
sensors

Article

A Classification Method for Seed Viability
Assessment with Infrared Thermography

Sen Men, Lei Yan *, Jiaxin Liu, Hua Qian and Qinjuan Luo

School of Technology, Beijing Forestry University, Beijing 100083, China; mensen1989@163.com (S.M.);
liujiaxin@bjfu.edu.cn (J.L.); qianhua@bjfu.edu.cn (H.Q.); luoqinjuan@bjfu.edu.cn (Q.L.)
* Correspondence: mark_yanlei@bjfu.edu.cn; Tel.: +86-10-6233-6913

Academic Editor: Vittorio M. N. Passaro
Received: 9 January 2017; Accepted: 10 April 2017; Published: 12 April 2017

Abstract: This paper presents a viability assessment method for Pisum sativum L. seeds based on
the infrared thermography technique. In this work, different artificial treatments were conducted to
prepare seeds samples with different viability. Thermal images and visible images were recorded
every five minutes during the standard five day germination test. After the test, the root length of
each sample was measured, which can be used as the viability index of that seed. Each individual
seed area in the visible images was segmented with an edge detection method, and the average
temperature of the corresponding area in the infrared images was calculated as the representative
temperature for this seed at that time. The temperature curve of each seed during germination was
plotted. Thirteen characteristic parameters extracted from the temperature curve were analyzed to
show the difference of the temperature fluctuations between the seeds samples with different viability.
With above parameters, support vector machine (SVM) was used to classify the seed samples into
three categories: viable, aged and dead according to the root length, the classification accuracy rate
was 95%. On this basis, with the temperature data of only the first three hours during the germination,
another SVM model was proposed to classify the seed samples, and the accuracy rate was about
91.67%. From these experimental results, it can be seen that infrared thermography can be applied
for the prediction of seed viability, based on the SVM algorithm.

Keywords: thermal imaging; support vector machine (SVM); seed germination; multi classifier;
image processing; classification

1. Introduction

Seed viability assessment is a key component of agricultural production and commercialization.
Seed viability can be affected by several factors, including overheating, physical damage and natural
aging. Assurances of high seed productivity are necessary for seed users in agricultural production,
and meanwhile high seed viability needs to be guaranteed in agricultural commercialization to ensure
the business optimization of seed companies. Hence, both the seed users and seed supply companies
are required to invest in seed viability test and classification technologies.

In seed viability assessment, many conventional methods including the standard germination
test, electrical conductivity test, seedling growth test, accelerated aging test and triphenyltetrazolium
chloride (TTC) quantitative analysis have been proposed [1,2]. However, several shortcomings still
exist in these methods, such as invasiveness, huge amount of test work needed, long test periods,
low accuracy and obvious subjective effects [3]. Therefore, fast and nondestructive diagnosis methods
are urgently required in seed viability assessment. In view of this, several optical techniques, such as
infrared thermography, Fourier transform infrared, Fourier transform near-infrared, bio-speckle,
nuclear magnetic resonance, ultraviolet-visible and Raman spectroscopy and hyperspectral imaging
have been developed to estimate the seed viability [4–10].
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Although these methods have the merits of being non-contact and providing rapid inspection,
they also have limitations, such as the high cost of hyperspectral imaging and nuclear
magnetic resonance devices, low throughput in Fourier transform infrared, Fourier transform
near-infrared and ultraviolet-visible spectroscopy, Raman spectroscopy and bio-speckle. By contrast,
infrared thermography shows the advantages of relatively low cost and high assessment throughput,
so considering all the factors, infrared thermography is a proper technique in seed viability
assessment [11–15].

Recently, many researchers have paid special attention to the application of infrared thermography.
As a noninvasive diagnosis method, infrared thermography has been applied in various fields
including medical tests, fault diagnosis, remote sensing, plant diseases and insect pest detection,
fruit quality and seed viability assessment [13–15]. In these applications, seed viability estimation
with infrared thermography is what we are most concerned about. In previous studies, the variation
of seed heat flow has been proved to be affected by water imbibition, respiration, decomposition of
nutrients and other biochemical, physical, chemical reactions correlated with seed viability during
the germination processes [16,17]. The surface of seeds measured by infrared thermal cameras can be
recorded as the temperature data for non-destructive seed viability evaluation. Hence, the infrared
thermography technique has great potential in seed quality assessment.

