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ABSTRACT
Obstructive sleep apnea syndrome (OSAS) is a common clinical condition. The way
that OSAS risk factors associate and converge is not a randomprocess. As such, defining
OSAS phenotypes fosters personalized patient management and population screening.
In this paper, we present a network-based observational, retrospective study on a cohort
of 1,371 consecutive OSAS patients and 611 non-OSAS control patients in order to
explore the risk factor associations and their correlation with OSAS comorbidities. To
this end, we construct the Apnea Patients Network (APN) using patient compatibility
relationships according to six objective parameters: age, gender, body mass index
(BMI), blood pressure (BP), neck circumference (NC) and the Epworth sleepiness score
(ESS). By running targeted network clustering algorithms, we identify eight patient
phenotypes and corroborate them with the co-morbidity types. Also, by employing
machine learning on the uncovered phenotypes, we derive a classification tree and
introduce a computational framework which render the Sleep Apnea Syndrome Score
(SASScore); our OSAS score is implemented as an easy-to-use, web-based computer
program which requires less than one minute for processing one individual. Our
evaluation, performed on a distinct validation database with 231 consecutive patients,
reveals that OSAS prediction with SASScore has a significant specificity improvement
(an increase of 234%) for only 8.2% sensitivity decrease in comparison with the state-
of-the-art score STOP-BANG. The fact that SASScore has bigger specificity makes it
appropriate for OSAS screening and risk prediction in big, general populations.

Subjects Bioinformatics, Computational Biology, Health Policy, Respiratory Medicine, Computa-
tional Science
Keywords Network science, Sleep apnea, Phenotypes, Prediction score, Prediction specificity

INTRODUCTION
Obstructive Sleep Apnea Syndrome (OSAS) is a serious clinical disorder caused by
abnormal breathing pauses that occur during sleep; this results in sleep fragmentation
and excessive daytime somnolence (Simon & Collop, 2012; Fischer et al., 2012; Lévy et
al., 2014). There are studies reporting the epidemic incidence of OSAS, with worrying
increasing rates over the last 20 years (Young, Peppard & Gottlieb, 2002; Punjabi, 2008;
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Peppard et al., 2013). If not properly diagnosed and treated, OSAS increases the
morbidity and perioperative risks (Memtsoudis, Besculides & Mazumdar, 2013;McNicholas,
Bonsignore & of EU Cost Action B26, 2007; Rossi, Stradling & Kohler, 2013; Utriainen et al.,
2013; Sánchez-de-la Torre, Campos-Rodriguez & Barbé, 2013). Indeed, when it remains
undetected, OSAS rapidly creates serious cardiovascular, respiratory and nutritional
problems (McNicholas, Bonsignore & of EU Cost Action B26, 2007; Yaggi et al., 2005;
Bakker, Montesi & Malhotra, 2013). Therefore, it is essential that OSAS be detected at
an early stage, which can only be achieved through preventive actions such as extensive
population screening (Pelletier-Fleury et al., 2004).

Apnea severity is indicated by the Apnea-Hypopnea Index, AHI ; this represents the
number of breathing pauses of at least 10 s, recorded over one hour of sleep. As such, any
patient can be classified in one of the following AHI categories: normal or low-risk apnea
(L) for AHI < 5, mild sleep apnea (Mi) for 5≤AHI < 15, moderate sleep apnea (Mo) for
15≤AHI < 30, and severe sleep apnea (Se) when AHI ≥ 30.

Usually, polysomnography (PSG) is used as the reference method (i.e., gold standard)
of OSAS diagnosis, which is based on measuring AHI . However, PSG is expensive, time-
consuming, and generally not adequate for population screening (Simon & Collop, 2012;
Schlosshan & Elliott, 2004). Since OSAS has a significant prevalence and the PSG-based
exhaustive investigation is not feasible when screening a large population, OSAS predictors
are preferred for monitoring (Udrescu et al., 2014; Topirceanu et al., 2014).

In current medical practice, there are three major predictive models based on
questionnaires, namely Berlin, STOP, and STOP-BANG (Netzer et al., 1999; Silva et
al., 2011; Farney et al., 2011; Chung et al., 2008a; Chung et al., 2008b). Published studies
indicate STOP-BANG as the best available predictive score, due to its high sensitivity: 83.6%
for AHI > 5, 92.9% for AHI > 15, and 100% for AHI > 30. However, STOP-BANG has a
low specificity (56.4% for AHI > 5, 43% for AHI > 15, and 37% for AHI > 30) (Chung et
al., 2008a; Chung et al., 2008b; Chung et al., 2014) which prevents the usage of this score for
population screening. Although there are notable attempts for improving STOP-BANG’s
specificity (Chung et al., 2014), they are mainly targeting narrow-type cohorts such as
perioperative patients.

Consequently, our paper aims at analysing the general case, (i.e., with all patient
categories from a given geographical area being taken into account for screening), and
not just some specific cohorts. To this end, our research is underpinned by a complex
network perspective on uncovering OSAS phenotypes. Indeed, network science is already
successfully used in medicine at the disease-level (Barabási, 2011), including respiratory
applications (Diez, Agustí & Wheelock, 2014; Faner et al., 2014; Divo et al., 2015). Our
network-based approach on OSAS risk factors allows for better, more accurate OSAS
phenotype identification, which in turn leads to a new predictive score (SASScore). In
comparison with the state-of-the-art, our OSAS risk prediction score achieves significantly
better specificity in predicting actual AHI categories, which makes our SASScore very
appropriate for screening big populations as part of preventive medicine programs.
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METHODS
Network Medicine has received a lot of attention during the last decade (Menche et
al., 2015; Goh et al., 2007; Barabási, 2007; Vidal, Cusick & Barabasi, 2011); this trend is
fuelled by the fact that complex network science can bring significant advances in various
medical fields like genomics (Sharma et al., 2013;Rozenblatt-Rosen et al., 2012), drug-target
interaction (Yıldırım et al., 2007), or cell metabolism (Barabasi & Oltvai, 2004;Han, 2008).
Consequently, it has been recently suggested that networkmedicine can be also used for ad-
dressing important problems in respiratory medicine (Faner et al., 2014; Divo et al., 2015).

