 8, pelleted (200 g for 5 minutes) and

resuspended in 10 ml of sterile water and resuspended to

0.56108 cells/ml. Following 10-fold serial dilution of each yeast

strain using sterile water, 5 ml drops were spotted onto YPD (1%

yeast extract, 2% peptone, 2% glucose, 2% agar) plates containing

varying concentrations of eugenol. Images of plates were taken

after two days growth at 30 C.

Determination of IC50 values. Sensitivities of yeast growth

to eugenol (and derivatives) were assayed by a dilution method in

24 well plates as described by Edlind et al. [13]. Briefly, overnight

cultures in SCM-leu were pelleted and washed in 2% glucose, re-

pelleted and diluted in either SCM-leu or SCM-leu-Ca supple-

mented with either Ca2+ or BAPTA to 1024 cells/ml and 1 ml

aliquoted to wells except the initial well in which 2 ml was

aliquoted. Eugenol, eugenol derivatives or BAPTA were added to

the first well and a two-fold dilution series achieved by mixing,

removing 1 ml and adding this to the second well; this was

repeated for subsequent wells except the final well which served as

a eugenol (or BAPTA)-free control. Plates were sealed and

incubated shaking at 150 rpm for 48 hours after which OD600

was determined (for OD values greater than 1, a 10x dilution of

the sample was performed). For BY4742 strains, sensitivities to

eugenol were determined as above except culture media was YPD.

Student’ t tests were performed on the IC50 values to determine p

values and whether mean IC50 values were significantly differently.

Results and Discussion

Eugenol toxicity is not coupled to Ca2+ influx
Yeast cells were transiently exposed to toxic levels of eugenol for

varying times before transferring on to agar-containing growth

media to monitor cell viability. Figure 1A shows that transient

exposure to 6.4 mM eugenol was fungicidal and that this toxic

effect was apparent within one minute of exposure to eugenol and

showed increasing toxicity up to 10 minutes. Therefore, to

investigate the role of Ca2+ in eugenol toxicity, 10 minute transient

exposure of wild type (Jk9-3da) yeast to varying concentrations of

eugenol were performed in the presence (10 mM CaCl2;

Figure 1B) and absence (10 mM BAPTA; Figure 1 C) of

extracellular Ca2+ before immediately transferring to growth

media to monitor cell viability. In both cases transient exposure of

up to 3.2 mM eugenol was tolerated by yeast, however, at

concentrations greater than 3.2 mM fungicidal effects were
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apparent. Interestingly, removal of extracellular Ca2+ had no

apparent effect on eugenol toxicity towards yeast suggesting that

an influx of Ca2+ across the plasma membrane is unlikely to play a

role in eugenol toxicity. To gain further sights into the role of Ca2+

in mediating eugenol toxicity in S. cerevisiae, cytosolic Ca2+ was

also monitored in cells following exposure to eugenol (in identical

conditions to that used to assess cell viability shown in Figures 1B

and C) using the genetically encoded reporter, aequorin,

reconstituted with its cofactor, coelentrazine. In the presence of

extracellular Ca2+, eugenol-induced cytosolic Ca2+ elevations in

wild type yeast were characterised by a large transient increase

immediately following addition of eugenol followed by a prolonged

Ca2+ elevation for up to 10 minutes (Figure 1 D). Increasing the

concentration of eugenol increased the magnitude of the Ca2+

elevations (Figure 1 D) whilst removal of extracellular Ca2+

abolished the large transient elevation in cytosolic Ca2+ (and

reduced total eugenol-induced cytosolic Ca2+ elevations;

Figure 1E). However, there was no correlation between eugenol

toxicity and either the amplitude and duration of the Ca2+

elevation or Ca2+ influx across the plasma membrane. Toxicity

resulting from transient exposure of eugenol and Ca2+ elevations

were also investigated in the yeast Ca2+ channel mutants cch1D,

mid1D and cch1D mid1D (Figure S1). Interestingly, the mid1D
mutant consistently exhibited greater tolerance to transient

exposure of high concentrations compared to the wild type and

cch1D mutant yeast although as in wild type yeast there was no

correlation between eugenol toxicity and cytosolic Ca2+ elevation;

the Ca2+ elevation in the mid1D mutant was equivalent to that

observed in wild type yeast. It is also notable that the cch1D
mutants exhibited equivalent tolerance to transient exposure of

eugenol compared to wild type yeast despite the cytosolic Ca2+

elevation being consistently reduced in the cch1D yeast (Figure S1).