Microcalorimetry techniques have been used to depict the variation of seed heat flow and it is
proved that gross metabolism is associated with germination processes [18–20]. However, a closed
system is needed in microcalorimeter measurements to prevent the dissipation of heat and gas.
This closed system can induce the perturbation of potential and lead to confounding seed metabolism
feedback. In comparison, infrared thermography can capture thermal activity in the phase of seed
imbibition thanks to its large-area scanning advantage. This technique was first used to evaluate the
germination capacity of leguminous seeds in 2003, and the results demonstrated that temperature
changes in seeds with germination showed a considerable decrease in radiation temperature (more than
1 ◦C) during the first 12 h [21]. Further studies about seed viability assessment with the infrared
thermography technique found that whether seeds would germinate or not could be predicted in the
first three hours of the water uptake period, when the seeds could be redried and stored again [22].

In seed viability detection with infrared thermography, a temperature-time curve for every seed is
generally plotted by using temperature values in time sequence in the acquired thermal images. As the
main classification method in previous studies, the minimum distance algorithm is widely adopted to
evaluate the seed viability. However, this algorithm is easily affected by the selection of experimental
samples. In terms of classification problems, many intelligent algorithms including decision trees,
Bayesian classification, KNN (K-nearest neighbors) and artificial neural net were introduced [23].
Based on the statistical theory, these classification methods need quite a large amount of samples
that cannot be satisfied in practical problems. Compared with these methods, the target of support
vector machine (SVM) is structural risk minimization instead of empirical risk minimization [24,25].
Therefore, the SVM method has the advantages of global optimization and generalization ability,
which is suitable for seed viability assessment where a small amount of samples are classified with
infrared thermography.

As a new technique in seed viability assessment, it is important to investigate the relationship
between the seed heat flows detected by infrared thermography and the seed viability. Considering its
non-destructiveness, the infrared thermography technique can be used during the whole sample
germination process. It can detect the seed viability during the period of water uptake and
improve the accuracy of viable seed assessment by virtue of the temperature change curves of
thermography images.

The objectives of the present study included: (1) investigation of the differences in temperature
curves of highly viable, aged and dead seeds during the germination period; (2) exploration of the
vital parameters of temperature curves; (3) development of a method that can distinguish the viable
seeds and unviable seeds before germination.



Sensors 2017, 17, 845 3 of 14

2. Materials and Methods

2.1. Plant Materials

Pisum sativum L. seeds were selected as the experimental samples, and submitted to standard
germination tests for quality control. A total of 120 seeds were divided into two groups, namely A class
and B class, for different treatments (80 seeds for A class and 40 seeds for B class). The seeds of class
A were stored at 5 ◦C for three days while the seeds of class B were treated at 100 ◦C for three days.
To be specific, A class seeds were put in a refrigerator at 5 ◦C for three days, while B class seeds were
treated at 100 ◦C (±1 ◦C) with a draught drying cabinet. Root lengths of each individual seed were
then measured by a Vernier caliper on the fifth day after imbibition so as to qualify the seed viability.

Polycarbonate plates (cryogenic vial holders with holes) were used as the Petri dish in the
germination experiment. The polycarbonate plate was placed in a water bath and covered with filter
paper. Every seed was placed above the well of the polycarbonate plate with a little well-hydrated
dip formed under the seeds. Ambient temperature, including both air and water temperature,
was maintained constant at 24 ◦C with minimal convection to reduce the environment impact on seeds.
The infrared thermography system, including a light source, infrared thermal camera, charge coupled
device (CCD) and waterbath was put in the constant temperature incubator. The visible and thermal
images that captured by infrared camera and CCD respectively, are shown in Figure 1. During the
standard germination test, the temperature incubator has held constant at 24 ◦C (±0.4 ◦C) and the
seeds continuously exposed to light till the end of the experiment.
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Figure 1. Visible (a) and thermal images (b) of the experimental samples. 