Description of databases
In order to use complex network tools for OSAS research, we need real-world OSAS patient
datasets. Unfortunately, OSAS patients datasets are scarce and not public; such a situation
is justified by multiple aspects: big data techniques were only recently considered as tools
for respiratory medicine and OSAS, all patients must undergo hospital polysomnography
(which entails a complex, expensive and time-consuming process), while coordinated
research efforts for gathering data were only recently introduced.

For instance, the biggest suchOSAS database, namely European SleepApneaDAtabase—
ESADA (Hedner et al., 2011), is not public and it has gathered data from 15,956 patients
in 24 sleep centers from 16 countries since 2007. Also, a recent OSAS study (Marti-Soler et
al., 2016) where the validation is similar to our approach uses only one (private) validation
database, comprising 1,101 patients (Santos-Silva et al., 2012).

As a result, in order to perform network investigation on OSAS, we built our own
Apnea Patients Database (APD) consisting of consecutive patients with suspicion of sleep
breathing disorders, which were evaluated at Victor Babes Regional Hospital in Timisoara
(Western Romania) between March 2005 and March 2012 under the supervision of the
hospital’s Ethics Committee (internal briefing note no. 10/12.10.2013). At the initial visit,
the study protocolwas clearly explained to obtain the patient’s consent and the acceptance of
referral physicians. Subsequently, respiratory polygraphy was performed using both Philips
Respironics’s Stardust polygraph (2005) and MAP’s POLY-MESAM IV (1998). PSG was
carried out with Philips Respironics’ Alice 5 Diagnostic Sleep System, according to the
appropriate guidelines (Rechtschaffen & Kales, 1968). The polygraphy was performed both
at home and at the hospital, whereas PSG measurements were performed at the hospital
under medical supervision. To preserve the information accuracy, all collected data were
carefully verified; throughout this process, we have ensured complete data confidentiality.
Our observational, retrospective study employs only standardized non-invasive procedures
that exclude all useless investigations. Moreover, visits did not entail additional effort for
the patients or supplemental budget for the clinic.

All 1,371 patients that completed the sleep study protocol and signed informed
consent are included in the APD, each with corresponding 108 breathing parameters
and anthropometric measurements. The APD distribution of measured AHI is presented
in Fig. 1.

In order to verify if there is any difference between apnea and non-apnea populations in
terms of how risk factors associate and converge, we built a 611 people non-OSAS database
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Figure 1 Log-linear histogram representing the number of patients with a certain Apnea-Hypopnea
Index (AHI ) value, along with the corresponding distribution fit. The best fit is the exponential func-
tion f (x)= 27.453 ·e−0.025x .

NAD (using the same procedure as for the APD). Also, to evaluate the prediction score
derived from our study, we gathered a distinct test database TD (over a distinct period of
time: the fall of 2013) consisting of 231 patients by following the same procedure. Figure 2
presents the distinct roles of our three databases, as well as the relationship between them.

Analysis of APD and TD
As patients within TD are used to validate our OSAS prediction with SASScore, which was
obtained by processing patients from APD, we analyse if the distribution of parameters in
TD is not too close to the corresponding distributions in APD. Such an investigation is
required considering that, although data for the two databases were gathered over distinct
periods of time, all measurements were performed in a given geographical region.

To this end, we present the distributions of the most relevant parameters in our
research (Age A, Body Mass Index BMI , Neck Circumference NC , High Blood Pressure
HBP , and Epworth Sleepiness Score ESS) within the validation population (TD) and the
apnea patients database (APD) in Table 1 under the form of measured averages and their
corresponding standard deviations, as well as Gini coefficients. We rely on Gini coefficients
for a quantitative measure of data dispersion.

We also provide a visual comparison of AHI and relevant risk factor parameters
distributions in APD and TD (see Fig. 3). All these results show that data were randomly
gathered, so that the main parameters are normally distributed. However, Gini coefficients
(especially for A, BMI and ESS) indicate an important difference between APD and TD
distributions. Moreover, Fig. 3 shows a significantly different AHI histogram for TD in
comparison with APD. As such, in APD there are many patients with AHI >120, whereas
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Figure 2 Description of databases used in our research. The main Apnea Patients Database (APD),
comprising 1,371 consecutive patients which arrive at the hospital with suspicion of OSAS between 2005
and 2012, is used to build patient phenotypes and to render the SASScore. The distinct Test Database (TD),
comprising 231 consecutive patients which arrive at the hospital with suspicion of OSAS in 2013, is used
to verify the sensitivity and specificity of predicting patient’s AHI and OSAS categories. The Non-OSAS
patients Database (NAD) uses consecutive assessed people whom are not diagnosed with OSAS during the
spring 2015—summer 2016 period, in order to test for cluster consistency (i.e., compare how risk factors
converge in clusters for OSAS patients in comparison with people without OSAS).

Table 1 AHI and relevant risk factor parameters distribution in the Apnea Patients Database (APD)
and Test Database (TD), given as average values plus standard deviation, as well as Gini coefficients.
We only considered boolean values for the High Blood Pressure (i.e., if the patient has high blood pressure
or not); in this case, we provided the percentages of people with high blood pressure.

Parameter APD TD

Average Gini Average Gini

AHI 40.04 ± 27.83 0.388 44.39 ± 26.13 0.334
BMI 33.01 ± 7.94 0.576 32.62 ± 7.41 0.468
A (yrs.) 51.73 ± 12.44 0.539 52.01 ± 13.61 0.397
NC (cm.) 42.01 ± 9.94 0.51 42.64 ± 5.12 0.482
HBP 67.47% N/A 64.93% N/A
ESS 10.63 ± 5.38 0.362 11.38 ± 5.19 0.422

in TD there is none such patient. Also, in APD the largest number of patients associated
to an AHI value correspond to AHI values <20; in contrast, in TD, the largest number of
patients with a given AHI value correspond to AHI values around 40.