Taken together, these results show that eugenol toxicity is unlikely

to be mediated by a pancellular ‘‘toxic’’ elevation in cytosolic

Ca2+.

At higher concentrations (e.g. 9.6 mM) the eugenol-induced

cytosolic Ca2+ elevation consists of two distinct components: a

rapid transient increase in cytosolic Ca2+ due to Ca2+ influx across

the plasma membrane (Figure 1D) followed by a prolonged

elevation of cytosolic Ca2+, which is independent of extracellular

Ca2+ (i.e. present in BAPTA-containing buffer; Figure 1E) and

thus must result from a release of Ca2+ from intracellular stores.

The transient Ca2+ influx across the plasma membrane is

independent of the presence of Cch1p and Mid1p (Figure S1)

revealing that this Ca2+ influx across the plasma membrane is via

an unspecified pathway; this could reflect non-specific disruption

of the plasma membrane and general cell leakage [14,4] or

hitherto unidentified Ca2+ specific entry pathways [15,16,17].

To investigate the relationship between toxicity and cytosolic

Ca2+ elevation further, we compared the toxicity of a range of

eugenol derivatives with their ability to induce cytosolic Ca2+

elevations (Figure 2). Figure 2 M plots the concentration of

eugenol (and derivatives) which results in 50% inhibition of yeast

growth (IC50) against the cytosolic Ca2+ elevation induced

following addition of 3.2 mM eugenol (or derivative). Notably,

both estragole (hydroxyl group replaced with methoxy group) and

o-eugenol (hydroxyl group moved to the carbon situated between

the methoxy and allyl groups) exhibited significantly greater

toxicity towards yeast (1.01760.0435 mM and 0.94960.0285 mM

respectively) than eugenol (p,0.02 and ,0.01 respectively) but with

reduced elevation of cytosolic Ca2+. Isoeugenol however (which

differs from eugenol in the position of the double bond in the allylic

side chain) was significantly more toxic to yeast than eugenol (IC50

was 0.7360.0096 mM compared to 1.37560.0349 mM for euge-

nol; p,0.01) and induced greater cytosolic Ca2+ elevation

compared to that for eugenol. Taken together, these results show

no correlation between Ca2+ elevation and toxicity and do not

support a mode of action based on a toxic elevation in cytosolic

Ca2+. Consistent with this, estragole and methyl eugenol both failed

to evoke measurable Ca2+ elevation using a concentration (i.e.

3.2 mM) which is 2 to 3 times greater than the determined IC50. It is

noteworthy that the IC50 values determined for the eugenol

derivatives are unlikely to simply reflect differences in hydropho-

bicity because acetyl eugenol, isoeugenol and eugenol (which

represent the full range of IC50 values observed in the present study)