2.2. Image Analysis 

Figure 2 shows a schematic of the infrared thermography system used to capture and analyze 
the thermal and visible images of the seeds. This system consists of an infrared thermal camera, a 
digital color charge-coupled device (CCD) camera, a directional light source, a constant temperature 
incubator, a thermostatic waterbath, and a host computer. A resolution of 320 × 240 pixels thermal 
images were registered by the infrared thermal camera Ti55 (Fluke, Everett, WA, USA) with a 
sensitivity of 0.02 °C and preliminarily processed with the Smartview software (Fluke Systems). 
Visible images with a resolution of 900 × 600 pixels acquired from the CCD were digitized to 8 bit 
(256 grey levels) data and stored. Both thermal and visible images were stored every 5 mins over five 
days and could be exported as individual images or as a series of images in time sequence. 
Afterwards, these thermal and visible images were analyzed with the software MATLAB 
(MathWorks, Natick, MA, USA) for post-processing. 

Figure 1. Visible (a) and thermal images (b) of the experimental samples.

2.2. Image Analysis

Figure 2 shows a schematic of the infrared thermography system used to capture and analyze the
thermal and visible images of the seeds. This system consists of an infrared thermal camera, a digital
color charge-coupled device (CCD) camera, a directional light source, a constant temperature incubator,
a thermostatic waterbath, and a host computer. A resolution of 320 × 240 pixels thermal images
were registered by the infrared thermal camera Ti55 (Fluke, Everett, WA, USA) with a sensitivity of
0.02 ◦C and preliminarily processed with the Smartview software (Fluke Systems). Visible images with
a resolution of 900× 600 pixels acquired from the CCD were digitized to 8 bit (256 grey levels) data and
stored. Both thermal and visible images were stored every 5 mins over five days and could be exported
as individual images or as a series of images in time sequence. Afterwards, these thermal and visible
images were analyzed with the software MATLAB (MathWorks, Natick, MA, USA) for post-processing.
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Figure 2. Schematic diagram of infrared thermography system used to capture and analyze
thermal profiles.

As shown in Figure 3, due to the effect of water uptake and respiration, heat convection between
the seeds and the ambient (both air and water) lasts during the whole germination period until the end
of the experiment. Under the impact of this convection, the edges of the seeds in the profiles merge
into the background, but in the visible images, the unabridged edges can be detected. By the image
fusion technology, the temperature information of seed areas restricted by the shapes in the visible
images could be acquired to plot the curves of seeds in the different viability categories during the
germination period.
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Figure 3. Flow chart of a series of steps for analyzing thermal and visible images data. Visible images
are used to acquire the edge regions information (green arrow). Thermal images are used to extract
the temperature information (red arrow). Fusion parameters are acquired from fusion image of viable
image and thermography image.
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Regarding the characteristics of visible images, we propose an image processing flow to acquire
each individual seed areas in the images. As a pre-processing approach, background subtraction can
eliminate any non-uniform brightness areas and reflection points in the visible images. The edges of
individual seeds were detected by the edge extraction method, and a region growing method was
introduced to form the segmented regions. A disk whose area was approximately one-third of the seed
area was placed in the center of each seed and defined as the seed area.

Thermal images obtained during the experiment were displayed as pseudo-color images and
were transformed into grayscale images which recorded the temperature as gray values. Maximum
(grey level is 255) and minimum (grey level is 0) gray values corresponded respectively to the preset
maximum (27 ◦C) and minimum (21 ◦C) temperature value before the experiment.

Image fusion technology was adopted to extract seed regions in the thermal images with the disk
areas in the visible images. Then, the temperature data of each individual seed was obtained through
multiplication of thermal images and visible images. The average over all pixels of the seed region was
calculated as the resulting temperature value T and the value can be expressed as the follow equation
(Equation (1)):

T =
n

∑
i=1

[Ii/n× (Tmax − Tmin)/(255− 0)] (1)

where Ii is the grey value of the i pixel in the thermal image, n represents the total pixel number of the
seed region. Tmax and Tmin are the pre-set maximum and minimum temperature values. 255 and 0 are
the maximum and minimum grey values in the thermal image.

For the purpose of correcting the temperature value, the temperature of filter paper area around
each individual seed area was defined as the environmental temperature of the seed. This ambient
area temperature was then introduced into the calculation. Similar to the calculation of temperature
value in the seed area, the environment temperature can be calculated by (Equation (1)). Define rT as
the temperature difference between the seed area and the environment area, namely. This difference
was expressed in the equation (Equation (2)):

rT = Tseed − Tenvironment (2)

A total number of 1440 thermal images were used to describe the temperature variation for each
individual seed during the experiment. This variation was analyzed by the software MATLAB to
obtain the temperature curve of each individual seed.