Building the patient network
An unweighted network is a graph (V ,E), which consists of a set of vertices (or nodes)
V and a set of edges (or links) E that represent connections [v,w] ∈ E between certain
pairs of vertices v,w ∈V . We build the unweighted Apnea Patients Network (APN), by
assigning vertices and edges: each node corresponds to a distinct patient in our OSAS
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Figure 3 AHI distributions in APD (A, C, E, G, I) and TD (B, D, F, H, J), as well as the normal distribu-
tions of BMI , Age A, Neck CircumferenceNC and ESS, for patients in both APD and TD.
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Figure 4 Apnea Patients Network (APN) edge filtering, by considering different definitions for fRFC =

1, when we adopt the x-out-of-6 criteria (x = 1, 2, 3, 4, 5, and 6). The visual result indicate x = 4 as the
best solution, because the edge density is convenient for rendering topological clusters with energy model
layouts. Other values for x will generate too dense or too sparse networks.

patients database APD, while an edge (link) is created between two vertices if there is a risk
factor compatibility between the patients represented by the two vertices (nodes).

The risk factor compatibility is a binary function fRFC ∈ {0,1} (0 means incompatibility
and 1 means compatibility) based on six parameters with high relevance for OSAS: age,
gender, BMI, neck circumference, blood pressure (systolic and diastolic), and Epworth
Sleepiness Score. We build our APN by considering that fRFC = 1 if at least four out of six
parameters are identical; otherwise fRFC = 0.

The six parameters are selected from the pool of all relevant risk factors (all measured
parameters can be found in the Supplemental Information 1 because they can be measured
easily and objectively; such objective measurements can be performed anywhere, and
are widely accepted in the medical literature (Lévy et al., 2014). In contrast, other scores
consider snoring and witnessed apnea episodes as factors, but these are parameters which
cannot be observed or measured objectively.

The reason for adopting the 4-out-of-6 criterion is that it assures the right amount of
link density in the APN, meaning that there are enough links so that the APN is connected,
but not too many links so that communities (i.e., clusters) can be rendered with energy
model layouts (Noack, 2009). As Fig. 4 shows that the 4-out-of-6 link filtering represents
the best alternative, we use this criterion to build the APN. To the best of our knowledge,
this link filtering procedure is original and has not been used before in such network-based
approaches.

APN clustering
We clustered the APN by using a dual clustering methodology: energy-model layouts plus
modularity classes, similar to the approach from (Udrescu et al., 2016;Udrescu et al., 2014).
Energy-models are force directed network layout algorithms, namely visual tools that
assign certain positions in the Euclidian space to both nodes and edges (Noack, 2009). To
this end, we used the Force Atlas 2 algorithm (Jacomy et al., 2014) as the network layout;
this new layout is very effective in clustering various types of complex networks, as it is
based on previous theoretical foundations of force directed attraction–repulsion algorithms
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Figure 5 Overview of the proposed dual clustering methodology (modularity classes represented with
distinct colors and topological clusters emerged from running the force directed layout Force Atlas 2),
along with testing cluster formation against non-OSAS control patients (i.e., showing that risk factors
converge differently for OSAS and non-OSAS patients), cluster consistency and SASScore validation.

(Fruchterman & Reingold, 1991; Noack, 2003). Indeed, Force Atlas 2 is clustering complex
networks by producing well-defined topological clusters. The overview of the entire
clustering process, including testing cluster convergence with non-OSAS control patients
and validation of SASScore, is presented in Fig. 5.

For a network (V ,E), a layout algorithm running in an Euclidean k-dimensional space
Rk places each vertex v ∈V to a corresponding position pv ∈Rk and assigns an Euclidean
distance |pv−pw | to each edge [v,w] ∈ E .

In particular, energy model layout algorithms are developed as attraction–repulsion
(A-R) force systems (Noack, 2009). As such, in an A-R system, adjacent vertices attract
while all the other pairs of vertices repulse; this is the emerging mechanism which
leads to the formation of groups of vertices with dense connections that we interpret
as communities or clusters. The A-R force values are proportional to the power (A or R) of
the Euclidean distances between the nodes: the attraction between adjacent vertices v andw
is |pv−pw |A ·

−−−→pv ,pw , and the repulsion between any 2 vertices v,w ∈V is |pv−pw |R ·
−−−→pv ,pw

(−−−→pv ,pw is the unit vector from v to w). To generate topological communities that are
consistent with connection densities, thus having the advantage of emphasizing distinct
communities and clusters (Jacomy et al., 2014), attraction between two nodes has to
decrease with the Euclidean distance between the nodes, while repulsion has to increase
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1The degree of a vertex represents the
number of its incident edges.

with the Euclidean distance, therefore we have A≥ 0 and R≤ 0; such representative force-
based layouts are the Fruchterman and Reingold model (A= 2, R=−1) (Fruchterman &
Reingold, 1991), and the LinLog model (A= 0, R=−1) (Noack, 2003). For all A-R energy
models, the resulted edge positions are determined by a local energy minima situation
(Noack, 2009), as described in Eq. (1):

min

 ∑
[v,w]∈E,v 6=w

(
|pv−pw |A+1

A+1
−
|pv−pw |R+1

R+1

). (1)

In addition to the layout algorithm, we used modularity-based network clustering
(Girvan & Newman, 2002), a method that was proven to be effective in network medicine
(Diez, Agustí & Wheelock, 2014; Faner et al., 2014). Network clustering consists of assigning
each vertex v ∈V to one of the disjoint vertex subsets (or clusters) Ci, such that ∪iCi=V .
In our APN clustering approach, modularity classes Ci are represented with distinct colors.
Because the APN is an unweighted network, the modularity of any clustering is defined in
Eq. (2), where |ECi | is the number of edges in cluster Ci, |E| is the total number of edges in
the network, dCi is the total degree

1 for nodes in cluster Ci, and d is the total degree for all
nodes in the network:∑
Ci

(
|ECi |

|E|
−

1
2d

2
Ci

1
2d

2
C

)
. (2)

Noack demonstrated that energy-model layout algorithms produce topological clusters
that are equivalent with those rendered by modularity-based clustering (Noack, 2009).
However, force-directed layouts provide additional topological information about clusters.
As such, for a more accurate analysis, it is recommended that both modularity clustering
and force directed layouts are used (Noack, 2009; Jacomy et al., 2014; Udrescu et al., 2016).