Figure 1. Eugenol toxicity is not dependent on Ca2+ influx. A) Time dependence of eugenol toxicity. Viability of JK9-3da cells after exposure to
6.4 mM eugenol suspended in Ca buffer for 1, 2, 4, 8 and 10 minutes. Yeast cultures are spotted on to SCM-leu media containing 2% agar; left most
spots are growth after 2 days following inoculation with 5 ml of culture. Serial 10-fold dilution of the left most inoculum is shown to the right. B) as A
except cells were exposed to varying concentrations of eugenol (as indicated) for 10 minutes in Ca buffer. C) as B except cells were exposed to
eugenol in BAPTA buffer. D) Eugenol-induced cytosolic Ca2+ elevation in the presence of extracellular Ca2+ in mid log growth phase yeast cells. Ca2+-
dependent aequorin luminescence from Jk9-3da cells in response to 3.2 and 9.6 mM eugenol in Ca buffer. Eugenol was added at 40 seconds
(indicated by arrow). Traces represent mean (6 SEM) from at least 5 independent experiments. SEM values are illustrated using grey shading.
Luminescence was recorded every 0.2 seconds and is expressed in arbitrary units (AU). Inset is data from the main figure on an expanded y axis. E) As
D except eugenol was in BAPTA buffer.
doi:10.1371/journal.pone.0102712.g001
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Figure 2. Eugenol toxicity is not dependent on Ca2+ influx. (A - F) Jk9-3da growth in SCM-leu containing varying concentrations of eugenol
(A) or eugenol derivative (B–F). Absorbance was recorded after 48 hours incubation and is shown as growth (absorbance) relative to growth
exhibited in eugenol or eugenol derivative-free control media (SCM-leu containing 1% ethanol). Data are fitted with the dose-response function min
+ (max-min)/1+ ((x/IC50)2p)) where p is the slope, IC50 is the eugenol concentration inhibiting 50% growth and min and max represent minimum and
maximum relative absorbance values respectively. Mean values (6 SEM) from 4 experiments are shown. (G–L) Ca2+-dependent aequorin
luminescence from Jk9-3da cell in response to addition of 3.2 mM eugenol (G), isoeugenol (H), estragole (I), o-eugenol (J), acetyl eugenol (K) and
methyl eugenol (L) added at 40 seconds in SCM-leu. Traces represent mean (6 SEM) from at least 4 independent experiments. SEM values are

Eugenol Toxicity in Yeast

PLOS ONE | www.plosone.org 4 July 2014 | Volume 9 | Issue 7 | e102712



have virtually identical hydrophobicity (log P) values of approxi-

mately 2.5 [14].

In contrast to the present study, the amplitude and duration of

cytosolic Ca2+ elevation in response to amiodarone and carvacrol

correlates with drug toxicity [7,8]. The fungicidal activity of

amiodarone has been shown to be tightly coupled to Ca2+ influx

across the plasma membrane; reducing extracellular Ca2+ with

EGTA blocks cytosolic Ca2+ elevation and rescuses growth

inhibition by amiodarone [7]. Furthermore, amiodarone toxicity

is also dependent on hyperpolarisation of the yeast plasma

membrane and consequently increases the driving force for Ca2+

influx [18]. Consistent with a cytotoxic influx of Ca2+ mediating

amiodarone and carvacrol toxicity, vma2D mutants which lack

vacuolar H+ pumping activity (and as a consequence have

impaired Ca2+ sequestration into the vacuole via Ca2+/H+

antiport) exhibit prolonged cytosolic Ca2+ elevations and have

increased sensitivity to amiodarone and carvacrol [19,8]. We

adopted a similar approach in order to investigate the role of the

vacuole in sequestering Ca2+ from the cytosol and to negate

eugenol toxicity using the pmc1D (vacuolar Ca2+ ATPase;

Figure 2N) and vcx1D (vacuolar Ca2+/H+ antiporter; Figure 2O)

mutants. Both pmc1D and vcx1D exhibited similar sensitivity to

eugenol as the parental wild type strain (BY4742) indicating that a

reduced capacity to remove Ca2+ from the cytosol across the

vacuolar membrane did not affect eugenol toxicity. Taken

together, these data are consistent with eugenol toxicity being

independent of a general cytotoxic Ca2+ elevation.