The temperature-time curve of each seed was analysis to extract its characteristic parameters.
Then, these parameters were measured by Least Significant Difference (LSD) multiple comparison
analysis method. LSD method is used to analyze the multiple comparisons as follows: calculate the
ratio of absolute temperature value of two variables

∣∣xi − xj
∣∣ and its standard error of mean difference.

The standard error of the mean difference was calculated using the following equation (Equation (3)):

Sxi−xj =
√

2MSe/n (3)

where MSe is mean square error in F test, n is number of variables.
The ratio would be compared with the critical value of 2-tailed samples T-test (α = 0.05).

The equation LSDα could be transformed into the equation (Equation (4)) as:

LSDα = t0.05(d fe) (4)

The results shows that xi and xj have a significant difference in α level if the ratio is higher than
LSDα. Conversely, the difference between xi and xj is not significant.
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2.3. Classification Algorithm

Support vector machine (SVM) was first introduced by Cortes as a universal feed-forward
classification algorithm. The SVM approach is a supervised method based on the statistical learning
theory and structural risk minimization principle, and can be used to analyze data and recognize
images. The strategy of SVM classification is to find an optimal separating hyperplane between
classes by focusing on training samples that locate at the edge of the class distributions. The main
characteristics of SVM are as follows:

(1) SVM can be generalized in high-dimensional spaces with only a small amount of training samples.
(2) The optimum result can be given by SVM through transforming the problem into a quadratic

programming problem.
(3) SVM can simulate nonlinear functional relationships.

A brief description of the SVM classification is given below. In a binary classification problem,
the aim is to develop a classifier that generalizes accurately for predicting the membership of a class yi
(−1, +1) from m-dimensional input data represented by a vector X = {x1, x2, . . . , xm}. In the case of
seed viability assessment based on infrared thermography, m represents the number of the characters
of the temperature variation curve during the germination. Before prediction, it is necessary to train
a data set containing the characters corresponding to n experimental samples of a known class.

The core of SVM algorithm is to search the optimal hyperplane that separates different classes.
This hyperplane can be described as the follow equation (Equation (5)):

w · Xi + b = 0 (5)

where w is the normal vector of the hyperplane and b is the offset. During the training process,
SVM tries to find the hyperplane that can not only maximize the shortest distance from this hyperplane
to the closest training sample of each class (the class yi = +1 and the class yi = −1), but also minimize
the classification error. The support vectors of the two classes lie on two hyperplanes that are parallel
to the optimal hyperplane. The distance between these two planes is defined as the margin associated
with the separating hyperplane. The optimization of this margin can be converted into a constrained
quadratic optimization problem as follow equation (Equation (6)):

min(1/2‖w‖2 + C
n
∑

i=1
ξi)

s.t. ξi + yi(wXi + b)− 1 ≥ 0
ξi ≥ 0

(6)

where ξi represents the classification error for the distance between the misclassified sample i and
the corresponding margin hyperplane and C is the regularization meta- parameter controls the
trade-off between the two conflicting objectives, i.e., margin maximization and error minimization.
When C is small, margin maximization is emphasized; whereas when C is large, error minimization is
predominant. According to the Lagrangian dual formulation, the optimal hyperplane can be expressed
as a liner combination of the training observations in the following equation (Equation (7)): f (X) = w · X + b =

n
∑

i=1
yiαiξiXi + b

αi ≥ 0
(7)

where αi is a Lagrange multiplier that corresponds to a coefficient associated with each object.
The magnitude of αi is related to the parameter C and varies between 0 and C.

For nonlinear classification problems, the input data are mapped into a high dimensional
space through a mapping function. Then the data can be separated with a linear SVM. In the
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dual representation, a kernel, the inner product of two vectors of u(x1) and u(x2) is used as the
mapping function. In this study, the radial basis function (RBF) kernel is used for its advantage of
good performance in obtaining almost all boundary shapes. The RBF kernel function is given as the
following equation (Equation (8)):

K(X1, X2) = ϕ(X1) · ϕ(X2) = exp(−‖X1 − X2‖/σ2) (8)

where ϕ(X1) and ϕ(X2) are the mapping functions of the objects X1 and X2 respectively; σ is the kernel
parameter determined by the kernel width meta-parameter.