RESULTS
APN analysis
The APN representation resulted from our clustering methodology is presented in Fig. 6,
where the distinct colors correspond to distinct modularity classes, and the well-defined
topological clusters are explained accordingly. In Fig. 6, we interpret the eight topological
clusters as distinct phenotypes, and provide the risk factors prevalence as percentages (L,
Mi,Mo, Se)% for each such cluster/phenotype.

Non-OSAS Patients Network (NPN) analysis
Using the information from the 611 people non-OSAS database (NAD), we employ the
same procedure as for the APN from Fig. 6. The NAD represents the control population,
consisting of people that are not diagnosed with OSAS. The result of applying our
methodology on NAD patients is presented in Fig. 7, where the colors correspond to
distinct modularity classes; at the same time, topological communities rendered with the
energy-model layout Force Atlas 2 are indicated and explained.

Upon visual inspection, Fig. 7 suggests that in the non-OSAS control population there
are more patterns of risk factors association, which leads to a number of 12 topological
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Figure 6 Apnea Patients Network (APN) obtained with data from the Apnea Patients Database (APD),
according to the risk factor compatibility relationship, using our dual network clustering methodol-
ogy (i.e., modularity classes and energy-model layouts). The assigned colors correspond to modular-
ity classes, and the 8 topological clusters are indicated. For each topological cluster, statistics are provided
in red (as percentages) for all AHI risk groups: low, mild, moderate, and severe, using the format (L,Mi,
Mo, Se)% (e.g., in Cluster 2 the patients are distributed on risk groups as follows: 9% L, 15%Mi, 19%Mo,
57% Se). The risk group classification is made with AHI values that are obtained by actually performing
polysomnography (PSG) and polygraphy.

clusters and modularity classes that are not correlated with OSAS or AHI risk groups. As
such, according to our network-based methodology, it occurs that the six considered risk
factors consistently converge only for the individuals with OSAS.

Description of phenotypes
In order to have a clear characterization of our rendered phenotypes, we are tracking the
OSAS comorbidities (as recorded in the APD) within the APN. To this end, we consider
the comorbidity types: cardiovascular (e.g., hypertension or stroke), nutritional (e.g.,
obesity or diabetes), and respiratory-related (e.g., COPD or asthma). Figure 8 presents
the highlighted comorbidities within the APN by using distinct colors for comorbidity
types that appear individually, as well as for comorbidity type overlaps (cardiovascular
+ nutritional, cardiovascular + respiratory, nutritional + respiratory, cardiovascular +
nutritional + respiratory), and patients without known comorbidities.
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Figure 7 Non-OSAS Patients Network (NPN), obtained with data from the non-OSAS database (NAD)
control population database. The colors correspond to 12 modularity classes. Also, the energy-model
layout Force Atlas 2 generates 12 topological clusters, which are described in terms of risk factors and their
correspondence with the modularity classes.

In light of comorbidity and AHI risk groups statistics provided in Table 2 for each
cluster resulted from our network analysis (as illustrated in Figs. 6 and 8), we characterize
the phenotypes as follows:

• Phenotype 1: Mostly patients within the Se AHI risk group, which are generally obese
males with thick neck, high blood pressure, sleepiness, and age between 40 and 60 years.
For a large majority of these patients, all comorbidity types overlap.
• Phenotype 2: The large majority of these patients haveMo and Se apnea forms; they are
obese females with thick neck, high blood pressure, sleepiness, age between 40 and 60
years. In this phenotype there are no patients with only respiratory comorbidities and
only few of them have single nutritional comorbidities.
• Phenotype 3: The patients have mostlyMo and Se apnea, but there are less Se forms in
comparison with other phenotypes; they are obese females with thin neck, high blood
pressure, no sleepiness, and age between 40 and 60 years. This phenotype does not
contain patients with only respiratory comorbidities.
• Phenotype 4: Mostly Se patients; however, there is a significant number of Mo
individuals, which are generally obese males with thick neck, high blood pressure,
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Figure 8 The Apnea Patients Network (APN), with highlighted individual comorbidities and associ-
ations of comorbidities. The red nodes correspond to patients that have only cardiovascular comorbidi-
ties (C in A), the yellow nodes to only nutrition-related (N in B), and blue nodes represent OSAS patients
with only respiratory comorbidities (R in C). Patients with overlapping comorbidity types are represented
within the APN as follows: orange nodes correspond to cardiovascular plus nutritional comorbidities (C+
N in D), purple nodes to cardiovascular plus respiratory comorbidities (C+R in E), green nodes to nutri-
tional plus respiratory comorbidities (N +R in F), and black nodes to the superposition of cardiovascular,
nutritional and respiratory comorbidities (C +N +R, G). The OSAS patients without known comorbidi-
ties are highlighted in the APN as white nodes (H in H). We also provide the APN where all nodes are la-
beled according to their comorbidity or comorbidities overlapping in I.