Tolerance to eugenol is dependent on extracellular Ca2+

influx via Cch1p
Previous studies showed that Cch1p (but not Mid1p) was a

crucial factor in determining the tolerance of S. cerevisiae to

eugenol; the hyper-sensitivity of cch1D mutants suggested that a

Cch1p-mediated Ca2+ influx may be necessary to protect yeast

against the toxic effects of eugenol [9]. To investigate this

possibility further, dot drop growth assays on YPD media

supplemented with eugenol and either 10 mM CaCl2 or 10 mM

EGTA (to increase or reduce extracellular Ca2+ respectively) were

conducted. Reducing extracellular Ca2+ reduced the tolerance of

the wild type (Jk9-3da) and mid1D strains to levels similar to that

observed for the cch1D mutants (Figure 3). Furthermore, the

sensitivity of the cch1D strains to eugenol was unaffected by the

reduction of extracellular Ca2+ using EGTA. These data suggest

that Cch1p-mediated Ca2+ influx is necessary for eugenol

tolerance in yeast rather than a Ca2+ influx per se. Consistent

with this, the eugenol sensitivity of the cch1D mutants could not be

rescued by supplementing the growth media with additional

extracellular Ca2+. Furthermore, the inability to enhance the

tolerance of yeast growth to eugenol by increasing extracellular

Ca2+ content of the growth media also indicates that there is

sufficient Ca2+ in YPD (approximate Ca2+ content of 100–

200 mM; [20]) to support Cch1p-mediated Ca2+ influx. This is

consistent with previous reports which show that Cch1p mediates

high affinity Ca2+ uptake in yeast (reviewed by [21]). Figure 3 is

also consistent with the previous observation that Cch1p operates

independently of Mid1p in response to eugenol stress [9].

Although it is generally accepted that Mid1p and Cch1p function

together as a high affinity Ca2+ influx mechanism in S. cerevisiae

(e.g. [10]) Cch1p activity independent of Mid1p has also been

reported for Li stress at high temperature [22]. Finally, the

observation that the cch1D yeast mutants are able to survive 10

minute exposure to eugenol at 3.2 mM (Figure S1, A & G) but not

persistent exposure at 3.2 mM eugenol (Figure 3) indicates that the

Cch1p-dependent tolerance mechanism operates to enhance the

survival of yeast to persistent (long term) exposure to eugenol.

In order to define the dependence of eugenol tolerance on

extracellular Ca2+ more precisely, growth experiments were

conducted using a Ca2+-free synthetic complete medim (SCM-

leu-Ca); this permitted a more robust yet subtle control of

extracellular Ca2+ levels using the Ca2+ chelator, BAPTA (which

exhibits higher specificity for Ca2+ and is less pH sensitive than

EGTA). Figure 4A shows that the IC50 of eugenol (the

concentration of eugenol resulting in 50% inhibition of growth

when compared to growth in the absence of eugenol) for the wild

type strain was strongly dependent on extracellular Ca2+. In the

presence of 100 mM extracellular Ca2+, the IC50 of eugenol for

wild type yeast was 1.6260.133 mM and this decreased to

1.2760.031 and 0.9660.043 mM in the presence of 0.05 and

0.2 mM BAPTA, respectively. Importantly, the growth of wild

illustrated using grey shading. (M) plot of IC50 values (from data shown in parts A–F) against Ca2+ elevations (determined from data shown in parts G–
L). Relative Ca2+ elevations were calculated as the sum of luminescence resulting from addition of eugenol or eugenol derivative divided by total
luminescence determined after lysis with 1.6 M CaCl2, 20% ethanol (see Materials and Methods). N–O) Growth of BY4742 (parental strain; solid
symbols and line) and pmc1D (N) and vcx1D (O) yeast mutants (open symbols and dashed line) in YPD containing varying concentrations of eugenol.
Growth was recorded as detailed in parts A–F. IC50 values are 1.5660.189 mM (BY4742), 1.4560.112 mM (PMC1D) and 1.4160.083 mM (VCX1D).
doi:10.1371/journal.pone.0102712.g002

Figure 3. Extracellular Ca2+ is necessary for eugenol tolerance. Yeast cultures were spotted onto YPD, YPD supplemented with 10 mM EGTA
or YPD supplemented with 10 mM CaCl2 agar plates containing either 0 (1% ethanol), 1.3, 2.6 or 3.2 mM eugenol. Left-most spots on each plate are
growth after 2 days at 30 C after inoculation with 5 ml culture at approximately 0.56108 cells/ml. Serial 10-fold serial dilution of the left-most
inoculum is shown to the right.
doi:10.1371/journal.pone.0102712.g003
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type yeast in the absence of eugenol was unaffected by the

presence of 0.05 and 0.2 mM BAPTA (Figure 4A, inset).