As a conclusion, the two meta-parameters regularization parameter C and kernel parameter
G need to be selected properly as they determine the boundary complexity and the observed
classification rate.

The multi classifier is integrated by a single classifier with a certain difference. In this work,
a multi classifier y (viable seeds, aged seeds, non-viable seeds) consisted of three two-class classifiers
y1 (viable seeds, aged seeds) y2 (viable seeds, non-viable seeds) and y3 (aged seeds, non-viable seeds).
To combine these classifiers, the weighted voting algorithm is adopted. The resultant class is given
by choosing the class voted by the majority of the classifiers. Only samples from two classed of each
individual classifier are used for training.

To be specific, all the classifiers were regarded as a voter with a weight value to produce
classification results. The performance differences of the base classifiers was introduced by assign
a weight value to each base classifier, and the equation (Equation (9)) is shown as follows:

αi = pi/
n

∑
i=1

pi (9)

where αi is the weight value of i based classifier. pi represents the average accuracy of the training set
of the i based classifier.

3. Results and Discussion

3.1. Viability Test

After the standard germination test, seeds viability was defined as the percentage of germinated
seeds and classified by the root lengths. Based on the statistical analysis of five days of germination
experiments, the germination rate of A class was 91.25%, whereas the B class seeds did not germinate.
According to the root lengths, the seeds (a total of 120 seeds) were classified into three viability
categories according to different lengths (Table 1). A class seeds were divided into three viability
types, which are viable seeds (Viability type 2), aged seeds (Viability type 1) and non-viable seeds
(Viability type 0) and the standards of classifications were explanted in Table 1.

Table 1. Viability types of the seeds.

Seed Group Treatment Root Length (cm) Seed Viability Type Seed Amount

A Class 5 ◦C for three days Total 80
1.6–5.0 Viable seed (A2) 41
0.1–1.5 Aged seed (A1) 32

0 Non-viable seed (A0) 7
B Class 100 ◦C for three days Total 40

0 Non-viable seed (B0) 40

3.2. Temperature Variation

Figure 4 shows the temperature variations of the seeds temperature in different categories.
The three temperature curves were calculated respectively by the averages of viable seeds A2 (green),
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aged seeds A1 (yellow), and non-viable seeds A0 and B0 (red). In these curves, relative seed
temperature (rT) acquired by the difference between every individual seed temperature and the
environment temperature was used to describe the temperature variations during all the 5 days
experiments. The heat variation, i.e., the warming or cooling of the seed, was revealed by the positive
or negative of the rT value.
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According to the differences in the three categories of seeds, a curve of an individual seed was
illustrated in Figure 5, where several characteristic parameters were marked. Hereinto, rTmax represents
the maximum temperature value; trTmax represents the time for reaching the maximum temperature
value; rTdrop represents the temperature value at the beginning of its sharp decline; trTdrop represents
the time when sharp decline of the temperature begins; rTmin represents the minimum temperature
value; trTmin represents the time for reaching the minimum temperature value; rT0h, rT20h, rT40h, rT60h,
rT80h, rT100h and rT120h represents the temperature values at 0 h, 20 h, 40 h, 60 h, 80 h, 100 h and
120 h, respectively. All these characteristic parameters of the three categories of seeds were statistically
calculated and listed in Table 2.
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Table 2. Characteristic parameters of viable, aged and non-viable seeds.

Parameter Viable Seed Mean ± SD Aged Seed Mean ± SD Non-Viable Seed Mean ± SD

rTmax 0.1376 ± 0.2007 0.1838 ± 0.2755 0.1770 ± 0.2858
trTmax 3.8000 ± 2.6099 1.7500 ± 1.7538 1.7000 ± 1.8952
rTdrop −0.0981 ± 0.3868 −0.1867 ± 0.3801 −0.0248 ± 0.2927
trTdrop 22.7000 ± 4.4919 22.8500 ± 3.7353 15.6000 ± 2.9637
rTmin −1.0389 ± 0.7089 −1.4796 ± 0.7716 −0.5591 ± 0.9178
trTmin 45.5000 ± 4.7564 48.5500 ± 3.9538 44.0000 ± 4.9593
rT0h −0.2594 ± 0.5248 0.2288 ± 0.6147 0.0467 ± 0.5589
rT20h −1.1681 ± 0.6047 −1.3426 ± 0.6570 −0.8700 ± 0.5835
rT40h −1.3102 ± 0.4897 −1.2525 ± 0.5880 −0.8813 ± 0.5870
rT60h −1.3474 ± 0.5551 −1.2057 ± 0.5677 −0.8976 ± 0.5751
rT80h −1.2637 ± 0.5033 −1.1617 ± 0.5428 −0.9496 ± 0.5408
rT100h −1.1722 ± 0.5064 −1.1788 ± 0.5639 −0.9661 ± 0.5038
rT120h −1.1240 ± 0.5901 −1.1905 ± 0.6134 −0.9680 ± 0.5092