sleepiness, and over 60 years. In this phenotype only a few patients have the single
respiratory comorbidities type.
• Phenotype 5: Mostly Se, Mo, and Mi patients, which are obese young males with thick
neck, high blood pressure, no sleepiness, and age between 20 and 40. In this phenotype,
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Table 2 Description of the eight relevant Apnea Patients Network (APN) phenotypes. The phenotypes (Ph) are listed with a short description in terms of most or least
predominant AHI risk groups (low risk- L, mild-Mi, moderate-Mo, and severe- Se), significant combinations of the 6 objective parameters, and most/least predominant
comorbidity types (cardiovascular- C , nutritional- N , respiratory- R, and without comorbidities- H ) or comorbidity types overlaps (C+N , cardiovascular+ nutritional;
C+R, cardiovascular+ respiratory, N +R, nutritional+ respiratory; C+N +R, cardiovascular+ nutritional+ respiratory). For each phenotype, we provide the corre-
sponding percentages for comorbidity types and comorbidity type associations, as well as the percentage of patients pertaining to one of the AHI risk groups; the boldface
entries correspond to representative values, in terms of simple majority. In phenotype descriptions, HBP stands for high blood pressure.

Ph. Description Comorbidity types and associations (%) AHI risk groups (%)

C N R C+N C+R N +R C+N +R H L Mi Mo Se

1 Mostly Se with C + N + R
comorbidities

2.38 – – 32.65 3.4 – 61.57 – 4 5 17 74

2 MostlyMo and Se, thick neck fe-
males, no R, few N

6.49 0.65 – 61.04 3.9 0.65 27.27 – 9 15 19 57

3 MostlyMo, Se, thin neck
females, no R

13.66 10.24 – 48.29 1.95 2.93 22.93 – 12 13 31 44

4 MostlyMo and Se, elderly males
with thick neck, few R

6.52 3.62 – 36.96 5.8 3.62 44.48 – 4 4 20 72

5 MostlyMi,Mo, Se, obese young
males, mostly N

2.47 18.52 1.23 19.75 3.09 20.99 32.72 1.23 9 10 22 59

6 MostlyMo, Se, 40–60 yrs. obese
males, no HBP, mostly N

2.58 33.55 5.81 10.97 1.29 31.61 7.74 6.45 7 16 19 58

7 Less Se, non-obese, thin neck, no
HBP males, mostly H , some R

8.84 0.68 27.21 0.68 4.76 – – 57.83 13 22 25 40

8 Less Se, non-obese, thin neck,
HBP males, mostly C

38.79 2.59 – 9.48 28.45 2.59 18.1 – 8 16 18 58
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almost all patients have nutritional comorbidities or comorbidity overlaps that include
the nutritional type.
• Phenotype 6: Consists of mostlyMo and Se apnea; the patients with this phenotype are
generally obese males with thick neck, no high blood pressure, no sleepiness, and middle
aged (40–60 years old). Their comorbidities are mostly nutritional-related (either single
nutritional comorbidity or an association of comorbidities that contains the nutritional
type).
• Phenotype 7: Patients with mostly Mo and Se apnea, but with less Se forms in
comparison with other phenotypes; this phenotype’s patients are generally males of
all ages with thin neck, no high blood pressure, and no sleepiness. The majority of these
patients have no comorbidities; however, those who have a comorbidity tend to have
respiratory-related problems.
• Phenotype 8: Patients mostly within Se, Mo, and Mi AHI risk groups; they are males
from all age groups with thin neck, no sleepiness, but with high blood pressure. These
patients tend to have a single cardiovascular comorbidity type or an association of
comorbidities that include the cardiovascular type.

OSAS risk prediction with SASScore
Classifying any new patient in one of the phenotypes can be performed by adding the
new patient to the APN and then running the modularity class and force-directed
layout algorithms in Gephi one more time. However, during the screening process,
physicians are frequently unable to perform these rather complex and time consuming
steps (i.e., manipulation of databases and managing Gephi plugins), because of the obvious
constraints.

In order to deal with this problem, we propose a simplified solution for classifying de
novo patients using a computer algorithm that is implemented as a web-based application.
As such, we employ supervised machine learning in order to classify any new person in one
of the eight validated phenotypes, based on the six relevant parameters. To this end, we
choose decision tree learning, because decision trees are easy to use, quick, and intuitive
for medical personnel. We use R and available recursive tree partitioning libraries from
R Studio in order to perform recursive tree partitioning, thus generating a phenotype
classification tree (Therneau et al., 2010; Hothorn, Hornik & Zeileis, 2006).

Given the eight phenotypes determined with our network procedure, and the features
extracted from them, we label each patient from the APD with the cluster/phenotype to
which it pertains. From this point, we employ supervised learning methods and then test
them in order to chose the tree which provides the highest reliability while maintaining a
reasonable complexity.

The tested mining algorithms are: recursive partition tree, conditional inference tree,
evolutionary tree, oblique tree, maptree, naive Bayes, random forest and linear regression
(Therneau et al., 2010; Hothorn, Hornik & Zeileis, 2006; Grubinger, Zeileis & Pfeiffer, 2011).
The algorithm test procedure relies on applying the resulted decision trees on de novo
patients from the Test Database (TD). We take all patients in TD and assign each of them
to a phenotype with the classification tree. In parallel, we add the TD patients to the APD,
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Figure 9 The phenotype classifying tree, obtained by running evtree on patients from APD. Each new
person is assigned to one of the eight phenotypes, denoted as Ph1–Ph8 (dominant phenotypes are em-
phasized). Decisions are made according to some of the six relevant parameters (gender-G, age- A, body
mass index-BMI , systolic blood pressure-SBP , diastolic blood pressure-DBP , Epworth sleepiness score-
ESS), but also according to variables computed from the six parameters (High Blood Pressure-HBP , Neck
Group-NG, Obesity-Ob), as described in the figure legend.

and rerun the entire layout clustering procedure. Indeed, we obtain the same eight patient
phenotypes, and we consider the phenotype labels that are assigned to patients in TD by our
network clustering procedure as being the reference (i.e., correct phenotype assignation).
Therefore, we quantify the efficiency of each decision tree by comparing with the reference
represented by the network-based classification. The test results indicate the evolutionary
tree (evtree) Grubinger, Zeileis & Pfeiffer (2011), which is given in Fig. 9, as the best method
for our classification problem.