In contrast to wild type yeast, the addition or removal of

extracellular Ca2+ did not affect the sensitivity of the cch1D strain

to eugenol (Figure 4B and C). The sensitivity of the cch1D mutant

to eugenol (IC50 = 0.79660.045 mM in the presence of 100 mM

Ca2+) was similar to that for wild type yeast in the presence of

0.2 mM BAPTA (0.9660.043 mM) indicating that the Ca2+-

dependent tolerance to eugenol exhibited by wild type yeast is

dependent on Ca2+ influx via Cch1p. Furthermore, the cch1D
mutant was more sensitive to reductions in extracellular Ca2+ than

wild type yeast as it was unable to grow in media containing more

than 0.0625 mM BAPTA (Figure 4A inset). These data support

the yeast growth patterns shown in Figure 3 and illustrate that in

low Ca2+ conditions, Cch1p is required for Ca2+ homeostasis. In

addition, they are also consistent with previous observations that

Ca2+ uptake in cch1D mutants is approx. 5-fold less than wild type

yeast under non-stress conditions [10] and with the widely

accepted dogma that Cch1p forms part of the high affinity Ca2+

influx system (HACS; [23], [24]) which is essential to maintain

growth in low Ca2+ environments.

Taken together, the data show that Ca2+ influx via Cch1p is

necessary for yeast tolerance to eugenol. In addition, the

observation that increasing extracellular Ca2+ to levels greater

than 100 mM does not enhance the tolerance of wild type yeast to

eugenol (Figure 2C) is in agreement with the dot drop experiments

on YPD media (Figure 3) and is consistent with Cch1p-mediated

Ca2+ transport being saturated at mM levels of Ca2+. Interestingly,

similar studies conducted on S. cerevisiae have shown that the

activity of antifungal azoles (e.g. miconazole) is also enhanced by

extracellular Ca2+ sequestration (using 1 mM EGTA); however, in

contrast to that observed with eugenol, the addition of 3 mM Ca2+

to the growth media reduced azole activity by 3-fold [13].

Furthermore, azole activity against yeast is enhanced in the

presence of FK506 [13] suggesting a role for extracellular Ca2+

influx and calcineurin activation in the azole tolerance mecha-

nisms employed by yeast. Interestingly, eugenol tolerance is

independent of calcineurin activation [9] which serves to highlight

differences between the Ca2+-dependent tolerance mechanisms

employed by yeast in response to the antifungal properties of

eugenol and the commercially available azoles.

In conclusion, our data show that a toxic elevation in cytosolic

Ca2+ elevation is unlikely to be responsible for eugenol toxicity in

yeast and that the role of Ca2+ in eugenol toxicity appears confined

to a Cch1p-dependent Ca2+ influx which is necessary to enhance

eugenol tolerance in yeast. Although the downstream targets of the

resulting Ca2+ signal remain unknown, our data suggest that the

signalling pathways employed by yeast to tolerate eugenol toxicity

will be distinct to those employed in azole and amiodarone

tolerance. This is supported further by the discovery that eugenol

and amiodarone employ different modes of action with respect to

antifungal activity. These differences highlight the potential to use

eugenol in combination therapies which aim to augment the

efficacy of commercially available azoles and other promising

antifungal drugs.

Supporting Information

Figure S1 Viability of cch1D (A and G), mid1D (B and H)
and cch1Dmid1D (C and I) cells after 10 minutes
exposure to varying concentrations of eugenol suspend-
ed in Ca buffer (A, B, C) and BAPTA buffer (G, H, I).
Yeast cultures are spotted on to SCM-leu media containing 2%

agar; left most spots are growth after 2 days following inoculation

with 5 ml of culture. Serial 10-fold dilution of the left most

inoculum is shown to the right. Ca2+-dependent aequorin

luminescence from cch1D (D and J), mid1D (E and K) and

cch1Dmid1D (F and L) cells in response to 3.2 and 9.6 mM

eugenol in Ca buffer (D, E, F) and BAPTA buffer (J, K, L).

Eugenol was added at 40 seconds (indicated by arrow). Traces

represent mean (6 SEM) from at least 5 independent experiments.

SEM vales are illustrated using grey shading. Luminescence was

recorded every 0.2 seconds and is expressed in arbitrary units

(AU). Inset is data from the main figure on an expanded y axis.

(TIF)
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