As shown in Figure 4, in viable type A2 seeds (green), rT first showed a gentle dip in the first one
hour, and then drops sharply within the next two hours till the inflection point to rise up. Due to this
phenomenon, the maximum value of temperature (rTmax) occurs at the begining and the minimum
value of temperature (rTmin) appears at the inflection point. By contrast, in aged type A1 seeds, rT first
shows a small peak and reaches the maximum temperature value (rTmax). The sharp decline in this
curve was delayed nearly half an hour than that in the curve of viable seeds. The sharp decline appears
at the beginning of the curve of the seed of non-viable type A0 and B0 seeds types and reaches the
minimum temperature value (rTmin) earlier than that of viable and aged types.

These differences in the temperature curves are mainly reflected in the imbibition period, and can
be explained by the biophysical and biochemical changes occurring during the germination test.
The imbibition period was affected by the membrane permeability. Compared with viable seeds,
the membrane permeability of aged seeds was changed and water absorption in the water uptake
period became slower, which resulted in the delay of sharp decline in aged seeds. For non-viable
seeds, although the seeds lost the viability, they still had certain water absorbing capacity [22,26].
Considering that different categories of seeds have different characteristics in the internal metabolic
activity, the seeds showed distinct differences in their performance. To be specific, the non-viable seeds
had the fastest temperature rise in this process, the aged seeds followed, while the viable seeds had
the slowest.

To sum up, considerable variations of cooling in temperature can be observed for all three
categories of seeds during the experiments. To prevent the cooling produced by evaporation,
relative seed temperature was used to evaluate the cooling. In this situation, the decline of
temperature was caused by the biophysical and biochemical changes in seeds instead of evaporation.
Multiple comparisons are used to analyze the characteristic parameters in Table 2, and all the
parameters with significant difference in three categories of seeds are shown in Table 3.

As shown in Figure 6, the temperature variations of all the three categories of seeds mainly
occur in the first three hours. The parameters including rTdrop, rTmin, and rT0h can be required from
these temperature data, so the temperature data of the first three hours were used for seed viability
assessment when the seeds can be redried and stored again. Hence, by virtue of the temperature data
in this time period, an SVM model can be developed to assess the seed viability.
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Table 3. Multiple comparisons of characteristic parameters in viable, aged and non-viable seeds.
Std.: standard; Sig.: significance.

Variate Seed Viability
Type (I)

Seed Viability
Type (J)

Mean
Difference (I-J)

Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound

rTdrop Viable Aged 0.088575000 0.051886357 0.096 −0.01655674 0.19370674
Non-viable −0.073350000 0.059913204 0.229 −0.19474568 0.04804568

Aged Viable −0.088575000 0.051886357 0.096 −0.19370674 0.01655674
Non-viable −0.161925000 * 0.051886357 0.003 −0.26705674 −0.05679326

Non-viable Viable 0.073350000 0.059913204 0.229 −0.04804568 0.19474568
Aged 0.161925000 * 0.051886357 0.003 0.05679326 0.26705674

rTmin Viable Aged 0.440695000 0.249822823 0.086 −0.06549412 0.94688412
Non-viable −0.479800000 0.288470548 0.105 −1.0642969 0.10469685

Aged Viable −0.440695000 0.249822823 0.086 −0.94688412 0.06549412
Non-viable −0.920495000 * 0.249822823 0.001 −1.4266841 −0.41430588

Non-viable Viable 0.479800000 0.288470548 0.105 −0.10469685 1.06429685
Aged 0.920495000 * 0.249822823 0.001 0.41430588 1.42668412

rT0h Viable Aged −0.388177271 * 0.131625596 0.005 −0.65487606 −0.12147848
Non-viable −0.206019553 0.151988147 0.183 −0.51397679 0.10193768