The classification tree in Fig. 9 uses the six relevant parameters (gender- G, age- A, body
mass index- BMI , systolic blood pressure- SBP , diastolic blood pressure- DBP , Epworth
sleepiness score- ESS), but also variables that are computed from the six parameters (High
Blood Pressure- HBP ,Neck Group- NG, Obesity- Ob) according to Eqs. (3)– (5):

HBP =


1 if SBP ≥ 140 and DBP ≥ 90
0 otherwise (3)

NG=


1 if (G= female and NC ≥ 40)or(G=male and NC ≥ 43)
0 otherwise (4)

Ob=


1 if BMI ≥ 30
0 otherwise (5)

When we test the classification tree in Fig. 9 on patients from TD and compare the
results against the reference classification (i.e., network-based), the resulted classification
accuracy is 69.30%; the detailed prediction accuracy results for TD are given in Table 3.
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Table 3 Prediction table for each phenotype and associated classification error, as obtained by employing evtree on TD. Each line in the table
shows (in bold characters) how many patients in TD are correctly classified in the corresponding phenotype.

Patients actually belonging to phenotype

Ph 1 Ph 2 Ph 3 Ph 4 Ph 5 Ph 6 Ph 7 Ph 8 Error

Ph 1 294 0 0 103 60 0 0 0 35.67%
Ph 2 0 116 0 42 0 0 0 0 26.58%
Ph 3 0 0 163 11 12 1 0 0 12.36%
Ph 4 0 0 8 17 1 0 0 0 34.61%
Ph 5 0 0 0 0 0 0 0 0 100%
Ph 6 0 0 0 33 3 61 0 0 37.11%
Ph 7 0 0 7 0 0 0 216 0 3.14%

Patients predicted in

Ph 8 0 0 0 2 0 0 3 218 2.24%

Table 4 Average values for the relevant parameters (body mass index- BMI , neck circumference-NC ,
systolic blood pressure- SBP , diastolic blood pressure-DBP , Epworth sleepiness score- ESS), which are
computed for each of the eight clusters in Fig. 6.

Cluster/Phenotype

1 2 3 4 5 6 7 8

BMIClustera 36.83 37.54 31.88 33.75 34.99 32.93 22.74 28.67
NCCluster

a 47.66 43.9 35.91 46.79 43.17 43.66 33.39 37.36
SBPCluster

a 143.96 145.32 139.48 140.56 133.74 125.46 119.66 134.55
DBPCluster

a 89.46 87.61 85.80 84.28 84.43 80.75 73.16 84.41
ESSClustera 11.49 10.77 7.74 10.10 8.58 9.50 6.28 8.90

In order to generate our SASScore from the classification tree in Fig. 9, we follow the next
sequence of steps:
1. Perform anthropometric measurements on each new patient.
2. Classify each patient in one of the eight phenotypes (using the classification from

Fig. 9).
3. Refer to cluster normalization in order to get phenotype parameter averages from

Table 4.
4. Compute SASScore using Eq. (6).
Therefore, having the six recorded parameters for any new patient that has to be

evaluated, and the average values BMIClustera , NCCluster
a , SBPCluster

a , DBPCluster
a , ESSClustera

with Cluster ∈ {1,2,...,8} as presented in Table 4, the SASScore is automatically computed
by our computer application according to Eq. (6), then correspondingly displayed by the
web-based interface.

SASScore=
BMI

BMIClustera
+

NC
NCCluster

a
+

1
2

(
SBP

SBPCluster
a

+
DBP

DBPCluster
a

)
+

ESS
ESSClustera

. (6)

SASScore values are≥1 and generally <7; this range of values can further serve to classify
patients as being at risk of developing OSAS or not. A patient with SASScore > threshold
is considered at risk, whereas SASScore ≤ threshold means that there is no OSAS risk. In
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Table 5 Average anthropometric measurements with standard deviations (expressed as percentages (%)) for the anthropometric parameters
(Age A, BMI , Neck CircumferenceNC , High Blood PressureHBP , Epworth Sleepiness Score ESS, Apnea-Hypopnea Index AHI ) in the APN
clusters/phenotypes after 100 runs (for instance, the average age in cluster 2 is 54.11 years with a standard deviation of 3.51%).

Cluster A BMI NC HBP ESS AHI

1 51.89 ± 0 36.83 ± 0 47.66 ± 0 100% ± 0 11.49 ± 0 50.75 ± 0
2 54.11 ± 3.51 37.73 ± 0.86 44.13 ± 0.47 92% ± 5.22 10.59 ± 0.99 38.3 ± 0.49
3 56.14 ± 1.87 31.88 ± 1.27 35.87 ± 1.13 87% ± 5.77 7.8 ± 2.45 30.92 ± 3.09
4 66.47 ± 0.28 33.84 ± 1.55 44.15 ± 2.46 90% ± 6.78 10.02 ± 1.64 42.99 ± 3.3
5 34.54 ± 1.34 35.09 ± 1.53 44.52 ± 2.39 51% ± 5.27 8.94 ± 3.26 49.66 ± 4.94
6 51.23 ± 2.45 32.94 ± 1.66 45.23 ± 3.08 0% ± 0 9.85 ± 2.82 44 ± 4
7 43.59 ± 2.62 24.6 ± 5.77 33.01 ± 1.35 7% ± 10.57 6.46 ± 2.51 25.93 ± 2.9
8 55.92 ± 4.47 27 ± 3.55 39.96 ± 4.51 96% ± 10.42 8.75 ± 3.64 34.29 ± 2.66

order to attain the main objective of our paper, namely to make population-wide OSAS
monitoring and screening effective, we consider the higher specificity as being more
important, so we choose threshold = 3.9, which determines a sensitivity of 0.8025 and a
specificity of 0.4189. Taken together, these results obtained with the TD, consisting of de
novo patients only, suggest that our SASScore significantly outperforms STOP-BANG in
terms of specificity (i.e., it is 2.34 times better), while remaining only slightly worse than
STOP-BANG in terms of sensitivity (8.2% decrease). We consider these results as being
particularly relevant, because the distribution of AHI in the TD is notably different from
the distribution of AHI in APD (see Fig. 3 panels A and B).

Validation of clustering consistency
In this subsection, we verify that rendering the clusters in Fig. 6 is not mere serendipity,
and it is not induced by some fortunate heterogeneity of patients. To this end, we perform
random shuffling and bootstrapping test investigations.

Because our clustering methodology starts with a random state, namely it starts with
the raw network where nodes are randomly placed and the links have corresponding
lengths (see Fig. 5), our first shuffling test consists of running the procedure in Fig. 5 many
times in order to see if we get statistically consistent results. Therefore, we run our dual
clustering procedure 100 times on the same APD, and then measure the distribution of
anthropometric values for each phenotype. The result of our random shuffling is given in
Table 5 which presents average anthropometric measurements with standard deviations
(expressed as percentages) for the each APN cluster/phenotype after 100 runs. Indeed,
the deviations from the average values are very small, emphasizing the consistency of our
clustering procedure in Fig. 5.

Our second test approach entails generating test APDs from the original patient dataset,
in order to perform bootstrapping. To do so, we generate 10 new APD datasets with the
same number of patients as the original APD by randomly selecting patients from the
original APD database. Therefore, in the test APDs, some of the original patients may be
missing, while others may be present two or more times. Next, we apply the same clustering
methodology from Fig. 5 and find that the same phenotypes emerge.
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Table 6 Defining phenotype characteristics given as majority values with corresponding percentages,
as measured in the original APN communities.

Cluster G Ob TN AG HBP SLP

1 M (100%) 1 (100%) 1 (100%) 3 (100%) 1 (100%) 1 (61%)
2 F (100%) 1 (96%) 1 (100%) 3 (92%) 1 (100%) 1 (56%)
3 F (80%) 1 (81%) 0 (100%) 3 (69%) 1 (96%) 0 (70%)
4 M (100%) 1 (82%) 1 (77%) 4 (100%) 1 (99%) 1 (52%)
5 M (100%) 1 (96%) 1 (83%) 2 (100%) 1 (100%) 0 (64%)
6 M (88%) 1 (87%) 1 (100%) 3 (57%) 0 (100%) 0 (57%)
7 M (67%) 0 (61%) 0 (99%) 3 (50%) 0 (100%) 0 (77%)
8 M (98%) 0 (100%) 0 (55%) 3 (84%) 1 (100%) 0 (58%)

Table 7 Characteristic features of phenotypes averaged over 10 randomized APNs. Majority average
percentages for the dominant values are rounded to the nearest integer, while the colours represent how
close these averages are to the measurements on the original APN from Table 6: bold entries correspond
to very close matches (percentage difference ≤ 6%), normal character entries correspond to a good match
(6% < percentage difference ≤15%), while grey-italics table entries correspond to significant differences
(>15%).

Cluster G Ob TN AG HBP SLP

1 M (100%) 1 (100%) 1 (100%) 3 (100%) 1 (100%) 1 (60%)
2 F (100%) 1 (96%) 1 (100%) 3 (74%) 1 (100%) 1 (60%)
3 F (90%) 1 (81%) 0 (100%) 3 (63%) 1 (87%) 0 (69%)
4 M (95%) 1 (86%) 1 (88%) 4 (100%) 1 (97%) 1 (53%)
5 M (97%) 1 (97%) 1 (86%) 2 (100%) 1 (79%) 0 (62%)
6 M (95%) 1 (87%) 1 (96%) 3 (73%) 0 (100%) 0 (58%)
7 M (81%) 0 (64%) 0 (89%) 3 (75%) 0 (99%) 0 (70%)
8 M (82%) 0 (84%) 0 (80%) 3 (68%) 1 (100%) 0 (71%)

The characteristics of the original APN phenotypes from Fig. 6 are provided in Table 6;
Table 7 shows the averaged characteristics, for each cluster, over the randomized 10 APNs
obtained by bootstrapping. In Table 7 distinct character types suggest how close (bold and
normal characters) or how far (grey italics) are the phenotype characteristics resulted from
bootstrapping from the original APN values.

The values from Table 7 indicate that the dominant characteristics of each cluster in
the test APNs are very similar to the cluster characteristics from the original APN. As a
result, even if we create new APDs with corresponding APNs by shuffling the patients from
our dataset, the bootstrapping procedure yields the same phenotypes. The bootstrapping
procedure reveals that some phenotypes emerge as more stable when randomized (e.g.,
clusters 1, 3, 4, 5), with a small offset compared to the original APN. The lack of convergence
over multiple randomizations could be interpreted as a lack of representativeness as an
OSAS phenotype. As such, clusters 2 and 6 are slightly less representative, and clusters
7 and 8 are notably variable, suggesting that the last two phenotypes may not be so well
characterized, due to the reduced amount of patient data.
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Figure 10 Representation of Test Database-TD patients, according to the risk factor compatibility,
using the proposed network-based methodology. Although the number of patients is significantly
smaller in comparison with the primary Apnea Patients Network-APN, the visual inspection reveals that
the emerged clusters are similar to clusters from Fig. 6 (APN).

We also create a test patient network (TPN), similar to building the APN, and then apply
our dual clustering methodology. The result is presented in Fig. 10; upon visual inspection
it can be noticed that the clusters emerged in TPN are similar to the clusters from Fig. 6’s
APN, even if the number of patients is significantly smaller in TD; this result suggests that
the association and convergence of risk factors in OSAS patients is indeed a non-random,
consistent process.