Aged Viable 0.388177271 * 0.131625596 0.005 0.12147848 0.65487606
Non-viable 0.182157718 0.131625596 0.175 −0.08454107 0.44885651

Non-viable Viable 0.206019553 0.151988147 0.183 −0.10193768 0.51397679
Aged −0.182157718 0.131625596 0.175 −0.44885651 0.08454107

rT20h Viable Aged 0.174533924 0.153147282 0.262 −0.13577194 0.48483979
Non-viable −0.298041417 0.176839249 0.100 −0.65635177 0.06026894

Aged Viable −0.174533924 0.153147282 0.262 −0.48483979 0.13577194
Non-viable −0.472575341* 0.153147282 0.004 −0.78288121 −0.16226947

Non-viable Viable 0.298041417 0.176839249 0.100 −0.06026894 0.65635177
Aged 0.472575341 * 0.153147282 0.004 0.16226947 0.78288121

rT40h Viable Aged −0.057694319 0.125059184 0.647 −0.31108830 0.19569966
Non-viable −0.428964520 * 0.144405907 0.005 −0.72155868 −0.13637036

Aged Viable 0.057694319 0.125059184 0.647 −0.19569966 0.31108830
Non-viable −0.371270201 * 0.125059184 0.005 −0.62466418 −0.11787622

Non-viable Viable 0.428964520 * 0.144405907 0.005 0.13637036 0.72155868
Aged 0.371270201 * 0.125059184 0.005 0.11787622 0.62466418

rT60h Viable Aged −0.141687776 0.124322859 0.262 −0.39358982 0.11021426
Non-viable −0.449798325 * 0.143555672 0.003 −0.74066975 −0.15892690

Aged Viable 0.141687776 0.124322859 0.262 −0.11021426 0.39358982
Non-viable −0.308110548 * 0.124322859 0.018 −0.56001259 −0.05620851

Non-viable Viable 0.449798325 * 0.143555672 0.003 0.15892690 0.74066975
Aged 0.308110548 * 0.124322859 0.018 0.05620851 0.56001259

* The mean difference is significant at the 0.05 level.
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3.3. Classification Model

With the analysis, there are significant differences between the above 13 characteristic parameters.
These parameters were used as the input of SVM model to explore the classification result with
the whole temperature data during the germination. Both the regularization parameter and kernel
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parameter of this SVM model set to 2. 5-fold cross validation was used in the training of this model
and the results of cross validation of the SVM model with the whole germination temperature data is
shown in Table 4.

Based on the analysis and statistics of Table 4, the classification results of the SVM model with
the whole germination temperature data is shown in Table 5. As seen in this data, the classification
accuracy for all types of seeds is 95%. What’s more, the classification accuracy of each type of seeds
can be more than 90%. This result proved that the infrared thermography technique can be used in the
viability assessment of pea seeds.

Table 4. The results of cross validation of the SVM model with the whole germination temperature data.

Definition Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Training number 96 96 96 96 96

Prediction number 24 24 24 24 24

Misjudgment number/Prediction number
in Viable seed (Accuracy rate) 1/9 (88.89%) 0/8 (100%) 0/8 (100%) 0/8 (100%) 2/8 (75%)

Misjudgment number/Prediction number
in Aged seed (Accuracy rate) 1/7 (85.71%) 1/8 (87.5%) 1/8 (87.5%) 0/8 (100%) 0/1 (100%)

Misjudgment number/Prediction number
in Non-viable seed (Accuracy rate) 0/8 (100%) 0/8 (100%) 0/8 (100%) 0/8 (100%) 0/15 (100%)

Accuracy rate 91.67% 95.83% 95.83% 100% 91.67%

Accuracy rate of total 95%

Table 5. Classification results of SVM model with the whole germination temperature data.

Definition Viable Type Aged Type Non-Viable Type

Prediction number 41 32 47
Classification in Viable seed 38 1 0
Classification in Aged seed 1 29 0

Classification in Non-viable seed 2 2 47
Misjudgment number/Prediction number 3/41 3/32 0/47

Accuracy rate 92.68% 90.63% 100%

Accuracy rate of total 95%

Although the above model proves the accuracy and effectiveness in seed viability assessment
with infrared thermography, we still explored the possibility of classification of the different types with
less temperature data, especially with the temperature data before the seeds germinate. According to
the results in Table 3 and the following analysis, the first three hours of temperature data are selected
as the SVM input. These data were represented by the temperature data obtained every ten minute in
the first three hours. Both the regularization parameter and kernel parameter of this SVM model set to
2. Five-fold cross validation was used in the training of this model and the results of cross validation
of the SVM model with the first three hours temperature data is shown in Table 6.

Based on the analysis and statistics of Table 6, the classification results of SVM model with the
first three hours temperature data is shown in Table 7. As shown in Table 7, the classification accuracy
of all types of seeds is 91.67%.
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Table 6. The results of cross validation of the SVM model with the first three hours temperature data.

Definition Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Training number 96 96 96 96 96

Prediction number 24 24 24 24 24

Misjudgment number/Prediction number
in Viable seed (Accuracy rate) 1/9 (88.89%) 0/8 (100%) 0/8 (100%) 0/8 (100%) 0/8 (100%)

Misjudgment number/Prediction number
in Aged seed (Accuracy rate) 2/7 (71.43%) 2/8 (75%) 4/8 (50%) 0/8 (100%) 0/1 (100%)

Misjudgment number/Prediction number
in Non-viable seed (Accuracy rate) 0/8 (100%) 0/8 (100%) 0/8 (100%) 0/8 (100%) 1/15

(93.33%)

Accuracy rate 87.5% 91.67% 83.33% 100% 95.83%

Accuracy rate of total 91.67%

Table 7. Classification results of SVM method with the first three hours temperature data.

Definition Viable Type Aged Type Non-Viable Type

Prediction number 41 32 47
Classification in Viable seed 40 4 0
Classification in Aged seed 0 24 1

Classification in Non-viable seed 1 4 47
Misjudgment number/Prediction number 1/41 8/32 1/47

Accuracy rate 97.56% 75% 97.87%

Accuracy rate of total 91.67%

Comparing the SVM model with the whole germination temperature data and the SVM model
with the first three hours of temperature data, as can be seen, the overall accuracy rate of the latter for
the samples is 91.67%, slightly lower than that of the classification (95%). Hereinto, with the whole
germination temperature data, the accuracy rate for the viable seeds is 97.56%; that for the aged seeds is
75%, which is the lowest; that for the non-viable seeds is up to 97.87%, which is the highest. By contrast,
with the first three hours temperature data, the accuracy rate for the viable seeds is 92.68%; that for
the aged seeds is 90.63% and that for the non-viable seeds is up to 100%. For the comparison results
of SVM model, it can be seen that the accuracy rates of viable seeds and non-viable seeds have no
significant differences between these two classification models, but the accuracy rate of SVM model
with the whole germination temperature data higher than that of SVM model with the first three hours
temperature data.

From analysis and comparison of these two SVM models, it can be concluded that the infrared
thermography technique can be used to predict the viability categories of the seeds in the first three
hours when seeds can be redried and stored again. The method proposed in this work can be applied
for seed viability assessment with the advantages of being fast and nondestructive.

4. Conclusions

In this study, the infrared thermography technique was proposed as a viability assessment method
for pea seeds based on their temperature variations. The temperature on the surfaces of experimental
samples was measured in a non-destructive and non-contact way by this technique, and the viability
of seeds of different categories were obtained by artificial aging. The thermal profiles of the seeds
were recorded during the germination experiment, and the temperature curve for each individual
seed was plotted by the method of image processing and image fusion. Finally, the SVM model,
as a multi-classification method, was used to classify the seeds into viable, aged and non-viable types
according to the root length.

The results showed that there are significant differences between the parameters used for
characterizing the temperature variations of seeds depended on the seed viability. With these



Sensors 2017, 17, 845 13 of 14

parameters, SVM was used to classify the seed samples into three categories, and the classification
accuracy rate was 95%. On this basis, another SVM model was proposed to predict the seed viability in
the first three hours when the seeds can be redried and stored again, and result in an overall accuracy
rate of 91.67%.

Our work indicates that the infrared thermography technique can be used as a fast, non-invasive
method in seed viability assessment, and has great potential in the viability assessment for various
agricultural specimens. In the future, more data from extensive experiments are required to
illuminate the relationship between the temperature variations and the specific biophysical and
biochemical activities.
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