DISCUSSION
The proposedmethod is not the first to cluster apnea patients (Joosten et al., 2012;Vavougios
et al., 2016; Ye et al., 2014), but to the best of our knowledge it is the first network-based
approach used for clustering apnea patients. Another important feature is that our network-
based methodology employs only easy-to-measure, objective clustering parameters (AHI is
used only for phenotype evaluation). This way, our clustering methodology emphasizes the
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high complexity of OSAS phenotypes, from typical (cluster 1—yellow) to the less obvious
ones (clusters 6–8).

When defining the eight apnea phenotypes, besides the force-directed layout, we also
use modularity class clustering. In Fig. 6, the phenotypes based on modularity classes are
generally consistent with the topological clusters resulted from applying the Force Atlas 2
layout. However, the visual inspection of Fig. 6 reveals that phenotypes 5, 6, 7, and 8 tend to
spatially overlap; this tendency is much stronger for phenotypes 6, 7, and 8. Such a tendency
for overlapping phenotypes that characterize patients with generally mild and moderate
OSAS is also suggested by Joosten et al. (2012). This observation may indicate that these
phenotypes are interrelated and generally hard to distinguish even in clinical practice. Still,
some of the nodes in these clusters (e.g., cluster 8) have a clear tendency towards separation
from the overlapping; this indicates that we probably need more patients/nodes, in order
to completely segregate Cluster 8. As our APN will grow over time, the less convergent
clusters 7 and 8 might become more representative. Indeed, the fact that even in the
original APN from Fig. 6 clusters 7 and 8 present significant overlapping and that their
topological segregation from other clusters is somehow fuzzy confirms the conclusion of
our bootstrapping investigation. Nonetheless, we preferred to use the distinct modularity
classes in conjunction with the topological clusters because they bring more information,
i.e., more detail which can be useful for medical analysis.

From a medical standpoint, we note that our dual clustering method renders distinct
male and female clusters; this observation is consistent with the state of the art medical
literature which holds gender as a very important predictor of OSAS. For instance, in a
2009–2013 study on 272,705 patients from North America, referred for home sleep apnea
testing, clinical OSAS features are found to bemore common inmales than females (Cairns,
Poulos & Bogan, 2016). Other studies performed on 23,806 (Gabbay & Lavie, 2012), and
1,010 (Vagiakis et al., 2006) patients respectively, show clear differentiation between the
two genders in terms of AHI distribution and severity.

In current practice, the commonly used score for predicting sleep apnea is STOP-BANG.
In comparison with STOP-BANG, our SASScore significantly improves the prediction
specificity (2.34 times better than STOP-BANG), while sensitivity is only slightly degraded.
STOP-BANGhas high sensitivity because it is a simple heuristic that was especially designed
for perioperative patients, where it is essential to identify all potential risks associated with
anaesthesia (including OSAS). To further emphasize the higher specificity of SASScore,
we mention that by using our score, only 34% people from NAD are found as at risk
of developing OSAS. Moreover, as opposed to STOP-BANG (a fixed questionnaire that
cannot be adjusted to specific patients characteristics), SASScore represents an adaptive
methodology. Therefore, as the database grows, better sensitivity and specificity are
expected. The classifying tree which leads to rendering SASScore, as described in section
OSAS risk prediction with SASScore represents a simplified application of our patient
clustering/phenotyping method, but this method has the advantage of being applicable in
offline conditions, which makes it amenable to clinical practice and population screening.
All these considerations indicate SASScore as an appropriate tool for OSAS screening in
large general populations.
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2Commission Directive COMMISSION
DIRECTIVE 2014/85/EU of 1 July 2014
amending Directive 2006/126/EC—
European Parliament and the Council
on driving licences.

Our network-based method represents an application on patients from a given
geographical area, therefore we consider that it should be tested for other targeted
populations. As such, the network analysis will render new, specific cluster average values
(such as BMIClustera , NCCluster

a , SBPCluster
a , DBPCluster

a , ESSClustera ). Subsequently, SASScore
values that are specific to the targeted population can be rendered with the SASScore
equation. However, we do not expect that the phenotypes or SASScore will be significantly
different for other populations, since the available medical studies, performed over diverse
geographical areas (including a wide array of anthropometric characteristics), show that
specific population traits are not particularly relevant for OSAS (Ralls & Grigg-Damberger,
2012; Lee et al., 2008; Villaneuva et al., 2005).

Eventually, due to its higher specificity, the SASScore can be integrated into a large
area apnea screening and monitoring procedure, which aims at specifically discovering
typical severe cases (easy to investigate with portable devices), without overcrowding
sleep laboratories with false positive cases. This way, efficient personalized patient
processing can be achieved by making use of prioritization according to the predicted
severity level. For instance, this method can be a useful tool for sleep apnea screening
in large population categories, such as professional drivers since, at the European
level, the new 2014/85/EU directive regarding professional drivers is recommended
from January 2016.2 In this context, our website http://sasscore.appspot.com is a good
example of a large-area, accessible OSAS risk prediction tool. Indeed, SASScore can be
conveniently computed in both clinical and population-monitoring practices, due to
the fact that it is implemented as easy-to-use smartphone and web-based applications
(https://play.google.com/store/apps/details?id=aerscore.topindustries.aerscore&hl=en and
www.pneumoresearch.ro). To this end, processing data and obtaining the prediction score
requires less than 1 min per individual.

CONCLUSION
This paper proposes a new OSAS patients clustering method based on complex network
analysis, which leads to identifying OSAS phenotypes. This innovative network medicine
approach is extended in order to compute SASScore, a predictive score for OSAS based on
6 easy-to-measure, objective parameters. The proposed method uses big data, complex
networks analysis in order to achieve better specificity in OSAS prediction. As such, our
SASScore can conveniently be used in conjunction with the existing questionnaires for better
OSAS prevention through population screening and monitoring, thus paving the way for
a personalized patient management process.
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